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Photon energy dependence of the light pressure exerted onto a thin silicon slab
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We review the theory of ponderomotive forces of classical nonionizing electromagnetic (EM) radiation exerted
on dispersive matter. Minkowski’s EM energy and momentum density lack any dispersion term in contrast to
Nelson’s theory, where they are included naturally. By considering force experiments on a dielectric mirror
immersed in weakly dispersive liquids [R. V. Jones and B. Leslie, Proc. R. Soc. London, Ser. A 360, 347 (1978)],
we found that the appearance of the dispersive term should depend on the phase of the mirror reflectivity. It thus
matters if the electric or the magnetic field is dominant at the interface. Accordingly, the force measurements
depend on the boundary condition and do not permit to uniquely determine the EM momentum in the liquids.
Force measurements as a function of the reflectivity phase would permit to experimentally verify the expressions
for the EM energy density in a dispersive medium. In our experiments, we chop light beams of different photon
energies to excite the motion of a very thin and long Si slab near its mechanical resonance under UHV conditions.
This permits to study the force response, where the power reflectivity of the sample varies from 0.7 to smaller
than 10−3. The determination of the velocity of the slab with a Doppler interferometer yields the effective force
exerted by the light beam. The measurements also confirm our theoretical considerations that the observed forces
due to EM radiation cannot be traced to the EM momentum in matter, as the observed forces primarily depend
on the boundary conditions. Minkowski’s stress tensor remains applicable in our case thanks to the embedding of
the Si slab in vacuum. Our quantitative analysis of the experimental data reveals an extra force of thermal origin
most likely associated with the difference of the native oxide thickness on the surfaces of the slab. The estimated
difference in oxide layer thickness amounts to ∼4 nm.
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I. INTRODUCTION

Since the very interesting experiments by Ashkin,1–3 optical
forces have become very important for optical trapping,4–6 op-
tical binding, and crystal formation.7–9 Practical applications
such as optical tweezers have now become very common.10–12

The difficulty to fully understand Ashkin’s observations is
caused by the lack of quantitative data. The reformulation of
Maxwell’s equations in clever ways has marginally clarified
the situation.13–15 Interesting reviews16,17 of electromagnetic
forces and momentum were not able to settle the quanti-
tative questions centered on the theories by Minkowski18

or Abraham.19,20 The approach using Minkowski’s tensor
was again recently challenged by the consideration that the
observed forces must be a direct consequence of the forces that
charges and multipoles experience.21 While this latter view is
certainly correct, it is more difficult to implement without error.
In a series of papers, Grzegorczyk et al.22,23 have demonstrated
the equivalence of both approaches for simple cases and
confirmed old reports.24,25 It is of utmost importance to
experimentally verify the theoretical predictions. The purpose
of this paper is to measure and compare the results of
Grzegorczyk’s slab theory.22 The realization of force measure-
ments on a dielectric slab requires a minimum of theoretical
and experimental corrections imposed by the practical devia-
tions from the idealized model. The light interference in the
slab excludes a simplistic assignment of the momentum of the
wave in the slab material. Nevertheless, momentum conserva-
tion of the system is still maintained. The theoretical arguments
and experiments we discuss below, show conclusively that
the Abraham-Minkowski (AM) controversy is a false one,
because we cannot a priori define electromagnetic energy and
momentum in matter based on Maxwell’s equations alone.

Nelson26–28 theoretically resolved this problem by analyzing
the interaction of electromagnetic (EM) waves with matter in
the long-wavelength limit without any additional assumption
and by formulating the conservation laws using Noether’s
theorem.29 This contrasts previous theoretical work30–35 and
questions the interpretation of experiments.36–60

In Sec. II, we rederive Minkowski’ stress tensor di-
rectly from the phenomenological Maxwell’s equations under
the assumption that the dielectric and magnetic material
properties are time independent in space. We recall that it
appears as an apparent part of a momentum conservation
expression analogous to the apparent energy conservation of
the Poynting vector for the energy flux. We note the absence
of dispersive terms and also briefly discuss the validity of
this conservation expression, if the material parameters vary
in space. Section III describes an experimental arrangement
designed to measure the force exerted on a Si slab in vacuum at
oblique incidence of polarized beams of different wavelengths.
A conceptually similar setup has been reported in Ref. 57. To
gain sensitivity, we use the Si slab as a cantilever operating
near its mechanical resonance. From its displacement velocity,
we determine the optical force. In Sec. IV, we present the
experimental results that we discuss in Sec. V. In Sec. V we
also analyze the force measurement on a multilayer dielectric
mirror immersed in dispersive liquids and discuss some recent
experimental results.

