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We show that a coherent picture of the dc conductivity of monolayer and bilayer graphene at finite electronic
densities emerges upon considering that strong short-range potentials are the main source of scattering in
these two systems. The origin of the strong short-range potentials may lie in adsorbed hydrocarbons at the
surface of graphene. The equivalence among results based on the partial-wave description of scattering, the
Lippmann-Schwinger equation, and the T -matrix approach is established. Scattering due to resonant impurities
close to the neutrality point is investigated via a numerical computation of the Kubo formula using a kernel
polynomial method. We find that relevant adsorbate species originate impurity bands in monolayer and bilayer
graphene close to the Dirac point. In the midgap region, a plateau of minimum conductivity of about e2/h (per
layer) is induced by the resonant disorder. In bilayer graphene, a large adsorbate concentration can develop an
energy gap between midgap and high-energy states. As a consequence, the conductivity plateau is supressed near
the edges and a “conductivity gap” takes place. Finally, a scattering formalism for electrons in biased bilayer
graphene, taking into account the degeneracy of the spectrum, is developed and the dc conductivity of that system
is studied.
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I. INTRODUCTION

In his famous book,1 Peierls noted that in three dimensions
the first Born approximation (FBA) cannot be used to deal
with short-range potentials in general, even when the potential
is not too strong. The reason lies in the fact that the FBA
overestimates the value of the scattering cross section and
modifies the energy dependence of the latter relative to the
exact result. The fundamental reason why this effect takes
place has its roots in the modification of the wave function
within the region where the potential is finite. There, even for
moderate potentials, the wave function is strongly deformed
relative to the plane wave used in the FBA.

Since his main concern was nuclear physics, Peierls did
not address the validity of the FBA in systems of reduced
dimensions. Contrary to nuclear physics, some condensed
matter systems impose dimensional constraints on the elec-
tronic motion—a direct consequence of the lattice structure of
the given solid. Electrons moving in graphene face the most
dramatic dimensional constraint, being forced to move along a
strictly two-dimensional plane formed by a honeycomb lattice
of carbon atoms.2–5 In bilayer graphene, electrons are also
confined to move in two dimensions. Since bilayer systems
are a stacking of two graphene sheets, the electrons may,
additionally, hop between the layers.

Scattering cross sections in condensed matter physics are
of ultimate importance for the interpretation of dc transport in
solids, especially concerning the effect of localized impurities.
These can be described by either short-range or long-range
potentials. Following Peierls,1 the correct interpretation of the
conductivity of a metal at low temperatures may require a
description of electronic scattering by impurities beyond the
FBA: this is particularly true if the impurities give rise to strong
short-range potentials.

In systems such as monolayer and bilayer graphene, where
the electronic density can be tuned between 0 and ∼1014 cm−2,
Ref. 6 computing the correct dependence of the cross section
on the Fermi energy is a crucial ingredient for a meaningful
interpretation of the data. Since the early days of graphene
physics,2,3 it has become clear that the conductivity of
monolayer graphene shows a slightly sublinear dependence
on electronic density. In contrast, the conductivity of bilayer
graphene shows, consistently, a robust linear dependence on
the backgate potential. Both monolayer and bilayer graphene-
based field-effect devices use sheets from flakes produced in
exactly the same manner, that is, via exfoliation of graphite.
(More recently, graphene has been isolated via epitaxial growth
on SiC7 and chemical vapor depositions on metal surfaces.8,9)
It is now believed that the main sources of electronic scattering
in exfoliated graphene are introduced during the device
fabrication process.

The sources of disorder in graphene can vary. They can
be due to adsorbed chemical species, such as hydrogen
atoms or hydrocarbon molecules, random strain,11 rippling12,13

and scrolling,14 and electrostatic random potentials at the
surface of the silicon oxide substrate caused by charged
impurities.15–18 (Chemically synthesized graphene displays
alternative scattering mechanisms.10)

It is widely accepted that the strong carrier density
fluctuations (electron-hole puddles) observed close to the
neutrality or Dirac point are due to localized subsurface
charged impurities.15,19 Whether charged impurities are also
the limiting source of scattering in doped graphene (i.e.,
away from the neutrality point) remains unclear. In addition
to charged scatterers, resonant scattering due to adsorbed
hydrocarbons20 is currently ascending in the list of candidates
limiting the electronic mobility in graphene.21–24 As we show
in Sec. III A, adsorbed hydrocarbons can effectively act as
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strong short-range scatterers. Strong, short-range, resonant
scatterers can be mimicked by vacancies in a lattice model.25–27

In magneto-optical transport studies of graphene, short-range
scattering seems essential to explain the width of the cyclotron-
peak at high magnetic field.25–28

Since the sources of scattering are likely introduced during
the fabrication process, they must be the same for both
monolayer and bilayer graphene. Therefore, a consistent
theoretical description of the conductivity of graphene, at
low temperatures and finite electronic densities, must be able
to describe the experimental curves of both monolayer and
bilayer graphene by invoking the same source of scattering.
In this paper, we show that such a consistent theoretical
description can be achieved by considering strong short-range
potentials whose origin may lie in adsorbed chemical species
at the surface of the material. Instrumental to our description
is the critical analysis developed by Peierls: Calculation of
the exact scattering cross sections is essential for a correct
interpretation of the experimental data.

Before studying the dc conductivity for both monolayer and
bilayer graphene at finite electronic densities, a task we defer
to Sec. III, we first survey the scattering theory for electrons
in these systems in Sec. II. This first step is essential for
comprehension of the remaining sections.

In Sec. III, we show, using a simple and intuitive model,
that the effect of adsorbed chemical species on graphene
is equivalent to that of very strong on-site short-range
potentials—the so-called resonant scatterers. Here, we use
lattice-based numerical calculations of the density of states
to show in some detail how this class of impurities affects the
electronic structure of monolayer and bilayer graphene. Using
a continuous formulation, we also show that the semiclassical
dc conductivity of both monolayer and bilayer graphene at
finite densities can be easily calculated using the intuitive
approach to scattering given the partial-wave analysis. We
apply the developed formalism to resonant scatterers and
show that this type of short-range disorder accounts well for
experimental data.

Further, we demonstrate the need for the computation
of exact electronic scattering amplitudes when applying the
Boltzmann approach to strong short-range potentials, an issue
overlooked in the literature that we re-examine here. The
validity of the semiclassical results at finite electronic densities
and low impurity densities is established via a T -matrix
calculation of the Kubo dc conductivity. Finally, by means of a
numerical calculation based on the kernel polynomial method
(KPM), we illustrate the breakdown of the semiclassical
picture for electronic densities close to the neutrality point.
These simulations explore the limit of finite impurity density,
thus fully taking into account interference effects neglected in
the Boltzmann approach.

In Sec. IV, we adapt the formalism of Secs. II and III
to describe scattering when a perpendicular electric field is
applied to bilayer graphene. Conclusions are drawn in Sec. V.
Several technical aspects of our results are given in the
Appendix.

We note that transport in monolayer and bilayer graphene
was addressed by some of us in an ealier publication.55

However, it is important to remark that in the present work
our goal is to provide a unified description of transport in both

systems based on the same scattering mechanism. Also, it is
shown that the transport properties of the bilayer graphene can
be understood in a much simpler, intuitive, and transparent
way using the standard scattering formalism of partial waves.
In this regard, our present work is complementary to the study
developed in Ref. 55. That is, the present work closes the circle
of showing that for both graphene and its bilayer, a coherent
and unified description of dc transport in these systems can be
described by one and the same formalism, be it the more formal
and mathematically demanding one of the transfer matrix or
the intuitive and simple one of partial waves.

II. PARTIAL-WAVE ANALYSIS IN GRAPHENE

As discussed in Sec. I, calculation of the dc conductivity
of a metal requires computing the transport cross section as
accurately as possible. A well-established approach is based
on the computation of the phase shifts induced in the scattered
electron wave function by the scattering potential. If the phase
shifts are known exactly, so is the cross section. Below, we
set the notation and introduce the central quantities needed
in this work by giving a concise presentation of the phase-
shift approach to scattering in the context of graphene and its
bilayer.29–32 These results are later used in Sec. III. Also, and
to the best of our knowledge, the scattering theory for electrons
in a biased graphene bilayer has not been developed so far in
the literature, and therefore it is presented in Sec. IV.

Scattering theory states that the large-distance wave func-
tion of a particle in the presence of a scattering potential (with
cylindrical symmetry) must have the form (in two dimensions)

ψ(r) � eikix + f (θ )
eikf r

√
r

, (1)

where ki = (ki,0) and kf = kf (cos θ, sin θ ) are the momen-
tum of the incoming and scattered waves, respectively; clearly,
for elastic scattering, we have ki = kf = k. The scattering
amplitude f (θ ) can be written in terms of the phase shifts
δm associated with the partial-wave expansion of the scattered
wave function in the basis of angular momentum states. In
Eq. (1), the first term represents the incoming particle, with
the incoming momentum oriented along the x axis, and the
second one represents the cylindrical scattered wave function.

As it stands, Eq. (1) holds for the two-dimensional
Schrödinger equation.33 However, for both monolayer and
bilayer graphene, the long-distance behavior of the wave
function differs slightly, but significantly, from Eq. (1).

A. Electronic scattering in graphene

For graphene, the motion of the electrons in the π orbitals
is, at low energies, described by the two-dimensional massless
Dirac Hamiltonian, reading4

HK = vF σ · p, (2)

where the Fermi velocity is defined as vF = 3ta0/(2h̄), t is
the hopping integral between the pz orbitals of two adjacent
carbon atoms, and a0 ≈ 1.4 Å is the carbon-carbon distance
in graphene (see Fig. 1). The vector σ is written in terms
of Pauli’s matrices as σ = (σx,σy), and p is the momentum
operator. The vector K denotes one of the two (inequivalent)
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FIG. 1. (Color online) Lattice structure and Brillouin zone of
monolayer graphene. Left: Hexagonal lattice of graphene, with the
next nearest neighbor, δi , and the primitive, ai , vectors depicted. The
area of the primitive cell is Ac = 3

√
3a2

0/2 � 5.1 Å2, and a0 � 1.4 Å.
Right: Brillouin zone of graphene, with the Dirac points K and K ′

indicated. Close to these points, the dispersion of graphene is conical
and the density of states is proportional to the absolute value of the
energy.

edge points of the Brillouin zone, also called Dirac points
or valleys. Because neutral graphene is half-filled (i.e., the
π orbitals contain one electron), these two points control the
low-energy physics. Depending on the nature of disorder and
the Fermi energy, coupling between momentum states from
different valleys can take place. Intervalley scattering is known
to induce weak localization corrections to the conductivity and,
ultimately, fully localize states in the thermodynamic limit at
zero temperature.60,73,74

In what follows, we assume that the two Dirac points, K and
K ′, can be treated independently. This procedure is justified
because intervalley scattering (known to occur for short-range
scatterers) manifests itself primarily in the coherent regime,
through backscattering interference. For low concentrations of
scattering centers, finite sample size, and finite temperatures
(the typical experimental situation), coupling between the
Dirac points can be neglected when considering high enough
electronic densities. Hence, with the exception of the lattice
calculations (Secs. III E and III G), we neglect intervalley
scattering in the continuous model calculations and introduce
the valley degeneracy index, gv = 2. In Cartesian coordinates,
the eigenstate of the Hamiltonian in Eq. (2) has the explicit
form

�±(r) = 1√
2A

[1 ± eiθk ] eik·r, (3)

with θk = arctan(ky/kx) and A denoting the total area of
the system. The energy eigenvalues corresponding to the
eigenfunction in Eq. (3) are E = ±vFh̄k. From the latter
follows the density of states per spin and per unit cell,
ρ(E) = 2|E|/(π

√
3t2), where the contribution from the two

valleys has been taken into account. The probability density
current reads34

J = vF �
†
±σ�±. (4)

For the study of scattering, it is more convenient to recast the
Hamiltonian in Eq. (2) in cylindrical coordinates r and θ as

HK = −ivFh̄

[
0 L̂−

L̂+ 0

]
, (5)

where the operators L̂± = e±iθ (∂r ± ir−1∂θ ) act as ris-
ing/lowering operators, according to the following result:

L̂±[Cm(kr)eiθm] = ∓kCm±1(kr)eiθ(m±1). (6)

