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Pinning of a two-dimensional membrane on top of a patterned substrate: The case of graphene
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We study the pinning of a two-dimensional membrane to a patterned substrate within elastic theory both in
the bending rigidity and in the strain-dominated regimes. We find that both the in-plane strains and the bending
rigidity can lead to depinning. We show from energetic arguments that the system experiences a first-order phase
transition between the attached configuration to a partially detached one when the relevant parameters of the
substrate are varied, and we construct a qualitative phase diagram. Our results are confirmed through analytical
solutions for some simple geometries of the substrate’s profile. We apply our model to the case of graphene
on top of a SiO, substrate and show that typical orders of magnitude for corrugations imply graphene will be

partially detached from the substrate.
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I. INTRODUCTION

Until recently, the study of two-dimensional (2D) mem-
branes was developed mainly for its theoretical interest and
its applications to biological systems that could be well
approximated by the 2D membrane model, as well as soft
matter systems.! Nowadays, however, with the experimental
discovery of graphene®™ (a two-dimensional graphite sheet),
we have the opportunity of studying a truly 2D membrane.
It has been proven that the membrane aspect of graphene,
and in particular the presence or not of a substrate, plays
an essential role in characterizing its behavior.*® Graphene
presents intrinsic ripples,” inherent to its 2D nature, that can
interact with the propagating electrons and affect transport
properties.'® In most experimental settings to date, though,
graphene is deposited on top of a substrate, either purposely
patterned or presenting random disorder. A relevant question
then is to determine how the spatial structure of the substrate
affects that of graphene. This kind of study also opens the pos-
sibility of controlling the properties of graphene by patterning
appropriately the substrate. Experiments have shown that the
morphology of a graphene membrane on top of a substrate is
largely determined by the substrate’s profile,!''* as opposed
to suspended graphene. The attachment of graphene to a
corrugated surface leads to the bending and stretching of the
graphene layer, so that the depinning of the layer may become
energetically favorable. For device construction, as well as for
the interpretation of experimental data, it is important to know
if the graphene sheet is completely pinned to the substrate or
if there are regions for which depinning occurs and graphene
is suspended.

Given its experimental relevance, in this work we address
the problem of determining which is the stable configuration
of a membrane on top of a substrate that presents either
depressions or protrusions. Although we will treat the problem
in the context of graphene physics, our results are general. We
analyze this problem from a general field theory framework,
in which we show the possibility of a phase transition
between a pinned configuration to a partially depinned one,
where relevant parameters of the patterned substrate act as
control parameters. We turn then to analyzing some simple
substrate geometries that allow for analytical solutions. We
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will show that these examples quantitatively confirm our
phenomenological, qualitative model. To the best of our
knowledge, our work is the first in the graphene literature that
takes into account the effect of in-plane strains for detachment
of the membrane. We show that there is a length scale for
the substrate’s pattern beyond which the in-plane strains are
dominant and can lead to depinning. This length scale marks
the crossover from a regime in which the bending rigidity of
the membrane is dominant energetically.

In what follows, we will analyze the depinning of a
membrane from the substrate for the two different limiting
regimes mentioned above. [Previous works have studied
this problem for graphene restricted to the bending rigidity
dominated (BD) regime and for some particular patterns of
the substrate.>*% A comprehensive treatment of the problem
of adhesion of a membrane to a substrate, in the BD regime,
can be found in Refs. 16 and 37.] First, in Sec. II we introduce
the model for the free energy of a membrane on top of a
substrate, and by means of scaling arguments we establish
the possibility of a phase transition for the system between
two possible stable equilibrium configurations: the membrane
being completely attached to the substrate or being partially
detached. From this we are able to construct a qualitative phase
diagram for the system. In the following sections, we proceed
to a quantitative analysis for a given geometry of the substrate
profile. We consider a substrate with a Gaussian depression or
protuberance, and we obtain analytical solutions for the two
limiting regimes: the bending rigidity dominated regime in
Sec. III and the strain dominated regime in Sec. IV. In both
cases, we show that the system presents a first-order phase
transition from pinned to depinned as the ratio of width to
height of the substrate’s profile is varied. A discussion and
possible experimental consequences are presented in Sec. V.

II. MODEL AND QUALITATIVE PHASE DIAGRAM

We consider a tethered membrane that lies on top of a
substrate. We use the de Monge parametrization,'> by which
the membrane is parametrized by (x,4(x)), where & is the
height with respect to some reference plane and x = (x,y) are
the in-plane coordinates. In the same way, the profile of the
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FIG. 1. Pictorial representation of a membrane on top of a random
substrate, partially conforming to the substrate. The height of the
membrane is represented by a field /(x) while the top surface of the
substrate is represented by a field s(x), as discussed in the main text.

substrate is represented by (x,s(x)), as shown schematically in
Fig. 1.

We assume as a first approximation that the membrane
couples to the substrate through its out-of-plane modes (also
denominated flexural modes) via a contact force character-
ized by a surface tension ys. Previous works that study
the attachment of a membrane to a substrate have used the
so called Deryagin approximation, which approximates the
interaction potential between the membrane and the substrate
as a harmonic potential.'® However, this approximation results
in a strongly confining potential. In our case, we are interested
in studying the stability of the pinned configuration and
the possibility of detachment, and therefore a contact force
approximation is more appropriate. Moreover, the interaction
between graphene and a substrate has been studied in Ref. 17,
and it has been shown that the attractive interaction force
decays as the inverse distance to a power that depends on
the type of interaction (a power of 2 in the case of undoped
Si0,). In that work, it was also shown that the coupling strength
decays roughly four orders of magnitude when the graphene
sheet is not pinned to the substrate. These considerations
justify the use of a contact force that is finite when graphene
is conforming to the substrate and zero otherwise. This
is, of course, an idealization of our model since we are
disregarding the equilibrium distance between the substrate
and the membrane, which for graphene on a SiO, substrate is
of the order of 5 A.!' The free energy for the membrane on
top of the substrate within this approximation is given by

Flu,h,s] = % / d?x [k (VER(X))* + 2t ;(X)* + Addji(x)]

1 2
s sd X, (1

where 1 and A are the Lamé coefficients, « is the bending
rigidity of the membrane, and S is the surface of contact
between the membrane and the substrate. Throughout this
paper, we will use the accepted values of the elastic and
bending parameters for graphene at room temperature. The
bending rigidity is given by « ~ 1 eV (Ref. 18) and the
Lamé coefficients are given by u = 10 eV A2 and A ~
2 eV A2 We take the value of the coupling-constant

strength as yg = 2 meVA_z, corresponding to the maximum
estimated pinning strength for graphene on a SiO, substrate.!”
(The value of ys A~ 2 meV A~ is actually an upper limit for
ys, attained when there is a layer of water between graphene
and the substrate.!” Also, repulsive forces not considered
in Ref. 17 would effectively reduce the value of ys.) The
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functional dependence of F[u,#k,s] on the substrate’s profile
field s(x) is given implicitly through the contact term, being
h(x) = s(x) when the membrane is attached to the substrate.
(V2h(x))? is the local mean curvature of the membrane, and
the local intrinsic curvature is encoded in the strain tensor:
fijj = %(Biuj + 9;u; + 9;h0;h), withu(x) the in-plane phonon
modes and the 7, j = 1,2 index the two components of the
field. [Note that although the tofal Gaussian curvature of a
nearly flat 2D membrane is zero, the quartic interaction term
generated by integrating out the in-plane phonon modes can
be seen as a long-range interaction between the local Gaussian
curvatures at different points in the membrane (see Ref. 15).
This long-range interaction is responsible for the stability of
a low-temperature flat phase in 2D membranes (see Refs. 1
and 20).] Since the action is quadratic in these modes, they
can be integrated out®® to obtain an effective free energy
e~ Felhsl = [ Due~Fmhs] with

