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Negative differential conductance in nanojunctions: A current constrained approach
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A current constrained approach is proposed to calculate negative differential conductance in molecular
nanojunctions. A four-site junction is considered where a steady-state current is forced by inserting only the
two central sites within the circuit. The two lateral sites (representing, e.g., dangling molecular groups) do not
actively participate in transport but exchange electrons with the two main sites. These auxiliary sites allow for a
variable number of electrons within the junction, while as required by the current constrained approach, the total
number of electrons in the system is kept constant. We discuss the conditions for negative differential conductance
in terms of cooperativity, variability of the number of electrons in the junction, and electron correlations.

DOI: 10.1103/PhysRevB.83.165404 PACS number(s): 73.63.−b, 85.65.+h, 71.10.Fd

I. INTRODUCTION

Understanding of charge transport through a low-
dimensional electronic system has got tremendous impetus
in recent years because of their huge potential in advanced
electronic devices.1,2 In particular, the possibility of switching
a molecule between off and on states and of supporting de-
creasing current with increasing voltage, the so called negative
differential conductance (NDC) behavior, are hot topics in the
field of single molecule electronics. Since its first observation
in the tunnel diode by Esaki in 1958,3 NDC has been subject
of many experimental and theoretical studies. NDC has been
observed in a variety of experimental systems4,5 and has
been discussed theoretically, even if most of theoretical work
was based on one-electron pictures.6–12 Recent experiments
demonstrated NDC in double-quantum dots junctions 13,14 and
have rekindled interest in the phenomenon occurring in the
low-temperature weak-coupling limit. Several theoretical stud-
ies on donor-acceptor double-quantum dot systems address
strong rectification and NDC features within many-electron
pictures.15–26 However, all available theoretical studies of NDC
are based on voltage constrained (VC) approaches where the
electric current is driven through the junction by imposing
a finite potential drop between two applied electrodes. Two
semi-infinite electronic reservoirs are unavoidably introduced
in VC models, posing some fundamental problems and
leading to a picture difficult to reconcile with correlated
electrons.27–29

As an alternative to VC approach, current constrained
(CC) approaches have been developed to describe transport in
both mesojunctions and molecular junctions. CC approaches
avoid any reference to reservoirs and quite naturally apply to
correlated electrons.27,28,30–35 On physical grounds, a current
can be forced in a circuit by driving a time-dependent magnetic
flux through the circuit. The model, originally proposed by
Kohn to describe optical conductivity in extended systems,36

has been applied to describe electrical transport in mesoscopic
systems27,31 and more recently in molecular junctions.34,35

Alternatively, variational techniques can be adopted and the
system can be forced in a current-carrying nonequilibrium
steady state introducing properly defined Lagrange multipliers

in the Hamiltonian. While offering an interesting alterna-
tive to the popular and successful VC methods, the CC
approach suffers from several limitations that hinders its
widespread use.35 Not explicitly accounting for contacts, the
CC approach relies on phenomenological models for the
relaxation dynamics to describe dissipation. In polyatomic
junctions constraints must be explicitly enforced to avoid
charge accumulation at atomic sites within the junctions,
leading to a cumbersome numerical problem for large and
asymmetric molecular systems.35 Finally, in VC approaches
electrons can be exchanged between the electrodes and the
molecular junction and charge injection/depletion phenomena
can be observed upon changing the applied gate voltage. These
phenomena are critical to many processes, including NDC,
but cannot be described in CC approaches where the current
is forced through a closed circuit and the total number of
electrons in the junction is strictly constant.

Here we propose a simple and effective strategy to
overcome the last general problem inherent to CC approach.
Specifically, we demonstrate that if one or more auxiliary sites
are attached to the main current-carrying nanojunction, they
can exchange electrons with the junction, thus representing
electron source or sink. Along these lines we present a
calculation of NDC within a CC-based model. Describing
NDC in an alternative picture with respect to the widespread
VC-based models deepens our current understanding of the
basic physics underlying this strongly nonlinear phenomenon,
as required to control and optimize the performance of NDC-
based devices.