In Eq. (6), the function Cm(kr) stands for Jm(kr) and Ym(kr),
the first-kind and second-kind Bessel functions, respectively,
and for the Hankel functions of the first kind H (1)

m and second
kind H (2)

m . For the modified Bessel function Km(kr) we have

L̂±[Km(kr)eiθm] = −kKm±1(kr) eiθ(m±1). (7)

In cylindric coordinates, the radial probability density current
reads

Jr = vF �
†
±σr�±, (8)

where σr is defined as

σr =
[

0 e−iθ

eiθ 0

]
. (9)

The tangential component of the probability density current
reads Jθ = vF �

†
±σθ�±, with σθ = σrdiag(i, − i), and where

diag(i, − i) represents a diagonal matrix. Let us now derive,
for massless Dirac electrons in two dimensions, the equivalent
of the asymptotic wave function in Eq. (1). To that end, we
note that a state having the form

�m(r,θ ) = 1√
2A

[Jm(kr) ± ieiθJm+1(kr)] eimθ (10)

is also an eigenstate of the Hamiltonian in Eq. (5). We start by
assuming that the asymptotic (large r) behavior of the wave
function in the angular momentum channel m has the form
(from here on, we consider only E > 0)

�m(r,θ ) �
√

1

πAkr

[
cos(kr − λm + δm)

ieiθ sin(kr − λm + δm)

]
ei(mθ+δm),

(11)

an ansatz inspired by the fact that the Dirac equation for
graphene is a set of two coupled first-order differential
equations and in the asymptotic limit of the Bessel functions
at large r:35

Jm(x) =
√

2

πx
cos(x − λm), (12)

Ym(x) =
√

2

πx
sin(x − λm), (13)

with λm = mπ/2 + π/4. Using Eq. (11), we write the total
wave function as an expansion in partial waves, reading

�(r,θ ) =
∞∑

m=−∞
im�m(r,θ ). (14)

Exploiting of the relation

eikr cos θ =
∞∑

m=−∞
imeimθJm(kr), (15)

we obtain

�(r) � 1√
2A

[
1
1

]
eikx + 1√

2A

[
1
eiθ

]
f (θ )

eikr

√
r
, (16)
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with the scattering amplitude reading

f (θ ) =
√

2i

πk

∞∑
m=−∞

eimθeiδm sin δm. (17)

It is a simple exercise to show that the first term in Eq. (16)
corresponds to a flux Jx = vF /A (and Jy = 0), whereas the
second term corresponds to a radial flux Jr = vF |f (θ )|2/(rA)
(and Jθ = 0). Thus, according to the usual definition of the
differential cross section σ (θ ), it follows that

σ (θ ) = |f (θ )|2. (18)

Before we turn to scattering in bilayer graphene, it will be
useful, for later use, to introduce other asymptotic forms of the
Bessel functions Jm(x), Ym(x), and Km(x), in addition to those
already given in Eqs. (12) and (13). For large x, we have35

Km(x) =
√

π

2x
e−x. (19)

For x 	 1, the asymptotic forms read35

Jm(x) = (x/2)m�−1(m + 1), (20)

Y0(x) = 2π−1 ln x, (21)

Ym(x) = −π−1�(m)(x/2)−m, m = 1,2, . . . , (22)

and

K0(x) = − ln x, (23)

Km(x) = 2−1�(m)(x/2)−m, m = 1,2, . . . , (24)

where �(x) is the � function. We now consider scattering in
bilayer graphene.

B. Electronic scattering in bilayer graphene

Bilayer graphene has four atoms per unit cell, with the two
honeycomb sheets arranged according to a Bernal stacking, as
shown in Fig. 2. Two of the atoms belonging to each of the
layers are on top of each other (atoms A1 and B2 in Fig. 2),
allowing for interlayer hopping. This process is represented
by a hopping parameter, t⊥ ≈ 0.5 eV.36,37 The other two
carbon atoms, labeled A2 and B1 in Fig. 2, are not coupled
to the carbon atoms of the other layer, in accordance with the
assumptions of the minimal model for electronic motion in
bilayer graphene.

The band structure of bilayer graphene has four bands,
but the low-energy physics (|E| 	 t⊥) can be described by an
effective model of only two bands,36–38 where the atoms linked
by t⊥ are projected out since they describe high-energy bands:
the dimmer of atoms A1 and B2, linked by t⊥, form a two-level
system with energy levels ±t⊥. Additionally, the atoms in the
two sheets can be made nonequivalent by applying an electric
field perpendicular to the sheets, in this way inducing a gap
in the spectrum (the electrostatic potential difference between
the two layers is 2V ).36–39

FIG. 2. (Color online) Lattice structure of bilayer graphene. The
atoms labeled A1 and B1 lie on the bottom graphene layer, whereas
atoms A2 and B2 are in the top layer. Electrons can hop between layers
via a perpendicular hopping parameter t⊥ between carbon atom A1

and carbon atom B2 (connected by solid lines). The Brillouin zone
of bilayer graphene is the same as that of monolayer graphene (see
Fig. 1).

The derivation of the effective Hamiltonian is straightfor-
ward. We write the full Hamiltonian as

H =

⎡
⎢⎢⎢⎣

V 0 0 π̂

0 −V π̂ † 0

0 π̂ −V −t⊥
π̂ † 0 −t⊥ V

⎤
⎥⎥⎥⎦ ≡

[
HL HLH

H
†
LH HH

]
, (25)

where the columns in the Hamiltonian are labeled by the four
atoms in the unit cell. In ascending order, this labeling is B1,
A2, B2, and A1. The operator π̂ is defined as π̂ ≡ vF (p̂x +
ip̂y). The eigenproblem H |ψ〉 = E|ψ〉 can be written as[

HL HLH

H
†
LH HH

] [ |ϕ〉
|χ〉
]

= E

[ |ϕ〉
|χ〉
]

. (26)

It follows from Eq. (26) that

HL|ϕ〉 + HLH(E − HH)−1H
†
LH|ϕ〉 = E|ϕ〉, (27)

and considering that t⊥ 
 (V,|E|), we have HBL|ϕ〉 = E|ϕ〉,
with38

HBL = V σz − V

t2
⊥

[
π̂ π̂ † 0

0 −π̂ †π̂

]
+ 1

t⊥

[
0 (π̂ )2

(π̂ †)2 0

]
. (28)

To keep things simple, in what follows we consider the
case V = 0; later we discuss the case V �= 0. In cylindric
coordinates, the Hamiltonian, Eq. (28), is written as

HBL = −v2
Fh̄2

t⊥

[
0 L̂2

−
L̂2

+ 0

]
, (29)

and the eigenfunctions (regular at the origin) can be written as

�m(r,θ ) = 1√
2A

[Jm(kr) ∓ e2iθ Jm+2(kr)]eimθ , (30)

to which the eigenvalues E = ±v2
Fh̄2k2/t⊥ correspond. From

the latter result follows the density of states per spin and per
unit cell, ρ(E) = t⊥/(π

√
3t2), where we have included a factor

of 2 coming from the valley degeneracy.71

It is important to stress two differences between the Hamil-
tonians in Eqs. (2) and (29) regarding boundary conditions and
the nature of the scattering states. To be concrete, let us assume
that the electron is subjected to a potential well of the form
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V (r) = V0θ (R − r). In the case of the Dirac Hamiltonian, the
boundary conditions at r = R imply continuity of the two
components of the spinors, whereas for the bilayer Hamilto-
nian we have to impose continuity of both the components
of the spinors and their first derivative. The second aspect is
related to the fact that elastic scattering conserves energy. Thus,
since in bilayer graphene we have E = ±v2

Fh̄2k2/t⊥, and
keeping the energy constant, say E > 0, as in any scattering
process, there are two admissible solutions: a real solution, k =√

t⊥E/(vFh̄), and a purely imaginary one, k = i
√

t⊥E/(vFh̄).
Therefore, bilayer graphene supports evanescent modes at the
interface r = R. This fact is essential to satisfy the boundary
conditions obeyed by the wave function.40

As in the case of the Dirac Hamiltonian, we have to derive
the form of the probability density current for electrons de-
scribed by the Hamiltonian in Eq. (29). The usual procedure34

gives that any component J� of the current has the form

J� = 2
v2

Fh̄

t⊥
Im�†Ĵ��, (31)

where for � = x,y we have

Ĵx = σx∂x + σy∂y (32)

and

Ĵy = σy∂x − σx∂y. (33)

For the radial component, � = r , we have

Ĵr =
[

0 e−2iθ (∂r + ir−1∂θ )

e2iθ (∂r − ir−1∂θ ) 0

]
, (34)

and for the tangential component, � = θ , we have

Ĵθ =
[

0 −ie−2iθ (∂r − ir−1∂θ )

ie2iθ (∂r + ir−1∂θ ) 0

]
. (35)

Taking into account that the Hamiltonian in Eq. (29) forms
a set of two coupled second-order differential equations,
we assume that the asymptotic (large-r) behavior of the
wave function in the angular momentum channel m has the
form

�m(r,θ ) �
√

1

πAkr

[
cos(kr − λm + δm)

e2iθ cos(kr − λm + δm)

]
ei(mθ+δm).

(36)

Following the same procedure used to derive Eq. (16), we can
show that the large-r behavior of the total electronic wave
function in graphene bilayer in the presence of a potential has
the form

�(r) � 1√
2A

(
1
1

)
eikx + 1√

2A

(
1

e2iθ

)
f (θ )

eikr

√
r
. (37)

Using Eq. (31), we can easily conclude that the first term
in Eq. (37) corresponds to a flux Jx = 2v2

Fh̄k/(At⊥) ≡ v/A,
where v is the velocity of the particle, and that the sec-
ond term corresponds to a radial flux of the form Jr =
2v2

Fh̄k|f (θ )|2/(rAt⊥) ≡ v|f (θ )|2/(Ar), with f (θ ) still given
by Eq. (17). As before, it follows that the differential cross
section is given by Eq. (18).

In Sec. III, we apply this formalism to the case of a potential
well described by the potential V (r) = V0θ (R − r) in the

strongly interacting regime V0 
 t . We will see that the results
are insensitive to the particular form adopted for V (r) as long
it corresponds to a strong short-range potential.

III. THE DC CONDUCTIVITY OF GRAPHENE
AND ITS BILAYER

As discussed in Sec. I, there is growing evidence that the
limiting scattering mechanism of the electronic mobility in
graphene is due to strong short-range potentials, likely to
have originated from adsorbed hydrocarbons. These adsorbed
atoms and/or molecules act as resonant scatterers, giving rise
to midgap states.20,41–43

This section is most important: it clarifies why the statement
that short-range scatterers in graphene give a dc conductivity
independent of the gate voltage is erroneous. As noted in
Sec. I, this misleading idea has its roots in the FBA, which
fails blatantly in this problem, as we demonstrate in what
follows.

A. Adsorbed atoms in graphene as strong short-range
scattering centers

The resonant scattering mechanism is easy to seize by
considering a simple model. Let us write the tight-binding
Hamiltonian of the π electrons in graphene as (spin index
omitted)

H = −t
∑
n,δi

|A,Rn〉〈Rn + δi ,B| + H.c., (38)

where |A,Rn〉 represents the Wannier state at the unit cell Rn;
an equivalent definition holds for |B,Rn + δi〉, where δi is one
of three nearest-neighbor vectors in the honeycomb lattice, as
depicted in Fig. 1.

We now consider that an impurity is binding covalently
to a carbon atom at site Rn = 0. This situation adds to the
Hamiltonian in Eq. (38) a term of the form

Hrs = (Vad|ad〉〈A,0| + H.c.) + εad|ad〉〈ad|, (39)

where Vad is the hybridization between the adatom (or a carbon
atom of a hydrocarbon molecule) and a given carbon atom
of graphene, εad is the relative (to graphene’s carbon atoms)
on-site energy of the electron in the adatom, and |ad〉 is the ket
representing the state of the electron in the adatom. Taking the
wave function to be of the form

|ψ〉 =
∑

n

[A(Rn)|A,Rn〉 + B(Rn + δ2)|B,Rn + δ2〉]

+Cad|ad〉, (40)

the Schrödinger equation applied to the site Rn = 0 reads

EA(0) − VadCad = −t[B(δ1) + B(δ2) + B(δ3)],
(41)

(E − εad)Cad = VadA(0).