Fulhos] = =2 [ a2x 4 & f Px(V2h(x))
2 Js 2

Exp 2
+ 3 / d*x[ P} o;h(x)0;h(x)]", 2)
where PJ =6ij — 3%%’ is the transverse projector and where

we have used the expression for the Young modulus in 2D,
Exp = %. We are interested in analyzing the possible
detachment of the graphene sheet from the substrate, and,
in particular, finding the configuration that is energetically
favorable. The general procedure would be to minimize the
free energy Eq. (2) given a profile of the substrate to find the
stable solution. However, the nonlinearity of Eq. (2) makes
this program impossible to follow analytically, even for the
most simple geometries. We are then obliged to make use of
approximations if we are to make any analytical progress.
It is usually assumed that the in-plane stresses are small
and therefore their contribution, encapsulated in the quartic
order term of the effective energy F[/,s], can be neglected.
However, this is true only if the height fluctuations are not
too big, as we proceed to show. If we consider a substrate
of average height fluctuations S over a length scale L, from
Eqg. (1) we see that the bending energy of a membrane attached
to this substrate scales as

Ex ~k f Px(V2h(x))? ~ %SZ, 3)

where we have used that V ~ L~! and the area f d*x ~ L.
On the other hand, by similar arguments (note that #;; ~
S2/L?), the elastic energy due to in-plane strains is given
roughly by

Eq ~ — 8" “

Therefore, the elastic energy due to in-plane strains is the main
contribution to the total energy of the membrane if Exps? > k.
This analysis is valid except for quasi-one-dimensional (1D)
geometries, where the height profile of the substrate is constant
along one direction. For this case it is easy to show that
the in-plane strains are completely screened by the height
fluctuations and hence the in-plane stresses are zero, and the
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only contribution to the elastic energy is due to the bending
rigidity.
With the previous analysis, we have then arrived to a length

scale
K
L= _[— ()]
V Exp

that determines a crossover from a bending rigidity dominated
regime (BD regime) for § < £ to a strain dominated regime
(SD regime) for S > ¢. With the values for the elastic
parameters of graphene given above, £ &~ 1 A (compare with
the temperature-dependent crossover length scale obtained by
the renormalization of the bending rigidity due to the in-plane
modes; see Refs. 1 and 38). Note that this scale is of the order
of magnitude of the lattice spacing, and in principle this would
imply that the BD regime for graphene is greatly suppressed.”'
However, recent atomistic simulations have shown that thermal
height fluctuations of this magnitude are possible.””> Moreover,
the study presented in Ref. 22 shows that the continuum model
can still be applied in this limit. This scale can thus be realized
in graphene,'""'? and therefore the crossover is of experimental
relevance.

We can now study the two limiting regimes separately.
For the BD regime, the free energy for the membrane can be
approximated by

Feitlh,s] ~ —% / d*x + gfdzx(vzh(x))z. (6)
s

To solve for the equilibrium configuration, we look for the
saddle-point solutions of Eq. (6) with a partially detached
membrane and study their stability. Minimizing with respect
to the height h(x) yields the biharmonic equation within the
detached region:

(VH?h(x) = 0, (7

to be solved together with the appropriate boundary condi-
tions, while A(x) = s(x) in the pinned region. The boundary
conditions have to be imposed at the boundary of the surface S,
which is the curve at which the membrane starts to detach from
the substrate. If we parametrize this closed curve by x* = 39S,
the boundary conditions are given by

h(x*) = s(x"), (®)
Vh(x*) = Vs(x*). )

The curve x* itself is unknown and can be determined by an
extra boundary condition, which implies a discontinuity in the
second derivatives due to the surface tension force at the curve

of detachment x*:23

vs = k[VZh(x*) — V2s(x*)]°. (10)

Alternatively, it is equivalent to find the extrema of the free
energy Eq. (6) as a function of x*. For a given arbitrary profile
of the substrate s(x), it is to be expected that the free energy will
have many extrema, corresponding to unstable and metastable
configurations. The curve xjj corresponding to a global
minimum will give the stable equilibrium configuration; if
this is the null curve, then the stable configuration is the totally
pinned membrane. We see then that the curve x* emerges as a
natural order parameter of the problem between two possible
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states of the system: a null curve xj; = 0 corresponding to a
membrane that is completely attached to the substrate, and a
finite value of the function xj; which gives a partially detached
membrane. A scalar order parameter can be obtained, for
example, by taking the total length of the curve |x*| (note
that in this general context, the curve x* can be disconnected).
Our analytical results for the particular geometries studied, to
be developed in the following sections, show that the pinned
configuration is always at least a metastable minimum, and
hence the pinned-to-depinned transition is always of first
order. We can argue that this has to be true in general for
smoothly corrugated substrates as follows. If we consider
a small deviation of the system from the totally attached
configuration |xj| = 0, described by a small detachment curve
|6x*|, the energy cost due to depinning is proportional to the
minimal area enclosed by the curve, ~|8x*|>. On the other
hand, the smoothness of the substrate implies that, for small
enough |6x*|, the area delimited by this curve is locally flat
and hence the gain in energy due to the relaxation of bending
and stretching of the membrane is negligible. Hence the pinned
configuration is always a local minimum of the energy, and the
phase transition to a partially detached configuration is of first
order due to the development of new metastable states with
the variation of the control parameters. It is safe to assume
that, for fixed external conditions, these control parameters
will be related to the characteristic width and height of the
substrate’s corrugations. To simplify the analysis, we can
consider the problem of a single depression or protuberance in
the substrate. Intuitively it is to be expected that the stability
of the pinned configuration, given a coupling strength yg
and bending rigidity «, will depend on the aspect ratio of
the substrate’s profile. A simple energetic argument gives an
estimate for this threshold. The interaction energy between the
graphene layer and the substrate in a region of area L? is

Epin ~ ySsz (11)

while, as we saw previously, the bending energy cost of height
corrugations of scale S is given by Eq. (3). The change between
the regime where the pinning energy is dominant and the layer
is attached to the substrate, and the regime where the cost
in bending energy leads to the detachment of the layer, is
governed by the ratio

E, L*
Sen B2 (12)

E K Kk S
The membrane will prefer to attach to the substrate in the limit
%" > 1, which translates into a condition for the substrate
profile:

S Vs

indicating that pinning is favored for shallower depressions.
Within the bending rigidity approximation, detachment can
occur due to the high bending energy cost that competes with
the energy gain due to pinning. In the opposite regime, S > ¢,
the in-plane stresses are dominant and we should consider the
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possible detachment due to these modes. For this case, the free
energy (1) can be approximated by