II. THE MODEL AND METHOD

Previous work from two of the present authors based on
the VC approach demonstrated interesting nonlinear behavior
in the current-voltage characteristics of two-dot systems with
correlated electrons.9,10 Taking a clue from this work we
explore transport behavior in two-dots junctions within the
CC approach. The study becomes interesting especially in
the context of the number of electrons within the junction
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which plays an important role in the low-bias current-voltage
characteristics.

Figure 1(a) shows a rough sketch of the model. We consider
a four-sites Hubbard model as described by the Hamiltonian

H0 =
4∑

i=1

εi n̂i −
∑

σ=↑,↓
ti,i+1(a†

i,σ ai+1,σ + H.c.)

+
4∑

i=1

Uin̂i↑n̂i↓, (1)

where ai (a†
i ) annihilates (creates) an electron with spin σ

on site i and n̂i = ∑
σ a

†
i ai . For the sake of simplicity in

the following we set constant on-site repulsions Ui = U and
hopping integrals tij = t even if different choices have been
explored. Moreover, we consider an asymmetric junction with
a weak bond −ε2 = ε3 = 2, t = 0.2.

The eigenstates of H0 are stationary states and do not
sustain any current. To induce a steady current through the
central (2–3) sites we insert these two sites into a closed
circuit through which we impose a current according to the
CC prescription32,33,37

H (λ) = H0 − λĵ , (2)

where ĵ = −it23
∑

σ (a†
2,σ a3,σ − H.c.) measures the current

flowing through the bond between sites 2 and 3 (the junction
region). Here and in the following e and h̄ are adopted as
units for charge and momentum, respectively. The field λ

coupled to the current enters the Hamiltonian as a Lagrange
multiplier whose value is fixed by the requirement that a finite
current I = 〈G(λ)|ĵ |G(λ)〉 flows through the system. The
eigenstates of H (λ) describe electrons with a finite overall
linear momentum which looks rather unphysical in an open
circuit, as described by H0. According to Burke et al.,34 this
paradox can be solved by connecting the two ends of the
junction (sites 2 and 3 in our model system) through a long,
thin, and ideally conducting wire so that electrons escaping
from the right side of the junction immediately appear on the
left side as to maintain a fixed number of electrons inside
the junction. In other terms (as schematically shown in Fig. 1)
the junction is inserted in a closed ideal circuit. This description
allows us to assign a precise physical meaning to λ. Following
the seminal work of Kohn36 one can force a current through a
closed ring threading an oscillating magnetic field of frequency
ω through the center of the ring to generate a spatially uniform
oscillating electric field E across the junction. At the leading
order in the field38 the Hamiltonian in the presence of a
magnetic flux can be written as in Eq. (2) with λ proportional
to the amplitude of the vector potential. Quite interestingly
a similar result has been recently reported via a general and
exact projection operator technique.39

The two central sites (sites 2 and 3) are inserted in a closed
circuit where the current is forced [cf. Fig. 1(a) ] and take an
active part in transport. The lateral sites (1 and 4) represent
auxiliary sites. The current does not flow through these sites,
but they are connected to the circuit and, exchanging electrons
with the main sites (2 and 3), provide a source/sink for
the injection/removal of electrons within the circuit. Being
interested in NDC we set U >> t .The model then describes

t12 t34

t23

1

2

4

3

I
(a) (b)

I

R R’

FIG. 1. (Color online) (a) A schematic representation of the
four-site system where current flows through the two central sites
in the closed circuit while the lateral sites behave as sources/sinks of
electrons. (b) The biphenyl molecule with two dangling groups R and
R′ represents an example of a molecule that can be roughly described
by the four-site model in (a). The red dashed arrow in panel (b) shows
the direction of current flow.

four weakly connected quantum dots. Alternatively, the same
model may represent a minimal model for a molecular junction
with at least one weak (poorly conjugated) bond and with two
dangling groups (R and R′) connected to the current carrying
skeleton as shown as an example in Fig. 1(b). From a chemical
perspective, the groups R and R′ modeled by the auxiliary
sites of Fig. 1(a) can behave as electron withdrawing/donating
groups with respect to the main sites.