Solving for Cad, we obtain

− t[B(δ1) + B(δ2) + B(δ3)] =
(

E − V 2
ad

E − εad

)
A(0).

(42)

165402-5



AIRES FERREIRA et al. PHYSICAL REVIEW B 83, 165402 (2011)

The resonant effect is included in the last term in Eq. (42),
which represents an effective local potential of strength

Veff = V 2
ad/(E − εad). (43)

Quantum chemical calculations can determine the value of
the parameters εad and Vad.20,41,43 Typical values are Vad ∼
2t ∼ 5 eV and εad ∼ −0.2 eV,20 leading to Veff ∼ 100 eV at
half-filling (E = 0), a rather strong on-site potential. On the
basis of this fact, it is natural to expect that adsorbates (i.e.,
resonant scatterers) and vacancies lead to similar effects on
the electronic structure and transport properties. In monolayer
graphene, vacancies are known to significantly alter the density
of states at energies close to εad. In particular, vacancies induce
a large spectral transference from the Van Hove singularities
to the neighborhood of the Dirac point. As a consequence,
the density of states displays sharp peaks within the midgap
region.26,44 This effect was first demonstrated in Ref. 26;
recently, it has been shown that indeed adsorbates do originate
similar behavior.20,72

Here we report similar results for bilayer graphene. To
calculate the density of states, we employ the KPM (see Ref. 62
for a review). For the sake of simplicity, we have considered
equal concentrations of adsorbates in both bottom and top
layers. (The actual applicability of this choice depends on the
laboratory conditions and specific experimental setup.) In what
follows, we discuss the situation where the adatoms bind only
to carbons with coordination number z = 3 (i.e., those termed
A2 and B1 in Fig. 2).

The effect of resonant impurities in the electronic structure
of monolayer and bilayer graphene for different adsorbates
concentrations, nad, per carbon atom, is shown in Fig. 3.
For illustration purposes, we present the results for a high
defect concentration, nad ∼ 1%, so that the modification of
the graphene electronic structure is visible to the eye in a wide
energy window; later we will see that the estimated values for
defect concentration, for typical experimental conditions, are
actually far below these values (Secs. III C and III D).

In both graphene systems, the adatoms lead to well-defined
peaks close to zero energy, the so-called midgap region. As
mentioned above, such enhancement of the density of states
is accompanied by a decrease in spectral weight near the Van
Hove singularities, a situation reminiscent of vacancy-induced
disorder.26,44 The effective potential [Eq. (43)], despite being
very strong, is bounded, explaining the slight electron-hole
asymmetry near the Dirac point. The resonant peaks are
centered at negative energies because εad < 0. Increasing the
impurity concentration brings more spectral weight toward
the midgap region. In bilayer graphene, though, a curious
phenomenon takes place: when the impurity concentration is
large enough, a gap opens separating midgap states, forming
the impurity band, from high-energy states (see Fig. 3, bottom).
Similar findings were reported in recent ab initio calculations
considering asymmetric doping of graphene.75

Figure 4 shows how the electronic structure changes when
the restriction on the allowable carbon-impurity bonds is
relaxed. When adsorbates bind to carbons in any sublattice
in the bilayer, the density of states is almost indistinguishable
from that of monolayer graphene (with the same impurity
concentration). The latter is accurate for a large energy window
around the Dirac point (|ε| � 0.5t); for higher electronic

FIG. 3. (Color online) Effect of adatoms (resonant scatterers)
on the density of states (DOS) of monolayer graphene (top) and
bilayer graphene (bottom). Calculation of the DOS was carried out in
honeycomb lattices with N = 1000 × 1000 carbon sites for different
concentrations of adsorbed atoms (periodic boundary conditions
and 10 realizations of disorder were taken). The tight-binding
parameters read Vad = 2t , εad = −0.0625t , and t⊥ = 0.2t . The DOS
discloses a dislocation of spectral weight toward the midgap region,
a phenomenon first reported for vacancies in monolayer graphene in
Ref. 26.

energies, the density of states becomes insensitive to the type of
impurity-carbon bonds present in the bilayer samples. Roughly
speaking, forming chemical bonds to every type of carbon
decouples the layers, and hence dc-transport properties will be
similar to those of a single layer of graphene (Sec. III G).

In light of the present results and previous reports
for vacancies26,44 and resonant impurities in monolayer
graphene,20,72 we are led to conclude that the formation of an
impurity band in the midgap region is universal in graphene
systems with typical adsorbed species. In Sec. III G, it will be
shown that such an impurity band has a strong impact on the
transport properties of undoped graphene.

Away from neutrality, the calculation of transport properties
for the effective local potential model can be performed
using the T -matrix approach.41,45,46 Its derivation for resonant
scatterers is elementary. It is well known that the T matrix for
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FIG. 4. (Color online) Density of states (DOS) for bilayer systems
with 5% resonant scatterers (RS) in the two scenarios described in the
text, namely, (1) adsorbates binding only to carbons A2 and B1 and
(2) adsorbates forming bonds with carbons in any sublattice. The first
situation opens a gap between the impurity band and high-energy
states. The DOS of monolayer graphene is shown for comparison;
tight-binding parameters are given in the caption to Fig. 3.

a local potential of intensity v0 reads25,47

T (E) = v0[1 − v0ḠR(E)]−1 (44)

and

ḠR(E) = ED−2 ln(E2/D2) − iπ |E|/D2, (45)

with D � 3t . Then, using Eq. (43), the T matrix due to an
adatom must be of the form

T (E) = Veff

1 − VeffḠR(E)
= V 2

ad

E − εad − V 2
adḠR(E)

. (46)

Since we are considering that Vad 
 (εad,|E|), we can approx-
imate the T matrix, Eq. (46), by

T (E) ≈ − 1

ḠR(E)
, (47)

which is nothing but the T matrix for vacancies.25

The transport relaxation time τ (kF ) (at the Fermi surface)
can be calculated using Fermi’s golden rule,

h̄/τ (kF ) = πnc
i |T (εF )|2ρ(εF ), (48)

where nc
i is the concentration of impurities per unit cell, and

kF and εF are the Fermi momentum and energy, respectively.
From the knowledge of τ (kF ), the conductivity of graphene
follows from Boltzmann’s transport equation (see the follow-
ing section).48

B. The Boltzmann approach to dc conductivity using
partial-wave expansion

The above analysis made transparent that the effect of
resonant scatterers is equivalent to that of a strong on-site
potential (as long as the T -matrix formalism is applicable). We
can then use the formalism of Sec. II to compute the exact phase
shifts in the presence of such a strong potential, from which
τ (kF ) can be obtained. This type of calculations is equivalent,

and alternative, to calculations based on the T -matrix approach
in the lattice, with the appropriate choice of the effective size
of the impurity.

A relation between τ (kF ) and σ (θ ) is provided by48

1/τ (kF ) = ni(vkF
· er )σT, (49)

where ni is the concentration of impurities per unit area, vkF

is the velocity of the electrons at the Fermi surface, er is
the radial versor in cylindric coordinates, and σT is the total
transport cross section:48

σT =
∫ 2π

0
dθ (1 − cos θ )σ (θ ) (50)

= 2

k

∞∑
m=−∞

sin2(δm − δm+1) ≡ 2

k
�(k). (51)

The conductivity of a given material follows from Boltzmann’s
transport equation. The electric current has the general form

j = gsgve
2

(2π )2

∫
dkτ (k)

∂nF (k)

∂εk

(vk · E)vk, (52)

where nF is the Fermi distribution function, εk is the dispersion
of the electron, vk is the velocity of the particle with momentum
k, E is the external electric field, and gs and gv are the spin
and valley degeneracies, respectively. The electron velocity at
the Fermi surface reads

vkF
= vF er , (53)

whereas in the bilayer it has the form

vkF
= 2v2

F

t⊥
h̄kF er , (54)

which depends on the position of the Fermi energy; the quantity
M−1 = 2v2

F /t⊥ plays the role of the electron’s band mass.
The dc conductivity σdc can be obtained from Ohm’s law,
jx = σdcEx . Combining Eqs. (51), (52), (53), and (54), the dc
conductivity for both monolayer and bilayer graphene has one
and the same form, namely,

σdc = 4e2

h

k2
F

4ni�(kF )
, (55)

where the zero-temperature limit has been taken. The impor-
tance of Eq. (55) cannot be overemphasized, since it shows that
the final dependence of the conductivity on kF , and therefore
on the electronic density, is controlled by the behavior of
�(kF ), which depends only on the phase shifts δm; these,
in turn, depend on the nature of the scattering potential.
Therefore, the exact calculation of the phase shifts emerges
as the central theoretical problem regarding the description of
the variation of σdc with the gate voltage for monolayer and
bilayer graphene.

C. Graphene

For monolayer and bilayer graphene, the electronic doping
is controlled by a backgate voltage Vg . The value of the Fermi
momentum depends on the density of electrons and, therefore,
also on Vg . If the dielectric between graphene (or its bilayer)
and the backgate is made of silicon oxide and has a width of
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about 300 nm, then we have

k2
F = παVg, (56)

with α � 7.2 × 1010 V−1 cm−2; numerically we have kF =
4.7 × 10−3 ×√Vg Å−1.

As discussed in Sec. III A, an adsorbed atom or molecule
(of specific types) can be described as an effective strong
short-range potential. As a consequence, we model the effect
of an adsorbed (resonant) chemical species at the surface of
graphene by a potential of the form

V (r) = V0θ (R − r), (57)

where R has to be of the order of ∼1 Å and V0 
 t . As
a limiting behavior, we consider that V0 is made arbitrarily
large. In the Appendix we discuss the case where the potential
is represented by a Dirac δ function. The latter problem can
be solved nonperturbatively, and an effective length scale Reff

emerges in the problem due to an energy cutoff associated with
the bandwidth. This effective length scale (Reff) is identified
with the range R of the potential given above. Both problems
lead to the same results for the conductivity of graphene (see
later).

In the limit V0 → ∞, the potential defines an impenetra-
ble barrier to the electronic probability flux. For electrons
described either by the Schrödinger equation or by the
Hamiltonian in Eq. (29), the condition of zero flux for r < R

is achieved by imposing that �(r = R) = 0 [�(r) represents
either a scalar or a spinor]. For electrons described by the
massless Dirac equation, the latter implies that the wave
function has to vanish everywhere and, therefore, cannot be
used. In contrast, from Eq. (8) it is clear that the radial flux at
r = R can be made 0 if one of the components of the spinor
is 0 at r = R. 49 In conclusion, the correct boundary condition
enforcing zero flux at r = R for electrons in monolayer
graphene is given by

�i(r = R) = 0, (58)

where �i , with i = 1,2, is one of the components of the
spinor. Given the presence of two Dirac cones in graphene, it is
immaterial which component we choose to obey the condition
of Eq. (58), as long as we consider the contributions to the two
Dirac cones in the Brillouin zone of the honeycomb lattice.

To satisfy the boundary condition in Eq. (58), we write the
wave function describing the electrons being scattered by the
barrier as

�m(r,θ ) = Am
1

[
Jm(kr)

eiθJm+1(kr)

]
+ Am

2

[
Ym(kr)

eiθYm+1(kr)

]
.