FalS [y ! / dPx[2pii;; (%)% + i (x)Y]. (14)
2 Js 2

In this limit, the approximate free energy given by Eq. (14)
still contains the nonlinear coupling between the in-plane
and out-of-plane modes, and hence further approximations
are necessary for obtaining analytical results (note that we
have to retain the nonlinear term in the strain tensor since we
are in the limit of large out-of-plane fluctuations). We will
introduce these approximations in Sec. IV when we solve the
system for a particular geometry of the substrate. For now,
however, we can perform a scaling analysis similar to the
one we did for the bending energy to determine a threshold
energy for the pinned-to-depinned transition due to in-plane
strains, depending on the aspect ratio of the perturbation in the
substrate. In this case, the transition is controlled by the ratio
of pinning energy to elastic energy:

Epin - ﬁ L4

—, 15
Eq  Exp $* (13)

where we have used Eqgs. (4) and (11). As in the previous
case, we can argue that the membrane will favor the pinned

configuration when Iz—pl > 1, which gives us the condition
s 1/4
= < (E’”—S> : (16)
2D

again consistent with the intuitive picture that shallower
depressions should favor pinning. The possible equilibrium
solutions for the curve of detachment |x*| are given in this
case by the extrema of the free energy Eq. (14). As in the BD
regime, a globally stable solution with [x*| = 0 corresponds
to the completely pinned configuration.

Equations (13) and (16) define two lines of critical values
given by S, = S(L.), which mark the transition from pinned
to depinned in the parameter space of height and width of
the substrate’s profile. Note that while in the BD regime the
dependence of S, on the critical width L, is quadratic [see
Eq. (13)], in the SD regime this dependence is linear. In the
intermediate region, therefore, a crossover is to be expected
between the two critical lines. These considerations allow us
to construct a qualitative phase diagram. For this, it is useful to
consider the dimensionless quantities S— S/¢, L— L /¢ that
give the height and width of the substrate’s profile in units of
the length scale £ of the BD to SD regime crossover defined in
Eq. (5). We can then write the critical lines as

s.=¢/812 s «1,
K

vs \ 4
S, = (—S) L., S.> 1.
Eop

A7)

The qualitative phase diagram is shown in Fig. 2.
Near the critical line, the free energy Eq. (1) can be written
as a Landau functional of the order parameter |x|:

FIx[1 = Aox* 1 + Asx* P + - + A, X", (18)
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FIG. 2. Qualitative phase diagram for a membrane on top of a
patterned substrate of characteristic width L and height S, in units of
the length scale ¢. The dashed lines correspond to the critical lines
given by Eq. (17), the solid line is an estimated interpolation. Note
that this phase diagram is not valid for 1D geometries, as discussed
in the text.

where A; is a positive constant (in accordance with |xj| =0
being always a local minimum) and the coefficients A;,
i =3, ...,n are functions of the control parameters S,L. As
usual, the expansion is cut at order n > 3, with A, being
the first non-negative coefficient. The powers appearing in
the expansion are dictated by the symmetry of the system;
for cylindrically symmetric geometries, only even powers are
allowed. In the following sections, we will reobtain these
results in an analytical fashion for certain simple geometries
of the substrate.

III. DETACHMENT DUE TO OUT-OF-PLANE MODES
FOR RADIAL SYMMETRY

As we stated in Sec. II, for 1D geometries the solution
obtained by only considering the bending rigidity term in
the elastic free energy is exact. For three-dimensional (3D)
geometries, this is an approximation that works well for small
height fluctuations of the substrate. Our aim in this section is
to obtain analytical results in this limit to achieve a qualitative
understanding of the depinning process. Analytical results can
be obtained for certain simple geometries; we will restrict
our analysis to cylindrically symmetric cases. We consider
first a substrate with an axially symmetric depression s(r) as
shown in Fig. 3. The biharmonic equation (7) in cylindrical
coordinates, assuming a rotational invariant case, is given by

1 2
<—8r + 83) h(r) =0, (19)
’
which has the following general solution:
H , 2
h(r) = Ho+ Hilogr + STt Hsr*logr. (20)

For a depression, if we assume that the membrane detaches
from the substrate homogeneously at a circumference of radius
R (to be determined), the solution Eq. (20) is valid for 0 < r <
R and hence it has to be regular at the origin, H; = H3 = 0.
The radius » = R gives the parametrization of the curve of
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[N

s(r)[

FIG. 3. Membrane on top of a substrate with a depression. The
figure is axially symmetric with respect to the vertical axis through
the center of the substrate’s depression. R indicates the radius of
detachment. The dashed line represents the approximation used in
Sec. IV for when the in-plane modes are taken into account.

detachment x* introduced in Sec. II. The boundary conditions
Egs. (8)-(10) take the form

h(R) = s(R),

W' (R) = s'(R), (21
h/(R) " _ S/(R) " Vs
T+/’l(R)— R +S(R):|:\/;.

Applying the boundary conditions Eq. (21) over the general
solution Eq. (20), we obtain

s'(R) s'(R)
2 R+ 2R

S/(R) =s”(R):|:\/E.
R K

The second equation determines the radius of detachment,
but also imposes a condition over the substrate profile for a
nontrivial solution to exist (note that there is always a solution
with R = 0). As we pointed out in Sec. II, the radius of
detachment R corresponds to extrema of the total energy of the
membrane, which within the present approximation consists
of

r?,

h(r) = s(R) —
(22)

ERYR) = Epin(R) + E(R), (23)

with Ep, the pinning energy and E, the bending energy. In
cylindrical coordinates, these are given, respectively, by

R
Egn(R) ~ vs f wrdr, (24)
0

R 1 2
E.(R) = JTK/ rdr|:(;8, + 8,2>h(r):|
0
R 1 2
_7'(/(/ rdr|:(;8r+8r2)s(r)i| . (25
0

In both of these expressions, the energy is measured from
the totally pinned configuration. The total energy Egn(R)
allows us to determine the stability of the solutions R = 0 and
Eq. (22). This is simply exemplified for the case of a parabolic
well.
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A. Parabolic well

In the case of a parabolic profile s(r) = Sy + %rz, we see
that (22) implies that 4(r) = s(r) and there is no solution for
a partially detached membrane. If we allow for a quartic term
s(r) =8y + %},2 + g—y“, then we obtain that the detachment
radius is given by

R=2 55

== /=, 26
R (26)

where we have taken the minus sign in the second equation of
(22) corresponding to the fact that the curvature of the detached
membrane is smaller than that of the substrate. Therefore, Sy
needs to be a positive quantity for a solution to exist. From the
total energy Eg‘l’)‘(R) given by Eq. (23), it is easy to show that
the solution given by Eq. (26) corresponds to a maximum of the
energy profile, and hence it is an unstable equilibrium solution
while R = 0 is a metastable minimum. EJ%(R)— — oo for
R—o00 and therefore R, signals the energy barrier for total
depinning, which is always the stable configuration. This is,
however, a construction of the unbounded quartic profile we
have chosen for the substrate. In the next sections, we will
study in detail a more physically sensible profile: a Gaussian
depression or protrusion.