II. MINKOWSKI’S STRESS TENSOR

We recall Maxwell’s equations in a familiar form using the
usual symbols. The material parameters given by the dielectric
constant ε, the magnetic permeability μ, and the electrical
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conductivity σ are taken to be independent of EM fields and
time. They may be dispersive but constant in discrete regions
of space. In the most general case they are tensors. Losses in
ε and μ are taken into account by a specific contribution to σ .
The principle of causality imposes relationships among these
parameters. The loss or gain in an EM problem is described
by the current density j:

rot H = j + ∂D/∂t, (1)

rot E = −∂B/∂t, (2)

div D = ρ, (3)

div B = 0. (4)

As we consider only electrically neutral materials and nonion-
izing radiation, we set the free charge density, ρ = 0.61 The
material equations are as follows:

D = εE, (5)

B = μH, (6)

j = σE. (7)

By scalar multiplication of Eq. (1) with E and Eq. (2) with
H and by subtracting the second product from the first one, we
get, after minor rearrangement, the following scalar identity:

1
2∂(ED + HB)/∂t + jE + div(E × H) = 0. (8)

This identity can be reformulated by defining the electric
and magnetic energy densities, We and Wm, and the Poynting
vector S:

We = 1
2 ED, (9)

Wm = 1
2 HB, (10)

S = E × H. (11)

It is evident that Eqs. (9) and (10) impose symmetry
on the material tensors. Combining Eqs. (8)–(11) and using
W = We + Wm yields the scalar expression for energy
conservation:

∂W/∂t + jE + div S = 0. (12)

We note the absence of any dispersive contribution in
Eqs. (9) and (10). Accordingly, this form of energy conser-
vation is not compatible with Planck’s law of energy transport
in dispersive materials. The addition of constant dispersive
terms to W is compatible with Eq. (12) and compatible with
Planck’s law (see Appendix A).

By proceeding in a similar fashion we arrive at Minkowski’s
tensor. To this end, we cross multiply Eq. (1) with B and
Eq. (2) with D. By paying attention to the sequence of cross
multiplication and by adding the two products, we arrive at the
following vector identity:

∂(D × B)/∂t + j × B + B × rot H + D × rot E = 0. (13)

The dimensionality of the terms in Eq. (13) is suggestive of
a force density. For this reason, the formalistic interpretation
of the term D×B is the momentum density, GM :

GM = D × B. (14)

The index M is to recall that this is Minkowski’s momentum
density. The sum of the third and fourth terms of Eq. (13) can be

expressed using the divergence of Minkowski’s stress tensor,
T. We can rewrite Eq. (13) in the form of a momentum density
conservation law. If we briefly permit ε and μ to depend on
space coordinates but take them as scalars, we get

∂GM/∂t + j × B + div T − 1
2 E2 grad ε − 1

2 H2 grad μ = 0.

(15)

In the following, we consider the material constants to be
piecewise constant, for which we have

∂GM/∂t + j × B + div T = 0. (15a)

Using the unity tensor, 1, we write Minkowski’s stress
tensor as

T = 1W − DE − BH, (16)

where the last two summands represent the dyadic product
of the two respective vectors. Thanks to Eqs. (8) and (9),
dispersion contributions are again absent. Moreover, this
tensor is not unique, because the divergence operation in
Eqs. (15) or (15a) permits a more complex form.26,62 In
particular, adding constant dispersive terms to W leaves them
valid.

Electro- and magnetostrictive effects are not included here.
In the optical regime these effects often do not contribute to
the momentum transfer to the material. This simple approach
does not yield any dispersive contribution to the energy or
momentum density in contrast to Nelson’s theory that also
includes electro- and magnetostrictive and nonlinear effects.