(59)
Thus, the boundary condition in Eq. (58) implies that

Am
2

Am
1

= −Jm(kR)

Ym(kR)
. (60)

Since for large r , the wave function in Eq. (59) must have
the general form shown in Eq. (11), it follows that the ratio
Am

2 /Am
1 has to be interpreted as

Am
2

Am
1

= − tan δm, (61)

FIG. 5. (Color online) Experimental data on graphene’s conduc-
tivity. Left: Raw data on a measurement of the resistivity, ρmeasured,
of an exfoliated graphene sheet. Right: Fit of the conductivity,
σsub = 1/ρmeasured, using Eq. (63). The value of R was taken to be
of the order of a0 and the fit provided an areal density of impurities of
ni ≈ 2.5 × 1011 cm−2 (or a concentration nad ≈ 5 × 10−5 per carbon
atom). In both panels, the horizontal dashed (red) line stands for twice
the quantum of conductance, that is, 2e2/h. (Data from S. V. Morozov
et al.,50 courtesy of A. K. Geim.)

which defines the phase shift δm. [A comment about the latter
result is in order: In graphene, radially symmetric potentials
originate phase shifts obeying δm = δ−m−1. This can be seen
by noting that replacing m by −m − 1 in Eq. (10) produces
another eigenstate of the Dirac Hamiltonian. Equations (60)
and (61) show that impenetrable barriers force a different
symmetry: δm = δ−m.] For backgate voltage values in the
range Vg � 100 V, and considering R ∼ 1 Å, we have Rk < 1
(known as the low-energy scattering regime). In this regime,
the scattering is dominated by the s-wave phase shift; that is,
the dominant contribution to �(k) comes from

tan δ0 = J0(kR)

Y0(kR)
≈ π

2
ln−1(kR), (62)

where Eqs. (20) and (21) have been used. It follows from
Eqs. (51) and (62) that the conductivity of graphene obtained
from Eq. (55) has the final form25,31,42,51

σdc = 4e2

h

k2
F

2π2ni

ln2(kF R). (63)

Given that the value of R is constrained to be of the order of 1 Å,
ni is the only fitting parameter. Equation (63) was used to fit the
conductivity data50 of an exfoliated graphene sheet, as shown
in Fig. 5. Because we took the limit V0 → ∞, the computed
conductivity does not break electron-hole symmetry. The
electron-hole asymmetry shown by the experimental data in
Fig. 5 can be attributed to the presence of charge scatterers
and/or to the role of the contacts.52 If we increase the value of
R somewhat, the concentration of impurities needed to fit the
data decreases. In Fig. 5 we have chosen to fit the conductivity
for a positive gate voltage; it is manifest that Eq. (63) fits the
data accurately [dashed (black) curve]. If we had decided to fit
the data for negative values of Vg , the obtained concentration
of impurities, ni , would have been slightly different. The
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concentration of scatterers is rather small (see caption to
Fig. 5) and agrees with the concentration of atomic scale
defects estimated via Raman measurements.23 This testifies
to the strong effect of a few resonant scatterers dilluted in the
surface of graphene (similar to atomic vacancies), as discussed
in Sec. III A.

The result given by Eq. (63) for the conductivity of
monolayer graphene can also be obtained from a model where
vacancies act as scattering centers.25 In view of the arguments
given in Sec. III A, this result comes as no surprise, since the
effective local potential created by adsorbed hydrocarbons is
much larger than the hopping integral t . Numerical simulations
of the dc conductivity based on Kubo’s formula in the presence
of local potentials found a sublinear behavior for a graphene
monolayer,53 in qualitative agreement with Eq. (63).

Let us now extend the previous analysis to the case of a
graphene bilayer.

D. Graphene bilayer

Assuming that the dominant source of scattering in
graphene is due to strong short-range potentials, then the
same must be true for bilayer graphene. As a consequence,
a consistent description of electronic scattering in both
monolayer and bilayer graphene must use the same scattering
potential to explain the measured conductivity in both systems.
In the spirit of this work, this means that the scattering potential
in Eq. (57) must also be used to compute the conductivity of
graphene bilayer.

As in the case of Eq. (59), we seek a wave function in the
form of a superposition of Bessel functions of different kinds,
which in the present case assumes the form

�m(r,θ ) = Am
1 [Jm(kr) − e2iθ Jm+2(kr)] + Am

2 [Ym(kr)

−e2iθYm+2(kr)] + Am
3 [Km(kr) − e2iθKm+2(kr)].

(64)

The introduction of the modified Bessel function Km(kr)
in Eq. (80) is necessary to satisfy the boundary condition
�(r = R) = 0. We recall that Hamiltonian in Eq. (29) supports
evanescent waves at the boundary r = R, as discussed in
Sec. II B. Furthermore, for large r , Km(kr) decays exponen-
tially, as we can see from Eq. (19). Therefore, at large distances,
the behavior of the wave function in Eq. (80) depends only on
the form of Jm(kr) and Ym(kr), as given by Eqs. (12) and (13).
As a consequence, the phase shift δm is determined by the ratio
Am

2 /Am
1 ; that is, we must have

Am
2

Am
1

= − tan δm, (65)

as in the case of electrons in monolayer graphene [see Eq. (61)].
Imposing the boundary condition �(r = R) = 0 on the wave
function (80), we obtain

0 = Am
1 Jm(kR) + Am

2 Ym(kR) + Am
3 Km(kR),

(66)
0 = Am

1 Jm+2(kR) + Am
2 Ym+2(kR) + Am

3 Km+2(kR),

from which follows

Am
2

Am
1

= Jm(kR)Km+2(kR) − Jm+2(kR)Km(kR)

Km(kR)Ym+2(kR) − Km+2(kR)Ym(kR)
. (67)

FIG. 6. (Color online) Dependence of the phase shifts δ0(−2) (solid
line) and δ1(−3) (dashed line) on Vg , for bilayer graphene with R = a0.
The differences between the exact expressions in Eq. (65) and the
asymptotic values in Eqs. (68) and (69) are not visible to the eye.
Other phase shifts are approximately 0 within the same range of Vg .

Combining Eqs. (65) and (67), the equation for the phase
shift δm follows at once. Contrary to the case of monolayer
graphene, the cross section is no longer dominated by δ0 alone.
The asymptotic expansions for δ0 and δ1 are (kF R < 1)

tan δ0 = − π

2(kF R)2
[ln(kF R/2) + γE − 1/2]−1 (68)

and

tan δ1 = π

4
[ln(kF R/2) + γE − 1/4]−1, (69)

where γE = 0.577 . . . is Euler’s constant. In addition, we have
two more nonzero phase shifts:

δ−2 = δ0 and δ−3 = δ1. (70)

These expressions are exact and reflect a symmetry of
the eigenstates of Eq. (29) when radially symmetric scalar
potentials are considered, namely, δm = δ−m−2.

The dependence of δ0 and δ1 on Vg is given in Fig. 6. From
Eqs. (68)–(70), it follows that �(kF ) � 4. The dc conductivity
of bilayer graphene is, therefore, given by

σdc = 4e2

h

k2
F

16ni

. (71)

Curiously, the symmetry of the scattering amplitudes combine
to make �(kF ) independent of kF (with an accuracy better than
1% in the relevant range of kF and R), making the conductivity
proportional to the gate voltage. This result, together with the
constant density of states (valid when |E| 	 t⊥), is at the
heart of the exact linear dependence of the conductivity on
the gate-voltage. We have used Eq. (71) to fit the conductivity
data of an exfoliated bilayer graphene sample, as shown in
Fig. 7. The fit provides a concentration of impurities of the
order of ni ≈ 4 × 1010 cm−2 (i.e., a concentration of adatoms
per carbon atom of about nad ≈ 1 × 10−5). Since in bilayer
graphene only two of the four surfaces are exposed to the
environment, the ni value found above, being slightly smaller
than that found for monolayer graphene, can be interpreted as
a manifestation of this fact.
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FIG. 7. (Color online) Fit of the conductivity data of bilayer
graphene [solid (red) curve] using Eqs. (71) and (74). The fit
has only a single parameter, the concentration of impurities. The
obtained value is ni ≈ 4 × 1010 cm−2 (concentration nad ≈ 1 × 10−5

per carbon atom) for Eq. (71) and ni ≈ 1 × 1011 cm−2 (concentration
nad ≈ 0.25 × 10−5 per carbon atom) for the T -matrix approach, using
a model of pure vacancies, Eq. (74). Left: Data taken at a temperature
of 20 K. Right: Conductivity of the same sample at the higher
temperature of 100 K. The position of the Dirac point, VD , was
shifted to 0 in this figure. (Data from S. V. Morison et al.,50 courtesy
of A. K. Geim.)

Within the T -matrix approach, the dc conductivity of
bilayer graphene has been computed in the past.54,55 The
impurity concentrations used in those works were far too
large to reveal the linear behavior in Vg given by Eq. (71).
We have already shown that the effect of resonant scatterers
can be captured by a model of pure vacancies, using both the
T -matrix and the partial-wave approaches. We now revisit the
T -matrix calculation in bilayer graphene54–56 and show that,
as in the case of the monolayer, a model of pure vacancies in
the bilayer also captures the physics of resonant scatterers.

E. T -matrix approach for bilayer graphene

In Refs. 54 and 55, the calculation of the dc conductivity
took into account the full band structure of the graphene
bilayer. That calculation could distinguish the four carbon
atoms in the unit cell. In this section, we assume that vacancies
are located at the two carbons that are not coupled by t⊥.

In the notation in Refs. 54 and 55, the zero-temperature dc
conductivity obtained from Kubo’s formula is given by

σdc = 8e2

πh

∫ �2

0
d(k2)

{
Im
[
gD

AA(EF ,k)
]
Im
[
gD

BB(EF + δ,k)
]

+ Im
[
gND

AB (EF ,k)
]
Im
[
gND

AB (EF + δ,k)
]}

(72)

in the limit δ → 0; see Ref. 55 for the definitions of the
Green’s functions g(E,k). The k2 integral can be performed
exactly, as explained in Appendix C in Ref. 55. The resulting
complicated formula can be approximated by going through
the following steps: (i) neglect the real part of the self-
energies, (ii) expand the result in powers of the imaginary
part of the self-energies �a(ε) ≡ −Im[�a(ε)], and (iii) assume

that the energies involved fulfill |μ|,t⊥ ± |μ| 
 �A(ε),�B(ε).
The leading term in this expansion yields the approximate
formula

σdc ≈ 2e2

h

EF (EF + t⊥)

t⊥�B(EF ) + EF [�A(EF ) + �B(EF )]
. (73)

This expression is a good approximation for low impurity
concentrations and away from the neutrality point, where the
condition in step iii breaks down. This result may be further
simplified using the relation between the Fermi energy and
the density (assuming n,EF > 0) coming from the dispersion
relation EF =

√
(t⊥/2)2 + π (h̄vF )2n − t⊥/2, resulting in

σdc = 2e2

h

π (h̄vF )2n

t⊥�B(EF ) + EF [�A(EF ) + �B(EF )]
, (74)

where n is the electronic density. To the extent that the denom-
inator is independent of EF , the conductivity is linear in the
density of carriers, n, in agreement with the description based
on the phase shifts. For low impurity densities, as is the case
in exfoliated samples, the difference between the conductivity
obtained from the coherent potential approximation and the
T matrix is very small except in a tiny region near the
neutrality point. Using Eqs. (71) and (74), the data in Fig. 7
can be reasonably fit considering a density of vacancies of
ni � 1011 cm−2.

F. Exact amplitudes versus first Born approximation

The use of the FBA within the semiclassical Boltzmann
approach is a common practice in condensed matter. In the
present context, the FBA has been employed to investigate the
interplay between short-range and long-range scattering.57,58

Its use, however, requires the weak scattering condition to be
verified. We have seen in Sec. III A that adsorbed atoms in
graphene give rise to strong local potentials V0 
 t , rendering
inappropriate the use of the FBA for a description of scattering
due to realistic short-range potentials.

The form of the graphene conductivity [see Eq. (63)] is
not peculiar when hard-wall boundary conditions are present;
potentials characterized by δ functions in real space yield
equivalent results if exact scattering amplitudes are consid-
ered instead of the FBA (see Appendix). Moreover, beyond
Boltzmann’s kinetic theory, tight-binding calculations for
graphene sheets with ∼0.02 μm2 show quantitative agreement
with Eq. (63) while, at the same time, displaying qualitative
disagreement with the FBA.59

To demonstrate that δ potentials also mimic the effect of
strong range potentials, we calculate the exact scattering cross
sections using the Lippmann-Schwinger equation, an approach
well suited to δ potentials. (To the best of our knowledge, the
case of bilayer graphene has not been considered before.) The
calculations are shown in the Appendix and important limiting
cases are summarized in Table I.