B. Gaussian depression

A more realistic landscape for the substrate is the case of a
Gaussian depression,

2
s(r)=Gy(1 —e 7). 27)
For this geometry, the curvature of the substrate varies from
positive to negative along the radial coordinate, and therefore
we have to allow for both signs £, /% in Eq. (22). However,
when the condition is applied to this particular shape, we obtain
s'(R)
R

2 >
s"(R) = G_;_e—;%z == (28)

that is, only the positive sign leads to the existence of a
solution since we have assumed G, > 0. The solution for the
membrane’s profile is then given by

_Lz R2—2
Gy —Gye »*(1+58), 0<r<R

s(r), r > R,

h(r) = (29)

with R given by (28).

We apply this solution now to the particular case of
graphene on top of a SiO, substrate. As we did in Eq. (17),
in what follows we will treat all length quantities as dimen-
sionless, given in units of the characteristic length £ defined
in Eq. (5). We can consider, as an example to illustrate the
solutions given by Eqs. (28) and (29), a particular substrate
depression of amplitude G; = 1 and width o = 2. We obtain
two possible solutions for a partially detached configuration:
Ry ~ 0.45 and R, ~ 2.75. In Fig. 4, we depict the graphene
membrane profile solutions that correspond to this particular
configuration.

To study the stability of the obtained solutions, we use the
total energy, which, by Eq. (23), is given by [for the figures,
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FIG. 4. (Color online) Graphene depinning from a Gaussian
depression in the BD regime. The plots show the profile of the
graphene membrane i(r) (color) and of the substrate s(r) (black),
in units of ¢, as a function of the distance from the center of
the depression in units of the depression characteristic width o.
The figures have axial symmetry. Main figure: stable solution with
the graphene sheet almost completely detached (R, ~ 5.5). Inset:
Unstable solution with very little detachment of the graphene sheet
(R; = 0.9). Height profile as a function of the radial distance to the
center of the depression, r. We have taken G; = 1 and o = 2. All
quantities are in units of the characteristic length £ &~ 1 A.

we have used the exact expression for the pinning energy,

Eyin = —ym frdr\/ 1+ (%refz%)z]

EgA(R) = o {

e K + K +1 1 (30)
X AN -+ — — .
¢ 204 o2
The total energy Ega(R) corresponding to the substrate profile
shown in Fig. 4 is given in Fig. 5 as a function of the detachment

radius R. We see that the completely pinned situation (Ry =

0 : : : 0.002 N
0.1+
| S+ 40.001
2,

02+ 58 /]
= H m 0 ,
L. -031 -
E a [ I I I I I 001 7
m .04 0 0.1 02 03 04 05 J/ 4
L R/c ,
0.5 -
0.6 —

| | | | | |
0 1 2 3 4 5 6 7

FIG. 5. (Color online) Main figure: Total energy as a function of
the detachment radius R in units of the characteristic width o, for a
Gaussian depression in the bending rigidity dominated regime. Inset:
Closeup showing the metastable solution at Ry = 0 and the unstable
solution R;. Results for G, = 1 and o = 2.
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0.2

0.1

Tot , 2
E b /o7 [eV]

0.2
R/c

FIG. 6. (Color online) Energy landscape as a function of detach-
ment radius in the bending rigidity dominated regime for a Gaussian
depression with varying % Solid (blue): % , = 0.25; dashed
(purple): % , 0.08; dash-dot (orange): f—; , ~ 0.06; dotted (red):
% . ~0.03. The energy presents a minimum for the detached
configuration for cases 1, 2, and 3 (this last one being metastable),
while for case 4 the energy is a minimum only for the completely
pinned configuration, in agreement with the threshold value discussed
in the main text. For cases 1, 2, and 3, the completely pinned
configuration is a local minimum with a low-energy barrier, not
visible due to the large scale of the plot. Note that o and G, are

dimensionless: 0,G; — o/¢,G, /L.

0) is a metastable state with a very small energy barrier to
overcome to reach the true minimum R,. The solution R;
corresponds to a maximum of the energy, and hence it is an
unstable configuration.

By rescaling the radius of detachment R by the depression
width o, R = R/o, the rescaled energy Eg‘l’)‘(lé)/o2 depends
only on the ratio G /02, and hence the results can be
expressed in an universal manner. In Fig. 6, we show the
rescaled energy Ef%(R)/o? landscape for various values of
G,/o%. As expected, the global minimum corresponding to
the partially detached configuration evolves into a metastable
state as G,/o? is decreased, and disappears completely for
small enough G,/o?. As discussed in Sec. II, the threshold
value for a stable pinned configuration given by Eq. (17) is

Gylo? =1 /% ~ 0.05. As can be seen from the figure, this

estimated threshold is in excellent agreement with the exact
results.

In Sec. II, we stated that the length of the detachment
curve |x*| is the natural order parameter that controls the
pinned-to-depinned phase transition of the system. This can be
easily seen now from Fig. 6. Given the cylindrical geometry
of the problem, the length of the curve x* is given by
|x*| = 27 R¢, and hence we can take R as our order parameter.
As discussed, from Fig. 6 we see that the minimum at finite
R evolves into a metastable state that disappears for shallow
enough depressions, while R = 0 is the true minimum in this
case, indicating that the transition is a first-order one. This
can be seen in an alternative way by following the evolution
of the order parameter R. From Eq. (29) again we note that
R is controlled solely by the ratio G,/0?, in agreement with
Eq. (17) and with the universal form of the rescaled energy
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FIG. 7. (Color online) Order parameter R = R/o as a function
of the ratio G, /0% of a Gaussian depression in the BD regime. The
dashed (red) line indicates the spinodal line, while the solid (blue)
line corresponds to the true transition.

Egg(l?)/cﬂ. The behavior of R as a function of G,/o? is
shown in Fig. 7, where we see that R jumps from R =0to a
finite value at a critical value G/0?|. ~ 0.2. The figure also
shows the spinodal point, that is, the value Gs/ozl‘Y ~ 0.05
at which the first metastable solution appears, in agreement
with the estimated threshold value. The difference between
G,/0?|. and G,/o?| shows that the system in the BD
regime limit is strongly hysteretic. The critical point G, /02|,
and the spinodal point Gy /02|€ can be estimated from an
expansion of the free energy Eq. (30) in the rescaled order
parameter R:

Eb T m (S (- L B 31)
~ = kl—) (-=+=—)|
o2 2|V ) 3 Ty

This expansion can be identified with the Landau expansion
Eq. (18), and it assumes that the rescaled order parameter R is
small, and hence (assuming a weak first-order transition) it is
valid near the critical point G /o%|.. By minimizing Eq. (31), it
is easy to see that the condition for the existence of metastable
solutions with R # 0 is given by (G,/0%)* > (27/4)ys ~
0.12, a value that is of the order of magnitude of the spinodal
point obtained exactly in Fig. 7. For (G,/a2)*(= 27/4)ys,
the extrema condition d Eg%/d R = 0 in expression Eq. (31)
renders Ry = 0 plus two real positive roots in agreement with
the energy profiles presented in Fig. 6 for the exact solution
Eq. (30).