If the auxiliary sites (1 and 4) are disconnected from
the main circuit (t12 = t34 = 0) the number of electrons
participating in transport is strictly constant. Inserting the
two central sites in an (ideal) closed circuit implies that
electrons escaping from site 3 immediately enters on 2 (or
vice versa). The obvious constraint of constant charge in a
closed circuit hinders the description of phenomena related
to charge injection/depletion processes that are instead easily
captured in VC approaches where electrons are exchanged
between the junction and the leads. However, if the auxiliary
sites are connected to the junction the number of electrons
within the circuit n = 〈n̂2 + n̂3〉 becomes a variable. Finite
t12 and/or t34 allow for charge injection/depletion within the
junction.

The Hubbard Hamiltonian in Eq. (1) and its current-
carrying version in Eq. (2) can be written on a real-space
basis and the resulting matrix can be diagonalized exactly. The
real-space basis is defined by the complete and orthonormal
set of functions (|p〉) that specify the occupation of site
spin orbitals. We adopt a graphical representation where a
generic state |p〉 = |0,↑,↓ ,↓↑〉 represents the state where
no electrons are found in the first site, one electron with
spin α and one electron with spin β are located on sites 2
and 3, respectively, and site 4 is doubly occupied. In more
formal language |0,↑,↓ ,↓↑〉 = a

†
2,αa

†
3,βa

†
4,βa

†
4,α|0〉, where a

†
i,σ

are the electron creation operators entering the Hamiltonian
in Eq. (1) and |0〉 is vacuum state. Both the total number
of electrons N and the z component of the total spin Sz

commute with the Hamiltonian and the Hamiltonian matrix
can be defined for a particular charge and spin sector. Here
we set N = 4 and work in the subspace relevant to the
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ground state, that is, Sz = 0, for a grand total of 256 basis
states.

The definition of characteristic current-voltage curves is
quite subtle in CC approaches. The Hamiltonian in Eq. (2)
describes (at the leading order in the vector potential) the
effect of an oscillating magnetic flux driving a current through
a circuit. In this view λ is simply proportional to the
corresponding electrical field E ∝ ωλ.36,38 However in the DC
limit, ω → 0, the driving field and hence the driving potential
vanish, leading to the unphysical result of a finite current at zero
bias. This zero-resistance picture emerges because relaxation
dynamics is neglected. In fact a finite potential drop is required
to sustain current just to overcome friction in the junction.
The calculation of characteristic curves in the CC approach
then requires a model for relaxation dynamics. In particular,
the current-carrying state |G(λ)〉 is a nonequilibrium state.37

Work has to be spent on the system in order to maintain
it in the nonequilibrium state against relaxation phenomena
that would drive the system back to the ground state |G(0)〉.
The amount of power spent to sustain the system in the
nonequilibrium current-carrying state is set by the relaxation
dynamics. The faster the relaxation the more power must be
spent to sustain the current. The Joule law defines the relation
between the electrical power spent on the molecule W and
the potential drop needed to sustain the current W = IV .
Since I is known, characteristic I (V ) curves can be obtained
from W .35

We adopt a simple phenomenological model for relaxation
dynamics that is widely used in spectroscopy. The model
is general and properly obeys basic physical requirements,
including detailed balance. In particular relaxation is described
by introducing the density matrix (σ ) written on the basis
of the eigenstates of H (0). On this basis the equilibrium
density matrix is diagonal with diagonal elements describing
the Boltzmann populations of the relevant states. Relaxation
dynamics of diagonal elements of σ are only affected by
inelastic scattering and are written as40,41