For monolayer graphene the conductivity due to a δ

potential with strength V0 reads

σdc = 4e2

h

2

ni

[
(kF /2π ) ln (kF R) − h̄vF

V0

]2

, (75)

where R is a length scale introduced to regularize the Green’s
function. The FBA is recovered from Eq. (75) by considering
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TABLE I. The conductivity due to a δ potential: the (FBA) and
the nonperturbative result in the relevant regime V0 
 all scales.
For comparison, the hard-disk result is listed. Although for the
bilayer both the FBA and the exact calculation give a conductivity
proportional to k2

F , we should note that in the former case the
conductivity is proportional to the strength of the potential, and
therefore the FBA cannot be trusted in the regime of strong potentials,
and the agreement of the two approaches is fortuitous.

dc-conductivity Monolayer Bilayer

δ

FBA Const. ∼k2
F

Nonperturbative; large V0 ∼[kF ln (kF R)]2 ∼k2
F

Hard-disk radius R ∼[kF ln (kF R)]2 ∼k2
F

V0 smaller than relevant scales, yielding a conductivity that
does not depend on the carrier density/gate voltage. In
contrast, the strong scattering limit V0 
 |E| gives the same
dependence found for the hard-disk model [Eq. (63)] upon the
identification of R with the potential range.

The situation is quite different in bilayer graphene, being
described by a low-energy theory of massive electrons: both
weak and strong scattering regimes yield a conductivity
proportional to k2

F in the entire carrier density range; the exact
result reads

σdc = 4e2

h

1

16ni

[
1 +

(
8v2

Fh̄2

V0t⊥

)2
]

k2
F . (76)

Although for the bilayer both the FBA and the exact calculation
result in the conductivity being proportional to k2

F , we should
note that in the former case the conductivity is proportional to
the strength of the potential, and therefore the FBA cannot be
trusted in the regime of strong potentials, and the agreement
on the kF dependence of the two approaches is fortuitous. (We
remark that the limitations of the FBA for a description of
electronic transport are not exclusive to short-range scatterers
and can also be found in Coulomb scatterers.29)

The results of the present and previous sections confirm
the intuitive idea that δ potentials and hard-wall (hard-disk)
boundary conditions create the same dependence of σdc on the
Fermi momentum. Remarkably, letting V0 → ∞ in Eqs. (75)
and (76) gives precisely Eqs. (63) and (71), respectively, and
hence the two models are equivalent with regard to strong
short-range potentials.

G. Quantum corrections near the neutrality point

The Boltzmann approach beyond the FBA provides a good
description of the effect of strong short-range scatterers on
the transport properties of graphene at finite carrier densities
(and for not too high concentrations of resonant impurities).59

However, near the neutrality point quantum interference
effects become important and a fully quantum calculation
is needed to assess dc transport. (For recent reviews on the
importance of quantum effects in the transport properties of
graphene see Refs. 5 and 60.) In what follows, we present
large-lattice, tight-binding numerical calculations in the low-
density regime and finite (high) impurity concentration limit

nad ∼ 1%, where quantum corrections due to multiscattering
events cannot be ignored.

1. Monolayer graphene

We start by extending the monolayer tight-binding Hamil-
tonian [Eqs. (38) and (39)] to include a finite number Nad of
adsorbed atoms of the same species, binding to carbons placed
at (random) positions {si} (i = 1, . . . ,Nad),

Ĥtb = −t
∑
n,δi

|Rn,A〉〈Rn + δi ,B| + H.c.

+
Nad∑
i=1

[Vad|si ,ad〉〈si ,Ci | + H.c.

+ εad|si ,ad〉〈si ,ad|] , (77)

where Ci = A(B) for adatoms binding to carbon atoms in the
A(B) sublattice. The Kubo formula for the zero-temperature
dc-conductivity tensor reads61

σab(E) = 2πh̄e2

A
Tr[v̂aδ(E − Ĥtb)v̂bδ(E − Ĥtb)], (78)

where v̂a(b) is the a(b)th component of the velocity operator
(defined through the Heisenberg equation of motion for the
position coordinate) and A stands for area of graphene.

We evaluate the longitudinal component of the conduc-
tivity σxx employing a KPM: details of the calculation
are given elsewhere.62 The KPM amounts to approximate
functions defined in bounded intervals by a truncated sum
over polynomials with optimized weights.63 To illustrate the
change in the transport properties near the neutrality point,
we simulate mesoscopic-size square sheets of graphene with
N = 106 carbon sites. An adequate polynomial expansion of
Eq. (78) allows us to perform the simulations with modest
computational resources.

We found that the expansion of Eq. (78) in Chebyshev
polynomials of the first kind converges for concentrations of
resonant impurities, nad = Nad/N , above a critical value n∗

ad
of about 1% (for N = 106). We interpret this result as an
indication that for nad < n∗

ad, electronic carriers are in the
ballistic regime. (Recall that only in diffusive or localized
regimes can a thermodynamic conductivity be defined.) The
values nad � n∗

ad correspond to concentrations of short-range
scatterers several orders of magnitude larger than what is found
in typical laboratory environments (about 10−3%; see previous
sections and Ref. 23) but can, in principle, be reached via
hydrogenation of graphene on SiO2.24 The critical value n∗

ad
likely indicates the onset of diffusive behavior, l � L, where
l is the mean free path and L denotes the lattice linear size.
Thus, in principle it can be lowered by increasing L.

Figure 8 shows results for conductivity as function of the
carrier density; the latter was obtained by integration of the
density of states ρ(E) (shown in Fig. 3), according to

nc(EF ) = (gs/D)
∫ EF

0
ρ(E) dE, (79)

where D = N + Nad is the total dimension of the problem.
The most peculiar feature in Fig. 8 is the plateau of finite
conductivity, due to the formation of a low-energy impurity
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FIG. 8. (Color online) Conductivity as function of the normalized
carrier density nc/nad for a monolayer honeycomb lattice with N =
1000 × 1000 for different concentrations of adsorbed atoms (periodic
boundary conditions and ten realizations of disorder were taken). The
tight-binding parameters read Vad = 2t and εad = −0.0625t .

band (Fig. 3, top), a particular case of disorder-enhanced
conductivity.65,66,76

The dc conductivity at the neutrality point differs signifi-
cantly from calculations based on Boltzmann kinetic theory.
(1) The conductivity saturates at a low carrier density to a finite
value σmin > 0 around e2/h (the precise value depends on nad

and sample size), in accordance with theoretical predictions.64

The width of the saturation is roughly proportional to the
density of adatoms in the probed range of impurity concen-
tration nad � 5% (a similar behavior was first reported using
a self-consistent approximation to the Green’s function of the
electrons in the presence of a strong disordered potential25 and
recently reported in Ref. 20). (2) The conductivity (for a fixed
carrier density or energy) is not proportional to 1/nad. [In fact,
a careful inspection of the KPM conductivity data discloses
that the latter observation extends to higher carrier densities:
(resonant) adsorbate-limited transport in small samples of
graphene displays a rich behavior until full diffusive transport
is reached.] Both fact 1 and fact 2 above clearly indicate that
we are operating outside the applicability of the Boltzmann
approach.

Our results, in general, agree well with those reported
in Ref. 20 for larger lattices (where N of the order of 108

was used). Notwithstanding, we point out some differences
concerning the plateau of conductivity minimum: we observe
neither peaks within the conductivity plateau (including for
nad = 5%) nor a plateau width of 2 × nad, as claimed in that
work. This could be due to the different methods and system
sizes used (although in simulations with a larger lattice, we
found no evidence of both effects).

A comment about intervalley scattering in our simulations
is in order; Anderson localization induced by intervalley
scattering will become experimentally relevant and prevent
conductivity saturation only for either very strong disorder
(i.e., high defect densities) or exceedingly large samples at very
low temperatures. In contrast, our results, and those in Ref. 20
for resonant scatterers, show no evidence of localization even

for relatively high amounts of resonant disorder. This suggests
that the localization length due to resonant scatterers is far
larger than that obtained for an on-site Anderson model,
hence allowing for conductivity-induced disorder, σ0 > 0, in
typical-size graphene samples.

2. Bilayer graphene

The tight-binding Hamiltonian for bilayer graphene with
resonant impurities reads

Ĥ
(BLG)
tb = Ĥ

(L=1,2)
tb + t⊥

∑
n,δi

(|Rn,A1〉〈Rn,B2| + H.c.)

+
Nad∑
i=1

(L=1,2)

[
Vad

∣∣sL
i ,ad

〉〈
sL
i ,CL

∣∣+ H.c.

+ εad

∣∣sL
i ,ad

〉〈
sL
i ,ad

∣∣], (80)

where Ĥ
(L=1,2)
tb is the Hamiltonian of two uncoupled layers

(L = 1,2) [see Eq. (77)], the term with t⊥ describes electronic
interlayer hopping, and the third term accounts for adsorbates
binding to carbons in random positions {sL

i } in both layers.
We choose C1(C2) = A2(B1) to guarantee that adsorbates
bind only to carbons with coordination number z = 3. [The
transport properties when adatoms bind to carbons in both
sublattices are similar to those of monolayer graphene; see
Sec. III A and Fig. 9 (bottom).]

The conductivity of bilayer graphene follows from evalu-
ating the Kubo formula [Eq. (78)] with Ĥtb → Ĥ

(BLG)
tb . The

KPM results (summarized in Fig. 9) resemble those obtained
previously for monolayer graphene (Fig. 8), but with important
differences. (1) The formation of the impurity band leads
to a conductivity minimum about twice the value found for
monolayer graphene [σmin ≈ e2/h (per layer)]. [This fact has
been predicted before by coherent potential approximation
calculations of disorder in multilayer graphene.54,55 See
Eqs. (11) and (53) in Refs. 54, and 55, respectively.] (2) For
a high impurity concentration, nad = 5%, the conducitvity is
strongly suppressed before actually forming the plateau; this
curious effect is rooted in the opening of a gap in bilayer
graphene spectrum, due to the adsorbed species, uncoupling
the midgap region from higher energy states (see Fig. 3,
bottom, and Fig. 4). In this case, we can then speak of a
“conduction gap.”

The bottom panel in Fig. 9 compares the conductivity of
monolayer and bilayer graphene for nad = 5%: away from the
plateau, as carriers have energies similar to or higher than
the interlayer coupling t⊥, we expect these systems to have
comparable conductivities (per graphene layer). Our results
indeed confirm the latter point, although we found that for
a very high carrier density, |nc| � 20%, the conductivity of
both systems cannot be compared reliably within our KPM
approach: increasing the carrier density up to such values
originates carrier energies close to the Von Hove singularities,
and strong (spurious) numerical oscillations in the KPM
expansion cannot be avoided. In addition, these oscillations
behave differently in both systems (in particular, because
bilayer graphene has four such singularities), making any
comparison difficult. This is the reason why we have presented
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FIG. 9. (Color online) Top: Conductivity as a function of the
normalized carrier density nc/nad for a bilayer honeycomb lattice with
N = 2 × 1000 × 1000 for different concentrations of adsorbed atoms
(periodic boundary conditions and 10 realizations of disorder were
taken). The tight-binding parameters read Vad = 2t , εad = −0.0625t ,
and t⊥ = 0.2t . Bottom: Comparison of the conductivity (per layer) of
monolayer and bilayer graphene (with nad = 5% in both cases). Two
bilayer curves are shown, corresponding to different arrangements of
resonant scatterers (RS) as discussed in Sec. (III A): (1) adsorbates
binding only to carbons A2 and B1 and (2) adsorbates forming
bonds with carbons in any sublattice. The former situation leads
to a supression of the plateau near the edges.

the conductivity for low carrier densities, which also coincides
with the most relevant experimental regime.

We finish this section by noting that vacancy-induced
disorder leads to effects similar to those reported here, a fact
satisfactorily explained by the model of strong short-range
scatterers presented in Sec. III A. For vacancies, though, the
strong conductivity electron-hole asymmetry (caused by the
offset resonant peaks) will not be present.

IV. SCATTERING IN A BIASED BILAYER GRAPHENE

When V �= 0, electrons in a graphene bilayer are described
by Eq. (28). In this case, the energy spectrum develops a
Mexican hat form, as represented in Fig. 10, and the spectrum

FIG. 10. (Color online) Energy spectrum of a biased graphene
bilayer. Several quantities defined in the text are depicted, and EF

stands for the Fermi energy. Information on the two regimes EF
>< |V |

is included. Filled circles represent degenerate states with energy
E = E(k+) = E(k−), a fact that will have to be taken into account
when establishing a scattering theory.

opens up a gap. When the energy of the electrons is lower than
|V |, the Fermi surface becomes a ring around the Dirac point,
with an inner, k−, and an outer, k+, Fermi radius in momentum
space.67,68

Therefore, for E < |V |, we have two degenerate states with
different momentum values. As we show below, the description
of scattering in these two regimes, E >

< |V |, is necessarily
different.