C. Gaussian bump

For a Gaussian protrusion

2
s5(r) = Gse 7, (32)

the general solution Eq. (20) holds for » > R. Since the origin
is avoided, H; and Hj can be different from zero. This solution,
however, diverges for r— oo unless h(r) = const, which in
turn cannot satisfy 4'(R) = s’(R). Hence a kind of solution
for which the graphene membrane follows the substrate for
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0 < R < r and then detaches “forever” is not possible. The
most general solution is to assume that there is a radius of
detachment R and a radius of reattachment L, with R < L.
The gain in pinning and bending energies with respect to the
totally attached configuration in this case are given by

L
Epin(R) ~ J/Sf wrdr, (33)
R

L | 2
E.(R) = mc/ rdr|:<—8r + 8,2>h(r):|
R r
L 1 2
—mcf rdr[(—a,Jraf)s(r)} . (34
R r

Intuitively, it is easy to see that if the bump is very
pronounced, R has to be approximately zero, otherwise the
bending-energy cost is too high. A sketch of the system is
shown in Fig. 8. Assuming this type of configuration, the
general solution Eq. (20) holds now for 0 < » < L, with
H; = 0 for it to be regular at the origin. The constant H3 in
this case is allowed to be finite since the contact force is acting
at r = 0.2} Imposing continuity of the solution and its first
derivative at r = L, and h(0) = 5(0) [note that h(r)— H, for
r— 0], for the region 0 < r < L we obtain for the membrane
profile

GS 7% Liz? L2 1 2 1 2
h(r) = Gs—ﬁe 20 —1+eztv-—m og (L")—log (L")

2 G 2 L2 2
+ len? log (L) | 12+ e 27 | ——— —1+4e2?
L2 o
x r2log (r?), (35)

while A(r) = s(r) for r > L. The optimal value of L can
be obtained numerically, as previously, by imposing the
discontinuity of the Laplacian of the solution due to the contact
force. However, since we are interested in the qualitative aspect
of the solution, it is simpler to analyze directly the energy
profile as a function of the reattachment radius L. As was
the case for the Gaussian depression in Sec. III B, the energy
Eq. (35) and the reattachment radius L can be rescaled by the

s(r)
h(r)

FIG. 8. Membrane on top of a substrate with a protrusion. The
figure is axially symmetric with respect to the vertical axis through the
center of the substrate’s bump. As discussed in the text, the membrane
is shown as depinning from the top of the bump, and reattaching at a
radius L.
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FIG. 9. (Color online) Main figure: Total energy as a function
of the reattachment radius L for a pronounced Gaussian bump in the
bending rigidity dominated regime. Inset: Closeup near the metastable
configuration corresponding to a completely pinned membrane. We
have taken Gy, = 1 and 0 = 2.

width of the bump to show the universal behavior,

ETotZ ZZ G2 T B 2
#:yﬁr;—kxnz—‘zeL2|:L4+6L2+2(9—8e2)
o o
_22 1 G?
_16(1 — e ) ﬁ} e (36)

with L = L/o. The energy profile Eq. (36) is shown in Fig. 9
for a bump with Gy = 1 and ¢ = 2, as a function of the reat-
tachment radius L. From the figure, it can be seen that the case
of total adhesion of the graphene membrane to the substrate,
in the case of a pronounced bump, is a metastable state with a
very low energy barrier to fall into a configuration for which
the membrane attaches to the substrate after a finite radius L.

As we mentioned previously, the solution Eq. (35) is valid
in principle for pronounced Gaussian protrusions, for which
Gy/o? = 1. However, it can be shown that this is true for
any Gaussian bump. This can be seen more rigorously by
calculating the most general solution for which both the
depinning and reattachment radius are finite, and finding the
minimum of the energy surface. The explicit solution for this
most general case is rather cumbersome, and it is given in
Appendix A. Here we show a plot of the energy surface profile
as a function of both detachment and reattachment radius R and
L. As can be seen from Figure 10, the complete solution indeed
shows that the case R = 0 and finite L is a minimum for the
case G;/o? = 1, and the same can be shown for other aspect
ratio protrusions. From Eq. (36) itis evident that E;‘]’)‘(L Jo)]a?
depends only on the ratio G, /o 2. The rescaled energy profile
projection onto the R =0 plane, Ef%(L)/s?, for varying
G,/c? is shown in Fig. 11, showing the crossover from the
pinned to the partially detached configuration for increasingly
pronounced bumps. As in the case of a Gaussian depression
analyzed in the previous subsection, the case of a finite
reattachment radius L is the energy minimum for G,/o? >
0.05, while in the opposite limit the minimum corresponds to
L = 0, that is, for smooth bumps the membrane minimizes its
energy by conforming completely to the substrate.

PHYSICAL REVIEW B 83, 165405 (2011)
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FIG. 10. (Color online) Energy profile as a function of de-
tachment radius R = R/o and reattachment radius L = L/o with
G,/o* =1 for a Gaussian bump. The global minimum corresponds
to R = 0 and finite L.

Similar results to those obtained in Sec. IIIB for the
behavior of the rescaled order parameter R as a function of
G/ o2 can be obtained here for L, showing a first-order phase
transition between the pinned and depinned phases.

IV. DETACHMENT DUE TO IN-PLANE MODES
FOR RADIAL SYMMETRY

In the previous sections, we studied the detachment of
a graphene membrane from a patterned substrate due to
the bending rigidity term in the free energy Eq. (2). This
approximation is widely used, but, as we showed, it is valid

2

1+ /,—L
2 0 O ey = 1 | 1
“o | 5 10 15 |
~
-
e R+ _
m

ok ~|

-3

L/c

FIG. 11. (Color online) Energy landscape as a function of
reattachment radius L = L/o in the BD regime for a Gaussian
protuberance of varying ratio % Solid (blue): % , = 1; dashed
(purple): % , = 0.25; dash-dot (orange): S—; ~ 0.1 3 dotted (red):
% ~ 0.04| ,- The energy presents a minimum for the partially
detached configuration for case 1 that disappears completely for
case 4, going through a metastable state for case 3. Note that o
is dimensionless: 0 — o/£.

165405-8



PINNING OF A TWO-DIMENSIONAL MEMBRANE ON TOP...

for relatively small fluctuations of the substrate landscape for
a 3D pattern. In this section, we consider the less studied case
of depinning due to in-plane modes, for which the free energy
Eq. (1) is approximated by Eq. (14). As before, we will
restrict our study to cases that allow for an analytic solution,
in particular a substrate with radial symmetry. In cylindrical
coordinates, this elastic energy is given by

A u, 1 ) 2
Eq == [ 2nrdr|d,u, + — + =(8,h)
2 r 2

1 2
+ u / 2nrdr |:8,u, + E(E),h)z]

o / 2mdr(§)2, 37)

where u, is the radial component of the in-plane displacements,
and Ej;, was defined in (24). In the following subsections, we
will obtain results for a Gaussian depression and protrusion.