(σ̇R)kk =
∑

m

γkmσmm −
∑

m

γmkσkk, (3)

where γkm measures the probability of the transition from m

to k due to inelastic scattering events. Off-diagonal elements
of the relaxation matrix may be written as

(σ̇R)km = −	kmσkm, (4)

where

	km = (γkk + γmm)/2 + γ ′
km (5)

accounts for both inelastic scattering events via the population
inverse lifetimes γkk = ∑′

m γmk and for elastic scattering
events via γ ′

km that describes the loss of coherence due to
pure dephasing phenomena.40,41

The total work exchanged by the junction Tr(σ̇RĤ ) has two
nonvanishing contributions. W = −λ Tr(σ̇Rĵ ) that represents
the work done on the junction to sustain the current and a
second contribution Wd = Tr(σ̇RH0) that measures the work
dissipated by the junction. Since the current operator ĵ has
vanishing diagonal elements on the real eigenstates of H (0),
W is only affected by the relaxation of off-diagonal elements

of the density matrix. As a result, both elastic and inelastic
scattering events affect W . This is a physically relevant result;
in fact both phenomena concur to build up the resistance in the
junction. On the opposite, the power dissipated by the junction
Wd = Tr(σ̇RH0) is only affected by inelastic scattering events.
It represents just a fraction of the total power dissipated on the
junction, thus suggesting that some dissipation must occur at
the electrodes.35

While the relaxation model is fairly crude and requires
invoking electrodes to actually balance the energy, it has the
advantage of setting on a firm basis the relation between the
molecular resistance and dissipation phenomena. In particular
we notice that the proposed model properly predicts the
maximum conductivity of the simplest junction, e2/h̄, based
on the simple consideration that the maximum lifetime of
the electron within the junction cannot be longer than the
time required for the electron to cross the junction.35 This
observation drives us to the nontrivial role of electrodes on
relaxation dynamics. In the case of very weak contacts the
presence of metallic surfaces close to the molecular junction
is expected to open a new channel for energy dissipation then
reducing the population lifetimes.42 On the opposite, in the
strong contact regime the mixing of the discrete molecular
eigenstates with the continuum of states of the metallic leads
is responsible for increased dephasing rates.24 A very simple
model for the relaxation matrix can then be obtained in the
strong contact regime where depopulation contributions to 	km

can be neglected and in the hypothesis that the effects of the
electrodes on the dephasing rates is similar on all states so
that 	km = 	. In this hypothesis W = λ	I and the potential
drop is simply proportional to λ, V = λ	.35 Without loss of
generality we set 	 = 1 in the following.

III. RESULTS AND DISCUSSION

We consider two different choices for the energies of
the auxiliary sites. In the first model (a) we set ε1 = −ε4

to mimic groups with opposite electron donating/accepting
characteristics. In the second model (b) we set ε1 = ε4

mimicking two equivalent side groups added to the main chain
[R = R′ in Fig. 1(b)]. Quite interestingly the second model
can also describe the effects of charge injection/depletion
in the junction as a result of an applied gate voltage. The
color maps in Fig. 2 show the differential conductance ( ∂I

∂V
)

calculated as a function of the potential drop (V ) and of
the energies of the auxiliary sites ε1 = −ε4 (left panel) and
ε1 = ε4 (right panel) for U = 5. NDC is not observed in
either case. This result, confirmed at different U values, is not
surprising. In fact NDC suggests a largely nonlinear behavior
of the junction with a bistable V (I ) characteristic. Such a
behavior requires cooperativity and hence the introduction of
some self-consistent interaction in the model.