The regular eigenstates of Hamiltonian in Eq. (28) in polar
coordinates are given by

�m(r,θ ) = 1√
A

[
akJm(kr)

∓bkJm+2(kr)e2iθ

]
eimθ , (81)

to which corresponds the eigenvalues

E(k) = ±
√

V 2(1 − εk/t⊥)2 + ε2
k , (82)

where εk = v2
Fh̄2k2/t⊥ is the energy of electrons in bilayer

graphene for V = 0, and the coefficients ak and bk read

ak =
√

1

2
[1 + V (1 − εk/t⊥)/E]1/2, (83)

bk =
√

1

2
[1 − V (1 − εk/t⊥)/E]1/2. (84)

Additionally, the relation a2
kb

2
k = ε2

k /(4E2) holds.
The density probability flux J� is given by Eq. (31), plus an

additional term JV
� , reading

JV
� = 2V

v2
Fh̄

t2
⊥

Im�†Ĵ V
� �, (85)

where the operator Ĵ V
� is given by

Ĵ V
� =

[−∂� 0

0 ∂�

]
. (86)

Throughout, we consider that electronic carriers have
positive energy E > 0 (the other case follows immediately).
Let us establish here some useful relations for later use. The
energy gap �g is determined by

�g = 2E(kmin) = 2|V |t⊥(V 2 + t2
⊥)−1/2, (87)

where kmin is defined in Eq. (89). Given a state with energy E,
the two momentum values are obtained from the inversion of
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the energy spectrum, Eq. (82), and are given by the positive
roots of the equation

εk

t⊥
= �2

g

4t2
⊥

[1 ± f (E)] , (88)

with f (E) =
√

1 − (1 + t2
⊥/V 2)(1 − E2/V 2). From Eq. (88)

we see that for E < |V | the two roots are real, corresponding
to two propagating states, whereas for E > |V |, only one
root is real, corresponding to a single propagating state; this
is consistent with the dispersion depicted in Fig. 10. In the
latter regime, the imaginary root is essential to fulfill the
scattering boundary conditions, as in the case discussed in
Sec. II B. For energy E = |V |, we are at the boundary between
the two regimes introduced above: E >

< |V |. In this case,
the scattering descriptions below and above E = |V | must
provide the same answer. For E = |V | we have k− = 0 and
k+ = �g/(

√
2vFh̄) = √

2kmin; for E < |V | we have a simple
relation between k− and k+, reading

k− =
√

2k2
min − k2+ and kmin = �g

2vFh̄
. (89)

The radial velocity of the electrons at k− and k+ is given by

vr (k±) = 2v2
Fh̄

t⊥

V 2f (E)

t⊥E
(±k±) . (90)

Clearly, the state with momentum k− has a negative velocity;
the scattering formalism has to take this aspect into account.

Because the regimes E > |V | and E < |V | are distinct,
in the sense that the latter case contains two degenerate
propagating states, we develop the scattering theory separately
for both cases.

A. The E > |V | regime

For E > |V |, the two momenta are k+ = k and k− =
i
√

k2
+ − 2k2

min = iκ . The latter value originates an evanescent
wave at the boundary of the potential. As in the case in Sec. II B,
it is simple to show that a wave function of the form

�(r) � 1√
A

(
akx

bkx

)
eik+x + 1√

A

(
ak

bke
2iθ

)
f (θ )

eik+r

√
r

(91)
represents an incoming plane wave of momentum ki =
(k+,0) ≡ (k,0) and a scattered cylindrical wave of momentum
kf = k+(cos θ, sin θ ). Note that relative to the case of the
unbiased bilayer case, Eq. (97) differs in the presence of
the amplitudes ak and bk . The scattered radial flux has the
usual form Jr = vr (k)|f (θ )|2/r , from which the differential
cross section follows as σ (θ ) = |f (θ )|2. As in Sec. III D, we
seek a wave function in the form of a superposition of Bessel
functions of different kinds, which in the present case can be
written as

�m(r,θ ) = Am
1 [akJm(kr) − bke

2iθ Jm+2(kr)]

+Am
2 [akYm(kr) − bke

2iθYm+2(kr)]

+Am
3 [aκKm(κr) − biκe

2iθKm+2(κr)]. (92)

The ratio A2
m/Am

1 reads

Am
2

Am
1

= akbiκJm(kR)Km+2(κR) − bkaiκJm+2(kR)Km(κR)

bkaiκKm(κR)Ym+2(kR) − akbiκKm+2(κR)Ym(kR)
.

(93)
Combining Eqs. (65) and (93), the equation for the phase
shift δm follows at once. Indeed, the expression for the dc
conductivity of electrons with Fermi momentum k+ is similar
to Eq. (55), reading

σdc = 4e2

h

k2
+

4ni�(k+)
. (94)

In the regime k+ 
 √
2kmin, we have κ ≈ k+ = k, ak ≈ aiκ ,

and bk ≈ biκ , and therefore the phase shifts given by Eq. (67)
and (93) are essentially identical; that is, we have

δ0 → π

2
(k+ 


√
2kmin). (95)

As a consequence of Eq. (95), the conductivity is essentially
linear in Vg at a high electronic density.

When the gate voltage is reduced, bringing the Fermi energy
close to V , we have κ → 0, but k+ �

√
2kmin is finite. In this

case, we have

Am
2

Am
1

→ −Jm+2(kR)

Ym+2(kR)
, (96)

and considering that kR � 1, the s-wave phase shift tends to

δ0 → −π

8
(kminR)4 for k+ →

√
2kmin. (97)

The bias potential acts differently on electron and hole carriers
[see Eq. (28)], with the effect that the symmetry relation
between phase shifts changes to δm(E,V ) = δ−m−2(−E,V ).
Also, the phase shifts for negative energy carriers (holes) must
equal the phase shifts for positive energy carriers (electrons)
if the sign of V is reversed.

The dependence of the phase shifts on the gate voltage (that
is, on both k and V ) is now more involved. Figure 11 shows the
nonzero phase shifts for electrons for the particular case of a
weak interlayer potential V . Similarly to the unbiased bilayer
(V = 0) there are four (nonzero) phase shifts, however, as
stressed above, the presence of the interlayer potential lifts the
degeneracy observed in Fig. 6; in particular, for |V | > 0 the
phase shifts with m = −1 and m = −3 differ greatly (except
for energies very close to V ). On the contrary, the phase shifts
δ0 and δ−2 differ significantly only close to the vicinity of
E = V , where the system approaches the “Mexican hat.”

B. The E < |V | regime

As discussed at the beginning of Sec. IV, in the case E <

|V | there are two degenerate propagating states, characterized
by k− and k+. Thus, the matrix element of the potential
between these two states is finite, and an incoming particle
with a well-defined momentum (k− or k+) will be scattered
in a superposition of both momenta. This fact requires the
modification of the scattering formalism introduced above.

In what follows, we develop the scattering formalism
assuming that the incoming electron has momentum k+; the
case where the incoming electron has momentum k− follows
immediately, and only the final results are given.
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FIG. 11. (Color online) Dependence of nonzero phase shifts δm on
E, for the biased bilayer graphene with R = a0 for low electrostatic
potential V = 4 × 10−3t⊥. The energy range here excludes the
interval [4,5[(10−3t⊥), for which the energy begins to fall within
the “Mexican hat” (Fig. 10). In the vicinity of E = |V |, we have
k+ → √

2kmin and the s-wave phase shift δ0 for electrons (or δ−2 for
holes) drops quickly to the value indicated in Eq. (97).

We start by assuming that the total wave function in the
presence of the potential, at large distances from it, has the
asymptotic form

�(r) � 1√
A

[akx
bkx

]eik+x + 1√
A

[ak+bk+e2iθ ]f++(θ )
eik+r

√
r

+ 1√
A

[ak−bk−e2iθ ]f+−(θ )
e−ik−r

√
r

, (98)

where f++(θ ) represents the scattering amplitude considering
that the outgoing electron has the same momentum, k+, as the
incoming one, and f+−(θ ) represents the scattering amplitude
considering that the outgoing electron changed its momentum
to k−. Let us stress again that E(k−) = E(k+). Since the
velocity of the state with momentum k− is negative, the sign
of the argument in the exponential of associated cylindrical
wave function has to be negative, since these states represent
particles propagating backward in time (a positive sign gives
a radial incoming flux). The fluxes associated with the first,
second, and third terms on the right-hand side of Eq. (98) read

J+
x = vx(k+), (99)

J+
r = vr (k+)|f++(θ )|2r−1, (100)

and
J−

r = −vr (k−)|f+−(θ )|2r−1, (101)

respectively, from which follows the existence of two scatter-
ing cross sections, defined as

σ++(θ ) = |f++(θ )|2 and σ+−(θ ) = −vr (k−)

vr (k+)
|f+−(θ )|2.

(102)
Both cross sections must enter in the relaxation time needed
to compute the dc conductivity.

We now assume that a partial wave in the angular momen-
tum basis of the total wave function has, at large distances
from the potential, the form

�m(r,θ ) � [ak+bk+e2iθ ]
e−i(k+r−λm−mθ)

√
2πAk+r

+ ηm,++e2iδm,++ [ak+bk+e2iθ ]
ei(k+r−λm+mθ)

√
2πAk+r

+ ηm,+−[ak−bk−e2iθ ]
e−i(k−r−λm−mθ)

√
2πAk−r

, (103)

where δm,++ is the phase shift of the partial wave m, 0 <

ηm,++ < 1 is a real number accounting for the transfer of
probability flux to the outgoing momentum channel k−, and
0 < |ηm,+−|2 < 1. Conservation of the radial flux for each
partial wave m imposes

η2
m,++ + |ηm,+−|2 = 1. (104)

Summing over m, according to Eq. (11), we obtain �(r) in
the form given by Eq. (98), with the scattering amplitudes
defined as

f++ = 1√
2πik+

∑
m

(ηm,++e2iδm,++ − 1)eimθ , (105)

f+− = 1√
2πik−

∑
m

ηm,+−eimθ . (106)

As in Sec. II B, we write the exact partial wave of the full
scattering problem, for r > R, as

�m(r,θ ) = Am
1

[
ak+H (2)

m (k+r) − bk+H
(2)
m+2(k+r)e2iθ

]
+Am

2

[
ak+H (1)

m (k+r) − bk+H
(1)
m+2(k+r)e2iθ

]
+Am

3

[
ak−H (2)

m (k−r) − bk−H
(2)
m+2(k−r)e2iθ

]
.

(107)

Expanding Eq. (107) for large r and comparing it with Eq.
(103), we see that

Am
2

Am
1

= ηm,++e2iδm,++ ,
Am

3

Am
1

= ηm,+−. (108)

Calculation of the differential cross section requires the
determination of ηm,++, ηm,+−, and δm,++. In the limit V0 →
∞, the boundary condition is �m(r = R) = 0, leading to

Am
2

Am
1

= ηm,++e2iδm,++ = ak+bk−H (2)
m (k+R)H (2)

m+2(k−R) − bk+ak−H
(2)
m+2(k+R)H (2)

m (k−R)

bk+ak−H
(2)
m (k−R)H (1)

m+2(k+R) − ak+bk−H
(2)
m+2(k−R)H (1)

m (k+R)
, (109)

Am
3

Am
1

= ηm,+− = −ak+bk+
H

(1)
m+2(k+R)H (2)

m (k+R) − H (1)
m (k+R)H (2)

m+2(k+R)

bk+ak−H
(2)
m (k−R)H (1)

m+2(k+R) − ak+bk−H
(2)
m+2(k−R)H (1)

m (k+R)
. (110)
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FIG. 12. (Color online) Capacitor geometry for dual-gate
transistor.69 The figure is self-explanatory. Values of the several
quantities are δ = 3.4 Å, b = 300 nm, and t = 20 nm. Vt and Vb

stand for the top and bottom gate potentials, respectively.