A. Gaussian depression

In this subsection, we consider again a Gaussian depression
given by Eq. (27), over which there is a membrane partially
attached. For radius greater than a radius R, the membrane

) 2
P R
402 (A+2u) ’

u,(r) = ) B
)
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is pinned to the substrate and follows its profile, while for
0 <r < R the membrane is completely detached. When
analyzing the effect of the in-plane modes, we encounter
an added complication: we do not know the height profile
of the membrane for the detached region, since this would
imply solving the problem completely by treating the full
coupled nonlinear differential equations in both . and u fields
resulting from minimizing Eq. (1). Here we consider as a first
approximation that the graphene membrane remains flat within
the detached region, as shown in Fig. 3. Hence the differential
equation to solve is given by

8r r r
O+ 2/L)<8,2ur TR "—)
p

72
0, 0<r<R
= 2 2 (38)
(A +21)d,s (Brs) +E2@s), r>R
Our ansatz corresponds to a membrane profile given by
hr) = ho, 0<r<R (39)
"= s(r), r>R

with s(r) given by Eq. (27). The general solution of Eq. (38)
is given by (see Appendix B)

0<r<R
(40)

2 &2
%67; |:Jr_2+ (A+1) 1]_1&M(R2+02)6772, r > R.

A+2p) r

r 40?2 (A+2u)

The radius R of detachment can be found by finding the extrema of the total energy E;%‘(R) = Epin(R) + Ee(R), where Epipn
is given by Eq. (24) and we measure the elastic energy Eq. (37) from the totally attached configuration. The total energy as a

function of detachment radius can be calculated to be

2R?  G* u(xn 2 ( R?
EsB(R) = azz{y i [6_25 (2—2 + 1) - 1] } 1)
o

Sl
2 o2

Minimizing EES(R) renders a solution with Ry = 0, whichisa
local minimum and corresponds to the membrane completely
pinned, and the following transcendental equation for the
equilibrium detachment radius:

G* R? A R?
— s 2Me_202 ) (42)
204 02" (A +2p)?

Vs

Again, as in the BD dominated regime case of Sec. III, we
see that by rescaling both the detachment radius and the total
energy by an overall factor given by the depression width
o, R=R/o, and E;%‘(Ié)/az, the rescaled energy shows
universality. In this case, and in agreement with Eq. (17),
the system is controlled by the ratio G;/o, contrary to the
dependence on G, /o2 found for the BD regime.

We can apply our results to a graphene membrane on top of a
SiO; substrate as we did in Sec. III. Taking the accepted values
for room temperature for the Lamé coefficients of graphene,
w~~10eVA2 1ra~2eVA2"and G, =5 (in accordance
with the validity of our approximation), as well as o = 4 (note

ot 8(A +2p)

that we are still working in units of the scaling length ¢),
we get two possible depinning radii: R; = 0.1 corresponding
to an unstable minimally detached configuration, and R, =
8.4, which is the stable, global minimum solution. The total
energy EqY is plotted as a function of detachment radius R =
R/o in Fig. 12, showing the different equilibrium solutions.
The energy barrier to be overcome for detachment from the
metastable equilibrium configuration at Ry = 0 is very small,
as can be seen from the inset in Fig. 12. Note also that the
minimum at R; is very shallow in comparison to the energy
scale, as shown in the inset of Fig. 12, and hence any fluctuation
could lead to the graphene membrane being detached at a
radius R > R;, and therefore closer to the flat configuration.
This effect is less pronounced as the width of the depression
is increased.

In Section II, Eq. (17), for the SD regime we predicted
a critical value for the ratio G;/o above which the stable
configuration is that of the membrane partially detached from
the substrate. Taking the values for graphene discussed above,
this ratio is given by (4%)1/ 4 2 0.1. This estimate is in good
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FIG. 12. (Color online) Energy profile for a Gaussian depression
as a function of detachment radius R = R Jo for Gy =5and o =4,
as discussed in the main text. The insets show the local minimum
that corresponds to the totally pinned configuration and the global
minimum corresponding to the partially detached membrane.

agreement with the exact results for the rescaled energy profile
EJY(R)/o? depicted in Fig. 13, as a function of the rescaled
detachment radius R and varying G,/o.

As discussed in Sec. III, the radius of detachment R can
be taken as the order parameter of the problem. We show the
behavior of R = R/o as a function of G, /o in Fig. 14. Again,
a pronounced jump in R to a finite value with increasing G /o
is observed at a critical value G;/0o|., in agreement with the
predicted threshold for the transition. The spinodal line, also
shown in Fig. 14, is basically indistinguishable from the true

L 7’ 4
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o | et PR
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FIG. 13. (Color online) Energy landscape in the SD regime as a
function of detachment radius R = R /o for a Gaussian depression of
varying ratio % Solid (blue): %|1 = 0.5; dashed (purple): % , =~
0.33); dash-dot (orange): | = 0.25; dotted (red): |, ~0.17.
The energy presents a minimum for the detached configuration for
cases 1, 2, and 3 (this last one being metastable), while for case 4 the
energy is a minimum only for the completely pinned configuration,
in agreement with the threshold value discussed in the main text.
For cases 1 and 2, the completely pinned configuration is a local
minimum with a low-energy barrier, not visible due to the large scale
of the plot. The region of metastability for the depinned configuration
is very small, as seen in this plot and also in Fig. 14. Note that o is
dimensionless: 0 — o/£.
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1.5

FIG. 14. (Color online) Order parameter R as a function of height
G, of the Gaussian depression in units of ¢ in the SD regime. The
dashed (red) line indicates the spinodal line, while the solid (blue)
line corresponds to the true transition. In the SD regime, these two
lines are indistinguishable.

transition, and hence in the SD regime there is almost no
hysteresis.

The expansion of the free energy Eq. (41) in powers of the
order parameter R,

Eg(R) Z{y 52

o2 2

G+l RY R
ey |

ot (A +2p) | 4
43)

gives a good qualitative description of the first-order transition
obtained exactly in Fig. 14. Moreover, in this case the
spinodal point given by the expansion Eq. (39) is given
by (GS/O')4 = (44/15)ys, giving G, /o |, =~ 0.28, in excellent
numerical agreement with the exact value.

B. Gaussian bump

Following similar manipulations to the previous section,
we can calculate the solution for the radial component for
the in-plane displacements in the graphene membrane due
to a Gaussian protrusion parametrized by Eq. (32). Given
our findings for the BD regime in Sec. IIIC, we consider
a configuration of the membrane on top of the substrate
that is pinned at the very top (detachment radius R = 0)
and reattaches at a radius L as shown in Fig. 8. This takes
into account the energetic cost of bending. As in Sec. III B,
we have to make a sensible approximation for the unknown
profile of the membrane on the detached section. Hence we
hence approximate the detached profile of the membrane by
the general solution valid for small protrusions (BD regime),
Eq. (20).2* The details for the solution using this ansatz
are given in Appendix B. Imposing the boundary conditions
results in two possible solutions, leading to the two energy
profiles shown in Fig. 15 for Gy =5 and o = 4. Although
these solutions differ for the metastable or unstable regions (a
construction of the approximation involved), they coincide for
the minimum, and hence the stable reattachment radius L is
uniquely defined.
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FIG. 15. (Color online) The two possible solutions for the energy
profile as a function of re-attachment radius L = L/o in the SD
regime, as calculated in Appendix B. We have taken G, =5 and
o=4.