With this requirement in mind, we modify the model to
account for possible effects of the voltage drop on the auxiliary
sites. In fact sites 1 and 4 do not play any active role in transport
but can be affected by the voltage drop at the junction. In
particular, being directly connected to sites 2 and 3 (device
region) they can experience at least a fraction of the electrical
field required to sustain the current in the main junction. As
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FIG. 2. (Color online) The color maps show differential conduc-
tance ( ∂I

∂V
) as a function of potential drop (V ) and of the energies

of the auxiliary sites satisfying the relations (a) ε1 = −ε4 and
(b) ε1 = ε4. Results are shown for U = 5.

a result, a term is added to the Hamiltonian affecting the
auxiliary-site energies as follows:

xV (n̂4 − n̂1), (6)

where x measures the fraction of the potential drop that is felt
by sites 1 and 4. We observe that only the energy of auxiliary
sites must be explicitly modified by the potential. The effect of
the potential on the junction (sites 2 and 3) is already accounted
for by the Hamiltonian in Eq. (2). The correction term in Eq. (6)
introduces cooperativity in the model. The on-site energies ε1

and ε4 do depend in fact on the current flowing through the
junction that in turn is affected by the on-site energies. Color
maps in Fig. 3 obtained setting x = 0.5 show NDC regions
demonstrating the cooperative nature of the phenomenon.
Figure 3 summarizes the main results of this paper showing the
differential conductance calculated for the two choices (a) ε1 =
−ε4 (left columns) and (b) ε1 = ε4 (right columns) and U = 5
and 2 (top and bottom panels, respectively). NDC feature is
definitely more prominent in model (b) than in model (a) and
is suppressed upon decreasing electron correlation strength U

(this conclusion is also supported by extensive calculations
run at different U ). These findings are in line with results
obtained in the VC approach, showing that strong on-site e − e

correlations favor NDC in double-quantum dot systems.26

Note that the ( ∂I
∂V

) map (and the I − V characteristics as
well) are asymmetric because of the inherent asymmetry in
the device region with sites 2 and 3 having different on-site
energies.

Due to symmetry reasons, the number of electrons in the
junction is constant in model (a) n = 2. In model (b) n is
instead variable. Since the hybridization energy t is small with
respect to on-site energies, n(V,ε1) assumes almost integer
and constant values (shown as italic numbers in the figures)
in different regions of the V,ε1 plane connected by very sharp
borders. Quite impressively NDC features are observed for
model (b) just at these borders, suggesting a strong relation
between NDC and sharp variations of n. Upon decreasing
U the variation of n becomes smooth and the NDC regions
become less prominent. Minor NDC features are also observed
in model (a) with constant n in regions where the occupancy
of the two auxiliary sites abruptly changes from 〈n̂1 − n̂4〉 = 0
to ±2.

εε 1
( 

=
 -

ε 4
 )

ε 1
( 

=
 ε

4 
)

V V

dI/dV

U=2

U=5 U=5

U=2
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222

33
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2

FIG. 3. (Color online) Color maps showing differential conduc-
tance ( ∂I

∂V
) as a function of potential drop (V ) and the energies of the

auxiliary sites for ε1 = −ε4 (left panels) and ε1 = ε4 (right panels)
for two different U values. The blue italic numbers in the right panels
show the approximate value of the number of electrons in the junction
n in the different regions. The same number is constant (n = 2) in the
left panels.

To obtain a more detailed picture of the microscopic origin
of NDC, we disentangle the contributions to the current from
the different states. The current-carrying ground state has
complex coefficients cp in the real space basis |G(λ)〉 =∑

p cp|p〉 and the expectation value of the current operator
can be written as I = ∑