Although not immediately obvious, the parameters ηm,++
and ηm,+−, as given by Eqs. (109) and (110), obey the flux
conservation relation in Eq. (104). When the Fermi energy EF

approaches the energy E = |V | from below, we have k− → 0.
In this limit, we find

η0,++e2iδ0,++ → −H
(2)
2 (k+R)

H
(1)
2 (k+R)

, (111)

ηm,+− → 0, (112)

as it should. Since k+R � 1, it follows from Eq. (111) that

δ0,++ → − π

32
(k+R)4 , (113)

which, for δ0,++, gives the same result found in Eq. (97).
The above results hold for an incoming electron with

momentum k+; when the electron has momentum k− we have
to consider the cross sections

σ−−(θ ) = |f−−(θ )|2 and σ−+(θ ) = −vr (k+)

vr (k−)
|f−+(θ )|2,

(114)
whose amplitudes are given by the right-hand side of Eqs. (105)
and (106), respectively, upon interchanging k+ with k−.

C. dc conductivity of a biased bilayer graphene

As discussed in Sec. III D, calculation of the dc conductivity
requires the computation of the exact phase shifts. We start by
studying the behavior of the s-wave phase shift as a function
of the Fermi momentum for a biased graphene bilayer.

In the biased bilayer, the ability of independently tuning the
electronic density and the value of the gap �g requires the use
of two gates, a bottom and a top gate, as shown in Fig. 12. The
electric field in the top-gate dielectric is (e > 0)

Et = ent

εtε0
, (115)

and that in the bottom-gate dielectric is

Eb = enb

εbε0
, (116)

where nt and nb are the electronic density in the top
and bottom gate, respectively, and εt and εb are the relative
permittivity of the top- and bottom-gate dielectric, respec-
tively. Charge neutrality requires that the total amount of
charge accumulated in the bilayer is −en = −e(nt + nb). The
electrostatic potential difference between the top gate and the

bilayer is Vt = tEt, whereas between the bottom gate and the
bilayer it is Vb = bEb. It follows from Eqs. (115) and (116)
that

Vb = b
enb

εbε0
= ben

εbε0
− bεt

tεb
Vt. (117)

Inverting Eq. (117), the total electronic density in the bilayer
is given by

n = Vb
εbε0

be
+ ε0εt

et
Vt. (118)

When n is positive, the bilayer is doped with electrons; when
n is negative the system is doped with holes. Finally, the
electrostatic potential difference between the two graphene
layers in the bilayer is given by

�V = (Eb − Et)δ = neδ

εbε0
−
(

εt

εb
+ 1

)
δ

t
Vt, (119)

where δ = 3.4 Å is the interlayer distance (we are ignoring
screening effects,36,37,39 which are not important for small Vt).
The variable V introduced in Eq. (26) relates to �V as 2V =
�V . Taking typical values for dual-gate bilayer transistors,69

we have εSiO2 = 3.9, εHfO2 = 25, εNFC = 2.4, b = 300 nm, and
t = 20 nm (both dielectrics, HfO2 and NFC, have about the
same width). The relative permittivity of εt is

εt = 2εHfO2εNFC

εHfO2 + εNFC
. (120)

In working devices,69 we have |Vb| � 70 V and |Vt| � 4 V.
The calculation of dc conductivity follows, as before, from

Boltzmann’s transport theory. In the regime E > |V |, σdc is
still given by Eq. (55), but with the phase shifts determined
from Eq. (93). When E < |V |, there are two scattering
channels and this implies that the resulting formula for σdc

differs somewhat from that given in Eq. (55), reading

σdc = 4e2

h

1

2

[
k+

niσ (k+)
+ k−

niσ (k−)

]
, (121)

where σ (k±) is defined as

σ (k±) =
∫ 2π

0
[σ±,+(θ ) + σ±,−(θ )](1 − cos θ ). (122)

Inserting the expressions for the differential cross sections
[Eqs. (102) and (114)] and performing the integral yields

σ (k±) = 1

k±
Re
∑
m

[
|ηm,±±e2iδm,±± − 1|2

− (ηm,±±e2iδm,±± − 1)(ηm+1,±±e−2iδm+1,±± − 1)

− k±
k∓

vr (k∓)

vr (k±)
(|ηm,±∓|2 − ηm,±∓η∗

m+1,±∓)

]
. (123)

The formulas for σ−− and σ−+ are identical and thus
are not presented. The dc conductivity follows from the
determination of the Fermi momentum, given the carrier
density in the bilayer, which in turn depends on both gates
as given by Eq. (118). The relation k2

F = πn (valid for various
two-dimensional systems) must be adapted to take into account
the degeneracy of the spectrum (Fig. 10) and reads

k+
F =

√
π

2
n + k2

min, (124)
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FIG. 13. (Color online) Dependence of the biased bilayer dc
conductivity on the back-gate potential Vb (values of Vt are indicated).
The solid line shows the dc conductivity for the unbiased case V = 0,
for comparison.

and the other propagating state k−
F relates to k+

F according to
Eq. (89).

Figure 13 shows the dc conductivity as function of the back
gate for fixed values of Vt. As the back gate Vb is varied, the
gap �g and the Fermi energy change; for a small window,
width ∼1 V, around Vb � −17 V the system moves into the
regime E < |V | and the expression in Eq. (124) must be used
to determine the carrier energy. In this energy regime, kF

is bounded according to
√

2kmin � kF � kmin, and hence the
value kF = 0 is forbidden; as a consequence, and at odds with
the unbiased bilayer, the minimum conductivity is not exactly
0, having a value of σmin � 3e2/h for Vt = 1 V.

V. CONCLUSION

In the early studies of transport in graphene, charged
impurities located in the substrate seemed to explain the
measured conductivity. Recent experiments, however, suggest
another possibility.23,24 While there is a consensus that electron
and hole puddles, induced by charged impurities, dominate
the landscape near the neutrality point, away from this point,
adsorbed hydrocarbons, at the surface of graphene, may be the
limiting factor in dc transport.

In the present paper, we have established an intuitive
theoretical picture of scattering due to resonant scattering
originated by adatoms. Although resonant scatterers have
been studied before (first in Refs. 41 and 42 and, more
recently, in Ref. 20), we have established the first coherent
picture of resonant-scattering limited dc transport valid for
both monolayer and bilayer graphene.

Section III A reviews the electronic structure of monolayer
graphene and presents, for the first time, the density of states
of bilayer graphene with resonant contaminants. Despite the
distinct electronic structure of pristine monolayer and bilayer
graphene, this section shows that resonant adatoms lead to the
same effect in both systems: the emergence of resonant peaks

in the vicinity of the Dirac point, a situation reminiscent of
vacancy induced disorder.26,44 Using a simple tight-binding
toy model, resonant adatoms are seen to be reliably mimicked
by a particular class of short-range scatterers, that is, those
having an intrinsic energy much higher than typical graphene
energies. This fact motivates the subsequent study of dc
transport using strong short-range potentials in a continuum
formulation (Secs. III C and III D).

Section III shows that the typical dependence of con-
ductivity with the electronic density in the monolayer (sub-
linear dependence) and bilayer (linear dependence) systems
can be explained assuming resonant scatterers alone. The
comparison with experimental data bears out the agreement
with dc-transport experiments performed in exfoliated few-
layer graphene films, hence providing further strength to
the resonant-scatterer hypothesis. To justify the robustness
of a continuum-model approach based on strong short-range
scatterers as prototypes of real resonant adsorbates, we have
calculated the semiclassical conductivity due to two types of
strong local potentials (hard-disk and δ potentials), finding
perfect agreement between the two methods (partial-wave
analysis and Lippmann-Schwinger equation, respectively)
and tested the validity of the long-wavelength limit (on the
basis of the continuum formulation) against numerical lattice
calculation using a T -matrix approach (Sec. III E).

Section III F demonstrates the incorrectness of the widely
used FBA within the semiclassical (Boltzmann) approach, in
the context of short-range disorder, and the need to compute
the electronic scattering amplitudes as accurately as possible,
hence, clarifying an issue overlooked in the graphene literature.
Section III G presents the Kubo dc conductivity evaluated
numerically with a KPM; from this calcution, the breakdown
of the semiclassical picture close to neutrality, in the regime of
a high concentraton of impurities, is clearly observed. Here, the
case of bilayer graphene is addressed for the first time, with
the results showing that a “conduction gap” takes place for
selective adsorbate bonding, due to a strong supression of the
conducitivy in the surroundings of the resonant impurity band.

Finally, due to its importance for technological applications,
scattering in the bilayer graphene with a gap in the sectrum
is studied in Sec. IV, by extending the well-established
partial-wave method (Sec. II) to describe scattering in the
biased bilayer graphene. Such a scattering theory has never
been developed before (to the best of our knowledge) and can
be easily adapted to tackle other physical scenarios requiring
the need for computing scattering amplitudes when the energy
dispersion relation is degenerate.

We are confident that our results help to elucidate the elec-
tronic transport properties of this remarkable two-dimensional
material.

Note added: After submission of this work for publication,
we become aware of a paper77 which also discusses the effect
of resonant scatterers on the dc conductivity of single-layer and
bilayer graphene, with results that are consistent with ours.
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APPENDIX

In this appendix, starting from the low-energy continuum
theory, we derive the nonperturbative semiclassical dc con-
ductivity of monolayer and bilayer graphene with short-range
scatterers. This calculation requires the solution of the two-
dimensional scattering problem, where a massless fermion
with incident momentum p = h̄k is brought to interaction
with an impurity. We model the potential of the impurity by
a δ function, Vd = V0δ(r). Following standard methods, the
formal solution of (H0 + Vd − E)�k = 0 can be written as,

�k = φk + Ĝ0V̂d�k, (A1)

where H0 is the low-energy Hamiltonian of graphene; φk
is the solution of the free problem (H0 − E)φk = 0 and
describes the state of the incident particles. Here, H0 refers
to the Hamiltonian obtained from expansion of the graphene
dispersion around the K point (the calculation involving the
remaining valley is equivalent). The resolvent is given by
Ĝ0 = 1/(E + i0+ − H0), and the energy includes a small
positive imaginary part i0+

φk(r) = u
(λ)
k eik·r, (A2)

with

u
(λ)
k = 1√

2A

(
1

seiλθk

)
. (A3)

The Berry phase is ϕB ≡ πλ and equals π for monolayer
graphene, whereas for bilayer graphene its value is 2π

[compare with Eq. (3)]. The second component of uk
includes the sign s = ± of the electronic carrier charge
and θk ≡ arctan(ky/kx). Switching Eq. (A1) to the position
representation, we obtain the Lippmann-Schwinger equation,

�k(r) = φk(r) +
∫

d2r′G0(r − r′)V (r′)�k(r′). (A4)

In the latter equation, G0(r − r′) = 〈r|(E + i0+ − H0)−1|r′〉
is the Green function of the problem.

Monolayer graphene has H0 = h̄vF σ · p̂ and the Fourier
transform of the Green function obeys

(E + i0+ − σ · p)G0(p) = 1, (A5)

where G0(p) = ∫ dr exp (−ip · r) G0(r) (note that to simplify
notation, we have set h̄ = 1 and vF = 1). Inverting the 2 × 2
matrix on the left-hand side of Eq. (A5), we arrive at

G0(p) = g1(p) (E + σ · p) , (A6)

g1(p) = 1/[E2 − p2 + i0+]. (A7)

The calculations for E > 0 and E < 0 are similar, and to be
specific we focus on the former situation. Indeed, the inclusion
of a small imaginary part from positive values i0+ amounts

to consider outgoing waves (see below). We write E = k and
evaluate the Green function in the real-space representation,

G0(r − r′) = 1

4π2
(E − iσ · ∇)

∫
d2peip·(r−r′)g1(p) (A8)

= − i

4
(k − iσ · ∇) H

(1)
0 (k|r − r′|), (A9)

where H (1)
n

(
k|r − r′|) is the Hankel function of the first kind of

order n, whose asymptotic form is that of outgoing cylindrical
waves [see Eq. (A24)]. The Hankel function obeys ∂xH

(1)
0 (x) +

H
(1)
1 (x) = 0; hence,

σ · ∇H
(1)
0 (k|r − r′|) = −kH

(1)
1 (k|r − r′|) σθ , (A10)

where we have introduced the matrix,

σθ ≡
(

0 e−iθ

eiθ 0

)
, (A11)

and the angle θ ≡ θ (r,r′) is defined by (r − r′)/|r − r′| =
(cos θ, sin θ )T . Combining Eqs. (A10) and (A9), we have, at
once,

G0(r − r′) = − ik

4

[
H

(1)
0 (k|r − r′|) + iσθH

(1)
1 (k|r − r′|)].