V. DISCUSSION

In this work, we have analyzed the possibility of depinning
of a membrane on top of a patterned substrate. We have studied
simple configurations of the substrate that allow for analytical
solutions in the two relevant limits for the problem: the bending
rigidity dominated regime, valid for small corrugations of the
substrate, and the elastic, strain dominated regime, which holds
for larger corrugations. We have shown that in both limits,
the energy cost of either bending or stretching can cause the
membrane to prefer to detach from the substrate. The particular
results confirm the more general picture we sketched in Sec. 11,
in which we obtained a qualitative phase diagram for the
system presented in Fig. 2. This phase diagram presents two
phases: a completely pinned phase in which the membrane
follows the profile of the substrate, and a detached phase in
which the membrane prefers to depin partially at some optimal
detachment curve x*. We have shown that an order parameter
can be constructed from this detachment curve, which allows
us to write the problem in terms of a Landau energy functional
Eq. (18). By scaling arguments, we were also able to obtain
the critical lines (17) in both BD and SD limiting regimes, and
we found excellent agreement with analytical calculations. The
critical line in Fig. 2 represents a first-order phase transition, as
argued in Sec. IT and shown explicitly for specific geometries of
the substrate. We showed that the energy of the system shows
universality, and depends on the ratio of S/L or S/L? for the
SD and BD regimes, where S is the height of the substrate’s
corrugation and L is its characteristic width. We obtained the
critical and spinodal points exactly for the analytically solvable
cases, and we showed that the Landau energy functional gives
a very good estimate to locate these points.

The depinning process is dependent on the aspect ratio of
the spatial perturbations of the substrate, the elastic parameters
of the membrane, and its interaction with the substrate.
The interaction between graphene and different types of
substrates is not well known. Order-of-magnitude estimates for
different mechanisms'’ suggest that the interaction coupling
ys ~ 1072 —2 meV A2 [note that the interaction between
two graphene layers in graphite is 20-30 meV A2 (Ref. 17)].
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Within this work, we have set ys =2 meV A2 its most
conservative value, and hence the obtained values for depinned
configurations are underestimations. For this value of yg, we
find that, in the elastic regime, the depinning of graphene
becomes relevant for height corrugations such that S/L >
1/10. In the bending regime, the condition depends on the total

area of the corrugation: S/L* > 1/20 A™". These obtained
values for possible depinning are comparable to measured
corrugations in free-standing graphene’ and in graphene on
Si0,.'"!? Hence, regions where graphene is detached from the
substrate may be found in samples on SiO,, in agreement with
the observations reported in Ref. 13. Although these conditions
were obtained for the two limiting regimes, in real life both
effects are present. In general, corrugations of all scales are
ubiquitous due to the intrinsic roughness of the substrate,
and both the bending rigidity and the in-plane strains of the
graphene membrane will contribute to its depinning. Random
configurations of the substrate within a mean-field model as
presented in Sec. II could be treated by adding noise to the
system, considering the parameters in the Landau free energy
Eqg. (18) as random, in the spirit of random mass theories.

The presence of corrugations in graphene, either intrinsic
or substrate-induced, can lead to diverse experimental conse-
quences. Corrugations in graphene are associated with gauge
fields that couple to the Dirac electrons.'? These gauge fields
generate an effective magnetic field that can affect the transport
properties of graphene. We have shown, however, that for
graphene, the scale of the corrugations for which the bending
rigidity is relevant is rather small. As we saw in Sec. III, the
BD to SD regime crossover length for graphene is £ &~ 1 A,
and hence depinning due to the strain energy cost is to be
expected. The effective magnetic field is related to the strain
through the relation

B~ ¢o§%, (44)

where ¢y ~ 1071 Wb is the quantum of magnetic flux,
a =142 A is the lattice parameter, and g ~ 2 gives the
change in the hopping parameter between nearest sites for
a Dirac electron due to the deformation of the lattice. The
corrugation of the membrane determines L, the characteristic
width of the corrugation, and the strain «, which for simplicity
we assume to be constant. We can roughly estimate the
maximum magnetic field that the graphene membrane can
experience due to the corrugation of the substrate. The
strain of a corrugation of height s and width L scales as
s2/L?, and hence, from Eq. (16), the maximum strain that
graphene can support is o, ~ 2%. As we showed, beyond
this point the membrane relaxes by depinning partially from
the substrate and lowering the strain. Taking a physically
relevant corrugation width of L ~ 100 nm, «,, corresponds to
amaximum effective magnetic field of B,, =~ 2 T. This order of
magnitude indicates that, indeed, the magnetic field due to the
induced corrugations can have a sizable effect on the transport
properties of graphene.®> Our results indicate that rougher
substrates could in fact lead to flatter configurations of the
graphene membrane after annealing, due to the impossibility
of graphene conforming to pronounced depressions or bumps.
This could result, in a counterintuitive fashion, in greater
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mobilities for graphene on top of very rough substrates, due
to a decrease in impurity and phonon scattering.”#?%>’ On
the other hand, for these kinds of substrates, the graphene
membrane would be almost suspended and therefore prone
to the excitation of flexural modes, which contribute to the
resistivity.”®?° A more unexplored path is the possibility of
controlling the pinning or not of graphene to the substrate by
tuning the different metastable states, which could be realized
by modulating the gate electric field or by applying external
pressure. As we showed, the system can present hysteresis
and irreversibility. Our results can also be helpful to the
understanding of the ubiquitous formation of graphene bubbles
on many types of substrates.3033

To conclude, we list the limitations of our model. Our work
is based on a continuum approach and hence it breaks down for
lengths of the order of the lattice spacing. However, amplitudes
of the order of the lattice spacing can still be well described by
the continuum model, as shown in Ref. 22. As we pointed out,
the phase diagram presented in Fig. 2 is valid for 3D profiles
of the substrate. The crossover to 1D geometries would, in
principle, imply the disappearance of the linear critical line
valid for the SD regime, since the BD results are exact for 1D.
The same holds for exact calculations of Sec. III and Sec. IV,
which have been done for isotropic perturbations. The effect
of the lack of radial symmetry remains to be explored. Lastly,
it is possible that the interaction between the graphene layer
and the substrate is not uniform, due to the presence of charges
and other defects within the substrate. The modeling of this
kind of potential goes beyond the scope of this paper.
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APPENDIX A: FULL SOLUTION FOR A GAUSSIAN BUMP:
FLEXURAL MODES

In the main text, we analyzed the stability of a membrane
on top of a Gaussian bump, which is pinned at the very top
of the bump and reattaches to the substrate at a radius L. This
was an assumption based on energetic arguments. The most
general solution can have the membrane conforming to the
substrate from the top up to a finite depinning radius R, and
then reattaching at a radius L. In this case, the general solution
Eq. (20) is valid for R < r < L, and all the coefficients H;,
i =0,...,3, can be finite. These can be found by imposing
the continuity of the solution and its first derivative both at R
and L. Defining

= o2[(L2 — R2)? —4L2R*(log L — log R)?]’

we have

L2 R? L2
Hy = H[(L* = R*)(e?? L* — e2? R*)o? — 2¢2? L’ R*(R* + 20*) log L?]