pr Ipr , where Ipr = cpc∗
r jpr and jpr =

〈p|ĵ |r〉 is an off diagonal element of the current operator on the
chosen basis (diagonal elements vanish). For the sake of clarity,
we set U = 5 in the following discussion. Figure 4 shows the
results relevant to model (a) with ε1 = −ε4 = 3. In this case,
as noticed before, n = 2. Two main contributions to I can be
recognized as I1 = I|↑,↑↓,0,↓〉|↑,↓,↑,↓〉 + I|↓,↑↓,0,↑〉|↓,↑,↓,↑〉 and
I2 = I|0,↑↓,0,↑↓〉|0,↑,↓,↑↓〉 + I|0,↑↓,0,↑↓〉|0,↓,↑,↑↓〉. Quite interest-
ingly, as shown in Fig. 4, the sum of these two contributions
quantitatively matches with the total I (V ) characteristic. The
states involved in I1 and in I2 only differ by the occupation at
first and fourth sites. The states involved in I1 show single
occupancy of sites 1 and 4, while the states involved in
I2 have zero occupation at site 1 and double occupation
at site 4. The position and height of the NDC peak of
I2(V ) exactly matches with the NDC peak of the I (V )
characteristics. The fall of I2 and the rise of I1 at V ∼ 0.75
causes the NDC feature in I (V ) characteristics. For V >

0.75 I2 starts decreasing to zero, while I1 increases to meet
I2 at V = 1.04 resulting in a valley in I (V ). So for V >

1.04 I1 dominates over I2 resulting in further increase of
total I .

The bottom panel of Fig. 4 shows the weight of the
states that mainly contribute to the current (as shown in the
figure label). The probability of states contributing to I1(blue
lines) vanishes for V < 0.75, I1 = 0 in that region. I1 instead
contributes significantly to total I for V > 0.75, where the
contribution from I2 becomes negligible. The current flows
only through the central bond and, in a system with n = 2 and
ε2 = −ε3 = 2, it is associated with off-diagonal elements of ĵ
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FIG. 4. (Color online) Results for ε1 = −ε4 = 3 and U = 5. The
continuous black line in the top panel shows the characteristic curve.
The dot-dashed blue and the double-dot-dashed green lines in the
same panel show the two major contributions to the current as
discussed in the text, the red dashed line shown the sum of the
two contribution, and it is almost indistinguishable from the total
current. In the bottom panel the blue dotted and double-dotted dashed
(green continuous and dashed) lines show the weight of the two states
responsible for the I1 (I2) as discussed in the text. The black dotted
line is shown as a guide for the eyes.

mixing up states where both electrons reside on site 2 or are
equally distributed in sites 2 and 3. NDC is observed when the
occupancy of the auxiliary sites changes. More precisely, the
NDC feature occurs when the population of states contributing
to I2, characterized by 〈n̂4 − n̂1〉 = 2, start decreasing at the
expense of the increasing population of states contributing to
I1, characterized by 〈n̂4 − n̂1〉 = 0.

Model (b) is more complex, as shown in Fig. 5 that
collects results obtained for ε1 = ε4 = 2 and U = 5. In
this case a variable number of electrons is found in the
junction [as shown by the blue lines in Fig. 5(a)]. The I − V

characteristic (black line) shows NDC features both in the
negative and positive V regions, with a more prominent feature
at V ∼ 2. In the region of interest for NDC the current
is mainly due to three specific contributions [as shown in
Fig. 5(b)]. The three contributions are I1 = I|↑,↑↓,0,↓〉|↑,↓,↑,↓〉 +
I|↓,↑↓,0,↑〉|↓,↑,↓,↑〉, I2 = I|0,↑↓,↑,↓〉|0,↑,↑↓,↓〉 + I|0,↑↓,↓,↑〉|0,↓,↑↓,↑〉,
and I3 = I|↓,↑↓,↑,0〉|↓,↑,↑↓,0〉 + I|↑,↑↓,↓,0〉|↑,↓,↑↓,0〉. The states
involved in I1 have two electrons in the junction (n = 2) while
the states contributing to I2 and I3 have n = 3. As expected,
I2 and I3 contributions become sizable for large negative and
positive V , respectively. However it is clear from the figure that
the NDC features observed in the characteristic I (V ) are only
due to the NDC features observed in the I1(V ) contribution to
the total current. For a better understanding, Fig. 5(c) shows the
probability of states playing a main role in transport. I1 drops
at the NDC features because the relevant states having two
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FIG. 5. (Color online) Results for ε1 = ε4 = 2 and U = 5.
(a) Characteristic curve (black continuous line) and total number
of electrons in the junction (blue dashed line). (b) The three main
contributions to the current in the NDC regions, as discussed in
the text. The red dashed lines shows their sum to be compared to
the total current (black line). (c) The weight of states contributing
to I1 (blue continuous and double-dot dashed lines), I2 (violet
dashed and dot-dashed lines), and I3 (green dot-dashed lines).
More specifically, the blue continuous and double-dot dashed line
refer to states |↑,↓,↑,↓〉 and |↑,↓↑,0,↓〉, respectively; the green
dotted and double-dash-dotted lines refer to |↓,↓↑,↑,0〉 and |↓,↑,