Minkowski’s stress tensor generally lacks symmetry
because in component notation DiEk �= DkEi for i �= k

(i,k = 1,2,3). Abraham insisted that in solids the stress tensor
should be symmetric according to Cauchy. Cauchy’s law was
challenged by Nelson,28 who predicts a general asymmetry that
is, however, only important in crystals exhibiting soft optic
modes in the vicinity of crystal-phase transitions. There is
only limited experimental proof by Nelson63 to also invalidate
Abraham’s basic claim on experimental ground. The AM
controversy, however, spawned the question how to properly
define the momentum of EM fields in matter. We maintain here
that Abraham19,20 correctly manipulated Maxwell’s equations
to arrive at a symmetric stress tensor, but he had to introduce an
antisymmetric tensor.64 Abraham introduced an unnecessary
complication by this procedure. De Groot and Suttorp65

also pointed out that EM momentum in matter cannot be
uniquely derived from Maxwell’s equation alone. Recurring
questions66 such as “Minkowski’s or Abraham’s tensor?” are
not meaningful.

We have to scrutinize the experimental premises as well. In
the optical regime of EM theory, initial conditions generally
are not known, and the observables are mostly limited to time
averages that are long compared to the reciprocal frequency
of nearly monochromatic waves. This situation prevails even
for picosecond optical pulses, provided that the material
dimensions are sufficiently small. If we consider the material
parameters to be piecewise constant, Eq. (15a) reduces to

〈j × B〉 + 〈div T 〉 ≈ 0, (17)

because 〈∂GM/∂t〉 ≈ 0. For a monochromatic wave,
Eq. (17) is strictly zero. It does not explicitly depend on wave
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momentum. Any experiment that can be described by Eq. (17)
cannot give any unique statement on momentum. The order of
magnitude of the force arising from 〈∂GM/∂t〉 is estimated in
Sec. V.

Using the Gaussian theorem, we can transform the volume
integral over 〈div T 〉 into a surface integral:

∫∫

V

∫
〈j × B〉dV +

∫∫
©
S

dA 〈T 〉 ∼= 0. (18)

The surface vector element, dA, has to be taken toward
the outside of the volume. The possibility to replace the
volume integral by a surface integral simplifies the calculation
significantly. Equations (15) or (17) say that the volume
integral inside a homogeneous medium vanishes. This means
that any finite volume within vacuum or within a homogeneous
piece of matter is in a quasistationary equilibrium.

The easiest test of the Minkowki’s stress tensor is possible
in matter with low absorption (|j| � |∂D/∂t |). To observe any
force directly, we need to embed the material in vacuum or
in any material environment that is not rigidly connected to
the surface, and whose material parameters are different. If
we consider two rigidly connected solids of differing material
constants, the interface of the two materials must also be in
equilibrium according to Newton’s third law. The momentum
conservation law is indeed compatible with Newton’s third
law. The gradient terms of Eq. (15) guarantee the validity of
Newton’s third law.

In solids, it is possible to achieve a quasi thermodynamic
equilibrium. Considering Fig. 1, the rigid connection between
Si and its oxide necessitates the equalization of the electro-
chemical potentials of these materials. As a consequence, the
interface contains bound charges and local fields necessary
to maintain the mechanical equilibrium at the interface. The
associated forces are not visible from the outside but are
necessary to maintain Newton’s third law. For this reason,
we think that Eq. (15a) is valid generally for a nondispersive
system in quasithermodynamic equilibrium, where the grad ε

and grad μ terms are only nonzero at the interfaces to satisfy
Newton’s third law.

To support Minkowski’s view, we consider a simple exam-
ple for the case of unidimensional space dependence of ε and
μ. Here, we can approximate ε and μ by piecewise constant
regions, and solve exactly the EM field by a striated medium
approach.67 Therefore, Minkowki’s stress tensor approach
works and the grad ε and grad μ terms occur only implicitly
at the step boundaries. This approach is also applicable at
“infinitely small” steps, if we can neglect nonequilibrium
processes. Below, we briefly illustrate this for our special
case. This argument can be extended to three dimensions.
However, the practical implementation is difficult, because it
is complicated to find the EM field solutions. This approach
should be useful for numerical solutions based on Green’s
function approach.68

In view of the fact that the stress tensor is quadratic in
fields, there is, at least conceptually, the possibility to test it by
a nonlinear effect. Precision measurements of the elasto-optic
effects are possible candidates. Such measurements, however,
would also include electro- and magnetostrictive contributions.
Unfortunately, direct nonlinear polarization phenomena and

(a)

(b)

FIG. 1. Schematic cross section of the Si slab. (a) Definition
of the coordinates, layer thicknesses, and the integration surface.
d = 362 nm (measured), dox1 = 5 nm, dox2 = 1 nm. Oxide layer
thicknesses are estimated. (b) Partial view of the layers to show the
integration surfaces at the Si-oxide and the oxide-vacuum interfaces.
The arrows indicate the inward normal directions of the surfaces to
visualize the equilibrium at the Si-oxide interface and the net force at
the oxide-vacuum interface.

thermal effects tend to be larger than the contribution of the
stress by an EM wave. This will make any direct experimental
test extremely difficult.