R? L2 R?
+ HL*R*log R[2e2? 0?4 e2?(L* — R* — 20%) — 2e2? L*R*(L* + 20°*) log R

L2 R2 R2 12
+ HL*R*log L[2e27 0 + €27 (—L* + R* — 20%) + 2(e2? (L* 4 20°) + e2? (R* 4+ 20)) log R],

L2 R2 R2 2
Hy = —HL*R*[(e2* — e2?)(L> — R?) + (227 (L*> 4+ 20°) — 2¢2? (R* 4 20%)) log L |

R? L2
+ 2HL*R*[e>? (L* + 207%) — 27 (R* + 20%)] log R,

2 2 2 2 2 2
Hy = —2H[(ex? — en?\(L? — R*)o> — 2¢? L’ R*log L*] — 2HR* log R[2¢ 7 02 + ¢ (L* — R*> — 207) — 2¢x? L log R]

2 2 2 2
— 2HLlog L[2e27 6% + e27 (—~L* + R> — 207) 4 2(e? + e?)R*log R],

H;

a1 2 p[L g2 N A 21 220, & -
H(L? — R*)[ex? (L* + 20°) — 27 (R* + 20°)] — 2HL*R*[(e>? — ex?)log L — (e — e>7?)log R].

(AD)

The total bending energy can be calculated as in the main text, taking into account that we now have three different regions of
integration. The result, measured from the totally pinned configuration, is given by

L*— R? 2,52
E, = KnH%[ —16¢ 27 [L’R* + (L* + RYo” + 20*]]
o
(L>—R?) =
+ mHTmz [L® —20*(R?* — 802) — L*(R* — 65%) + 2L%0*(R* + 95?)]
o
(L>—R? 2 2/m 2 2 4 2, 4 2 2 4
+K71HT602[R°+20 (BR*+9R%*0?> + 80*) — L*(R* — 2R%*0* 4+ 20*)]
o
L?’R*(log L —log R) 12:#2
b gienp AL 2108 R) B 12 4 B2 4 402
o
L?’R*(log L —logR) =
e BB E ZH0g R) ) 2012 4 202 4 (L* + 20207 + 20 (log L — log R)]

o4
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L?R*(log L —log R) 2
+ o ERU0E — ) 5 [—40%(R® + 207) + (R* + 2R%? + 20%)log L — log R)]. (A2)
o

This bending energy together with the contact energy cost  we obtain

gives the plot shown in Fig. 10. 4 4
Zam[—4rm+2 - —(m+ Dr'™ 4+ (m* — 1)rm_2i|
o o

m

APPENDIX B: SOLUTION FOR A GAUSSIAN DEPRESSION G2 G2 (43
AND BUMP: IN-PLANE MODES _G s G0+
o ot (it 2w
] ] From here we see that there is a possible solution withm = £1.
We will call u gnd u; the solutions of (38? forO0 <7< R By substituting in (B2), we obtain
andr > R, respectively. For 0 < r < R, (37) is homogeneous

(B2)

A. Gaussian depression

and has a general solution of the kind ay = G_f ay = G_f A+ ) (B3)
A 4o?’ R RCEEINY
TO + Aqr. The coefficients A and Cy are determined by imposing the

continuity of the solution u;” (R) = u,~(R) and of the in-plane

. . stresses at R:
The constant Ay = 0 for the solution to be regular at the origin,

and A is determined by the boundary conditions. o, = A |:3er + ur + l(arh)zi| " [3rur + l(arh)2i|
For r > R, the homogeneous solution is given by ro 2 2 ’
(B4)

Co
b +Cir, and hence the full solution is given by (40) in the main text.

but in this case we get C; =0 by imposing that the B. Gaussian bump
displacements are O at infinity. Cy is determined by boundary
conditions. To obtain the general solution of (38) for r > R,
we have to add a particular solution. This can be obtained by
the ansatz solution:

As discussed in the main text, for a bump we approximate
the membrane’s profile in the detached region by the general
solution given in the BD regime Eq. (20):

2 h(r) = Gy + L + Hyr’logr, (B5)
U, = Zamrme = B1) 2
m where we have set Hy = G; and H; = 0 as explained in

Sec. III C. If we denote the reattachment radius asL, then the

Substituting (B1) into the second line of (38) and using (39), in-plane radial displacement u, is given by
|

oy Uy A+ 23,k (32h) + L @3,h)?*, 0<r<L
—(L +21) <3,2Mr + — _2> = ( 1)d:h ( ' )+« ) (B6)
r r (A +2m)d,s (07s) + £ (3,5, r>L
together with the appropriate boundary conditions. The solutions for 0 < r < L and r > L are given, respectively, by
- P [2H Hy(h+ 1) + 2H2 0.+ 300) + HZ 0.+ )]
u-(r)=Cyr—
16(Ax 4+ 2u)
n 3 Hylog (r){Hay(: + ) — 2[Hy + Hylog (r)](A + 3)}

4(r+2 ’

A +2u) (B7)

Co G2e 7 r2
=24 77 i A 20— |.
uy (r) = — +4(A+2M)r [( +m)+ G+ M)Uz}

The parameters H,, H,, Cy, and C| are fixed by the boundary conditions, the continuity of the solution Eq. (B7) and its first
derivative at r = L, and the continuity of the in-plane stress Eq. (B4), plus the continuity of the flexural field h(L) = s(L).
Imposing these result in two possible sets of solutions gives
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2 2 2
Gge*%(k + M)(L4 +4L262 + 804 — 8exnTot + 46%04)

Co=— ,
0 16(x + 2p)o
2,5 4 2 2 L2 2 4 L4 Loy
Gie 02u<L +5L°0° —4ex? L7°0° 4+ 80" — 16e2?> 0" + e’ o )
C, = ,
: 412\ +2u)o?
L2 L2 L2
2G5 ( — o024 ewo? — L2log(L) — 202 log (L) + 2¢37 o2 log (L))
H, = 1252 '
12 12
Gye 27 ( —L?— 202+ 2e272c72)
H, = 1752 , (BY)
L2 L2 L2
G?eiﬁ()» + ,LL)(L4 +4L%2 4+ 80* — 8ex? o + 467204)
Co=-— :
0 16(x + 2u)o
2,-5 4 2 2 L0y 2 4 L4 Loy
Gie nz,u,<L —3L°0° +4ex? L-0°+ 80" — 16e2? 0" 4+ 8e-2 o )
C = ,
! 4120 + 2p)o
_1? 2 2
2Ge ( 624 ex?o? + L2 log (L) — 202 log (L) + 2e37 02 log (L))
H, = 1252 ,
2 2
Gye 37 <L2 — 202+ 2ezi*zaz)
Hy = : (B9)

L2c?

The total energy can be calculated from the general expression Eq. (37) by use of Eq. (B7) and Eq. (B8) and Eq. (B9), resulting

in the two energy profiles plotted in Fig. 15.
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