↓↑,0〉, respectively; the violet dashed and dot-dashed lines refer
to |0,↓↑,↑,↓〉 and |0,↑,↓↑,↓〉, respectively.

electrons in the junction loose their weight and the increasing
contributions of either I2 in the negative V region or of I3 in
the positive V region related to states with n = 3 are not able
to fully compensate for the loss.

IV. CONCLUSIONS

The current constrained approach offers an alternative
picture of transport in nanojunctions with respect to the
widespread voltage-constrained approaches. In the CC ap-
proach Lagrange multipliers are used to force the system into
a current carrying state, avoiding any explicit reference to
semi-infinite electronic reservoirs. The method then applies
quite naturally to describe transport in systems with strongly
correlated electrons. However, the total number of electrons
taking part in transport is fixed in CC approaches and this
has so far hindered the application of the method to problems
where charge injection/depletion in the junction is important.
This problem could be solved by introducing an effective
relaxation model that, accounting for the exchange of electrons
between the junction and the electrodes, allows the system
to relax toward states with different number of electrons.
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This approach however requires a fairly complex model for
relaxation dynamics. Here we borrow from the field of optical
spectroscopy a simple phenomenological model for relaxation
that maintains a constant number of electrons, and overcome
the limitation of fixed number of electrons connecting one or
more auxiliary sites to the main junction. While the current
does not flow through the auxiliary sites, they exchange
electrons with the junction, allowing for a variable number
of electrons taking part in transport.

Along these lines we attacked the problem of NDC in
a very simple model with a two-site junction connected to
two auxiliary sites. NDC is a highly nonlinear phenomenon.
The bistable behavior of the V (I ) curve at NDC can only
be observed in largely cooperative systems. We introduced
cooperativity imposing a dependence of the on-site energies
of the auxiliary sites on the voltage drop. Since the voltage
required to support the current depends in turn on the energy
of the auxiliary sites, the problem becomes self-consistent and
the model supports NDC. Quite interestingly, dangling bonds
(side groups) connected to the main current-carrying unit
have recently been discussed as responsible for nonlinearity
in the characteristic curves. In particular side groups may
be responsible for quantum interference phenomena that
drastically suppress current.43 Our study suggests that a proper
choice of the chemical nature of the side groups can not only
reduce the current but eventually lead to NDC.

Here we just investigated an asymmetric junction with weak
bonds and a grand total of four electrons in two different
cases. In the first case we choose equal and opposite on-site
energies for the two auxiliary sites leading to a constant
number of electrons in the junction (n = 2). Minor NDC
features are observed in this case, mainly related to an
abrupt variation of the occupation of the auxiliary sites.
More prominent NDC features are observed in the second
model where, having fixed the energies of the auxiliary
sites to the same value, the number of electrons involved in
the transport is variable. NDC is related in this case to an
abrupt variation with the applied potential of the number of
electrons in the junction. In all cases large U and small t are
needed to observe NDC. Weak bonds and large correlations
in fact ensure the abrupt variation in the nature of the
current carrying state |G(λ)〉, as required for us to observe
NDC.
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