(A12)
The derivation of the Green function of bilayer graphene

follows identical steps. We write the free Hamiltonian as H0 =
−(v2

Fh̄2/t⊥)σ · D, with D = (∂2
x − ∂2

y ,2∂x∂y)T . As before, we
set h̄ and vF temporarily equal to the unit; the Fourier transform
of bilayer Green function reads

G0(p) = g2(p)[E + γσ · D̃(p)], (A13)

where γ ≡ 1/t⊥, E = γ k2, D̃(p) = (p2
x − p2

y,2pxpy

)T
, and

g2(p) = 1

2E

[
1

E − γp2 + i0+ + 1

E + γp2 + i0+

]
. (A14)

Since H0 is quadratic in momentum operators, g2 resembles
a nonrelativistic propagator. Again, we focus on the case of
electrons (γ > 0),

G0(r − r′) = γ

4π2

(
k2 − σ · D

) ∫
d2peip·(r−r′)g2(p). (A15)

The contribution to the integrand of Eq. (A15) with poles in
the real axis can be simplified using

1

k2 − p2 + i0+ = iπ

2k
[δ(p + k) + δ(p − k)] + P.V.

1

k2 − p2
.

(A16)
Performing the integral in Eq. (A15) yields

G0(r − r′) = 1

8γ k2
(k2 − σ · D)

[
− iH

(1)
0 (k|r − r′|)

+ 2

π
K0(k|r − r′|)

]
. (A17)

The first term in brackets describes scattered waves in
two dimensions, whereas the modified Bessel function K0

describes evanescent waves (recall that k → ik is a solution of
H0 with the same energy). For short-range potentials the main
contribution to the scattering amplitude comes from evaluating
Eq. (A4) within the region where |r − r′| 
 1 and hence K0

will not contribute (see later).
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In what follows, we compute the nonperturbative scattering
amplitude for monolayer and bilayer graphene, which will
be needed for the calculation of the dc conductivity in these
systems.

1. Nonperturbative amplitude for monolayer graphene

Inserting the expression of the potential Vd = V0δ(r) in the
Lippmann-Schwinger equation [Eq. (A4)] and performing the
spatial integration results in

�k(r) = φk(r) + V0G0(r)�k(0), (A18)

which is ill defined because putting r = 0 yields a divergence,
namely, �k(0) = φk(0) + (∞). This stems from the singularity
of G0(r) [Eq. (A12)] at the origin r = 0, a common situation
in field theories. The only way of curing this divergence is
by means of renormalization.70 Let us explicitly describe this
procedure. The explicit expression for G0(0) [see Eq. (A8)]
reads

G0(0) =
∫

d2p

(2π )2 g1(|p|) [E + σ · p] . (A19)

Evaluating G0(r) at the origin and setting E = k yields

G0(0) ∼
∫

dp
p

k2 − p2 + i0+ , (A20)

which is logarithmic divergent. To obtain a physical mean-
ingful result, a momentum cutoff, pmax, in the upper limit of
the integral must be considered. (This procedure is justified
because graphene, being a solid, has an intrinsic energy cutoff
of the order of the bandwidth.) We thus have

G0(0) = k

2π

∫ pmax

0
dp

p

k2 − p2 + i0+ . (A21)

This integral yields

G0(0) ∼= k

2π
ln (kR) , (A22)

where we have assumed k 	 pmax and R ≡ 1/pmax is a length
scale of the order of a0. Setting r = 0 in Eq. (A18), using the
latter result and solving for �k(0) gives

�k(0) =
[

1 − V0

2π
k ln (kR)

]−1

φk(0)

(A23)

=
[

1 − V0

2π
k ln (kR)

]−1

u
(1)
k .

To identify the scattered amplitude, we need the asymptotic
form of the Lippmann-Schwinger equation [Eq. (A4)]. For
short-range potentials the main contribution in Eq. (A4) comes
from the region where |r − r′| 
 1. Inserting the exact form of
the propagator in space representation [Eq. (A12)] and using

H
(1)
0 (k|r − r′|) →

√
2

iπk|r − r′|e
ik|r−r′|, (A24)

H
(1)
1 (k|r − r′|) → −i

√
2

iπk|r − r′|e
ik|r−r′ | (A25)

leads to

�k(r) = φk(r) −
√

ik

8πr
eikr

×
∫

d2r′e−ikout·r′
(1 + σθ ) Vd (r′)�k(r′), (A26)

where we have approximated |r − r′| � r − r · r′/r and iden-
tified the wave vector at the point of observation, kout ≡ kr/r .
The exact form of the spinor at the origin [Eq. (A23)]
allows us to find the explicit expression of �k(r); letting
σ̃θ ≡ σθ (r′ = 0),

�k(r) = φk(r) − V0

1 − V0
2π

k ln (kR)

×
√

ik

8πr
eikr (1 + σ̃θ ) u

(1)
k . (A27)

The action of (1 + σ̃θ ) on the spinor u
(1)
k yields the

Berry phase term for scattering in graphene; without loss of
generality, we take the incident momentum along the x axis,
k = (k,0), and thus

(1 + σ̃θ ) u
(1)
k = �B(θ )

1√
2A

(
1
eiθ

)

≡ �B(θ )u(1)
kout

, (A28)

where

�B(θ ) = (1 + e−iθ ), (A29)

and the scattering angle reads θ = � (k,kout) [recall Eq. (A11)
and comments therein].

The wave function of the scattered particles is then

�k(r) = φk(r) + f (θ )
eikr

√
r
u

(1)
kout

, (A30)

with the scattering amplitude reading,

f (θ ) = − 1

h̄vF

√
ik

8π

V0

1 − V0
2πh̄vF

k ln (kR)
�B(θ ), (A31)

where we have restored all the constants. (Note that here V0

has units of [energy]×[length]2; the relation between V0 and
the effective impurity potential Veff in a lattice theory can be
shown to be V0 ∼ AcVeff , where Ac is the area of graphene’s
unit cell.) This result is to be compared with the result from the
FBA, which amounts to approximate �k(r′) by the unperturbed
wave function φk(r′) in Eq. (A26):

fBorn(θ ) = − 1

h̄vF

√
ik

8π
V0�B(θ ). (A32)

The latter is only accurate in the limit of a very small V0, which
is of limited interest. The nonperturbative result discloses a
singular momentum, ksing,

ksing ln(ksingR) = 2πh̄vF

V0
, (A33)

which corresponds to a bound state of our problem. More
importantly, the nonperturbative amplitude for V0 → ∞ [re-
call that resonant scatterers in graphene give origin to strong
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short-range potentials; see Sec. (III A)] reads

fV →∞(θ ) =
√

iπ

2

�B(θ )√
k ln (kR)

, (A34)

which is the main result of the present section.

2. Nonperturbative amplitude for bilayer graphene

Calculation of the scattering amplitude for the bilayer
graphene follows as in Sec. A1, albeit with the important
difference that the Green function does not diverge at the
origin and thus no renormalization procedure is needed this
time. This explains why no regularization length appears in
the final result for the conductivity of bilayer graphene. We
now outline the derivation of this result.

The explicit expression for G0(0) [see Eq. (A15)] reads

G0(0) =
∫

d2p

(2π )2 g2(p)[E + γσ · D̃(p)], (A35)

which, setting E = γ k2, can be simplified to

G0(0) = γ k2
∫

d2p
(2π )2

1

(γ k2 + i0+)2 − γ 2p4
. (A36)

The above integral can be solved straightforwardly by contour
integration; the result is

G0(0) = − i

8γ
. (A37)

The amplitude of the wave function at the origin [Eq. (A18)]
therefore reads

�k(0) =
[

1 + i
V0

8γ

]−1

φk(0). (A38)

To identify the scattered amplitude, we have to repeat the
derivation of the asymptotic form of the Lippmann-Schwinger
equation [see Eqs. (A24)–(A40)]. The asymptotic form of the
propagator can be calculated from Eq. (A17),

G0(r − r′) → − 1

4γ

√
i

2kπ |r − r′|

×
(

1 e−2iθ(r,r′)

e2iθ(r,r′) 1

)
eik|r−r′|, (A39)

where θ = � (r,r′). Inserting the latter expression into Eq.
(A4), and approximating |r − r′| � r − r · r′/r , permits us
to identify the wave vector at the point of observation,
kout ≡ kr/r ,

�k(r) = φk(r) − 1

4γ

√
i

2kπr
eikr

∫
d2r′e−ikout·r′

× (1 + σ2θ(r,r′))Vd (r′)�k(r′), (A40)

where the definition of σθ is given in Eq. (A11). As before,
letting σ̃2θ ≡ σθ(r,r′=0) and using Eq. (A38), we get

�k(r) = φk(r)

− 2V0

8γ + iV0

√
i

2kπr
eikr (1 + σ̃2θ ) u

(2)
k . (A41)

The action of the last term on the spinor u
(2)
k yields the bilayer

Berry phase term; taking the incident momentum along the x

axis, k = (k,0), we obtain

(1 + σ̃2θ ) u
(2)
k = �B(2θ )

1√
2A

(
1

e2iθ

)

≡ �B(2θ )u(2)
kout

, (A42)

where �B is defined in Eq. (A29) and θ is the scattering angle,
θ = � (k,kout) [recall Eq. (A11) and comments about it]. The
wave function of the scattered particles is then

�k(r) = φk(r) + f (θ )
eikr

√
r
u

(2)
kout

, (A43)

with the scattering amplitude reading

f (θ ) = −
√

i

2kπ

2V0

8v2
Fh̄2/t⊥ + iV0

�B(2θ ), (A44)

where we have restored all the constants. The FBA is recovered
in the limit V0 	 energy scales,

fBorn(θ ) = − V0

4v2
Fh̄2/t⊥

√
i

2kπ
�B(2θ ). (A45)

In contrast, in the limit of interest V0 → ∞, we obtain

fV →∞(θ ) = −
√

2

iπ

�B(2θ )√
k

. (A46)

3. The dc conductivity of monolayer and bilayer graphene

The dc conductivity follows from the Boltzmann equation
(see Sec. III B). The expression for the semiclassical current
j can be manipulated to yield a more convenient form of the
conductivity for our purposes. We reproduce the main steps;
at T = 0 the Fermi function becomes the Heaviside function,
θ (εkF

− εk), and hence the expression for the current reads

j = gsgve
2

(2π )2

∫
dkτ (k)δ(εkF

− εk)(vk · E)vk. (A47)

Performing the angular integration, and using the relation vr =
h̄−1∂kε, leads to

j = e2

πh̄

kF

|vr (kF )|τ (kF )(vkF
· E)vkF

. (A48)

The longitudinal dc conductivity follows from the latter
expression:

σdc = 2e2

h
τ (kF )|vr (kF )|kF . (A49)

Using the results in Secs. A1 and A2 and the definition of
relaxation time τ (kF ) (Sec. III B), we can readily obtain the
dc conductivity in the regime of V0 
 energy scales. (For a
discussion of the on-site energy V0 magnitude, see Sec. III A.)

The dc conductivity in the limit V0 → ∞ reads

σ
strong
dc =

⎧⎨
⎩

4e2

h

k2
F

2π2ni
ln2(kF R) for monolayer,

4e2

h

k2
F

16ni
for bilayer.

(A50)

As expected, the dependence on kF coincides with that ob-
tained through the partial-wave expansion method employed in
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Sec. III. Remarkably, the expressions match exactly [compare
with Eqs. (63) and (71)]. This entails that scattering off
a hard disk of radius R ∼ a0 and scattering off a strong

δ potential have the same dependence on the momentum
of the incident particles (in both monolayer and bilayer
graphene).
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44E. V. Castro, M. P. López-Sancho, and M. A. H. Vozmediano, Phys.

Rev. Lett. 104, 036802 (2010).
45N. M. R. Peres, L. Yang, and S.-W. Tsai, New J. Phys. 11, 095007

(2009).
46N. M. R. Peres, F. D. Klironomos, S.-W. Tsai, J. R. Santos, J. M.

B. L. dos Santos, and A. H. C. Neto, Europhys. Lett. 80, 67007
(2007).

47C. Bena and S. A. Kivelson, Phys. Rev. B 72, 125432 (2005).
48J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cambridge

University Press, Cambridge, 1979).
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