III. EXPERIMENTAL CONSIDERATIONS

A. Theoretical model of the experiment

We consider a thin Si slab in vacuum on which a plane
wave is incident at an oblique angle that is polarized either
perpendicular or parallel to the plane of incidence, the
TE and TM case, respectively. We admit that the Si slab
may be lossy and bound by thin natural oxides that have
different thicknesses. Silicon is a strongly dispersive, isotropic
semiconductor with a large refractive index, n > 3.5, and
moderate absorption above its fundamental indirect band gap.
Below the band gap, there is some residual loss that may
depend on a variety of causes.69 Most material parameters
are well known to quite a high precision70,71 except for the
excess loss below the band gap that has to be determined
experimentally. Therefore, Si is an interesting material to study
the force resulting from optical fields of different photon
energies. The field problem can be easily solved with the
matrix approach for striated materials.67

165321-3



F. K. REINHART AND G. BOERO PHYSICAL REVIEW B 83, 165321 (2011)

We are justified to calculate the resulting force on the Si
slab covered with the oxide using Minkowki’s stress tensor,
because we only need to know the vacuum fields outside the
oxide layers where there is no dispersion. The oxide layers
are rigidly attached to the Si slab. Figure 1(a) represents a
schematic situation for the plane of incidence and also defines
the coordinates. The transverse field vectors, E for the TE
and H for the TM cases are in the y direction. Propagation is
along the z and x directions. Accordingly, the nontransverse
fields H and E for the respective TE and TM cases have
field components along the x and z directions. To visualize
the integration considerations for T in detail, we represent
in Fig. 1(b) one side of the slab with the oxide with the
integration contours. From Eq. (18) it immediately follows
that there is no net force at the Si-oxide interfaces, because the
respective surface vectors change sign. With the coordinate
system defined above, we write Minkowki’s time-averaged
stress tensor for the TE case, 〈TTE〉:

〈TTE〉=Re

⎛
⎜⎜⎝

(〈W 〉 − BxH
∗
x ) 0 −BxH

∗
z

0 (〈W 〉 − DyE
∗
y) 0

−BzH
∗
x 0 (〈W 〉 − BzH

∗
z )

⎞
⎟⎟⎠,

(19)

with

〈W〉=Re
{

1
2 DyE∗

y + 1
2 (BxH∗

x+BzH∗
z )

}
. (20)

Since we cannot observe the time-dependent part, it is easier
to calculate with complex quantities. In Eqs. (19) and (20), we
have assumed complex field quantities that no longer comprise
the time dependence. We include the j×B term in T by using
a complex dielectric constant. We take the field components
at their maximum value divided by 21/2 and consider only the
real part of the products to get the stationary part of the tensor
and fields. The resulting force from the planes perpendicular
to the z direction is not normal to it. Unfortunately, we will
not be able to measure the shear part along the x direction,
nor the forces associated with the planes normal to the x and y
directions. The latter two planes will not result in a net force,
because they are embedded in the volume of the slab.

The corresponding tensor, 〈TTM〉, for the TM case is
obtained by interchanging the respective components of H
with E and B with D in Eqs. (19) and (20). For this reason, we
will not write it down.

The expressions for the tensor components are algebraically
quite involved even for the simple case of a lossy Si slab
bounded by thin oxides as shown in Fig. 1. Therefore, we also
refrain from writing them down.

For the TE and TM cases respectively, the observable time-
averaged net force component per unit area, Fz TE,TM, is given
by the difference of the tensor component 〈T33 TE,TM〉 evaluated
at the input and output planes in vacuum:

Fz TE,TM = 〈T33 TE,TM〉 |
in

−〈T33 TE,TM〉 |
out

. (21)

This slab model is slightly more general than the case
treated by Grzegorczyk et al.,22 but the essence is totally in line
with the basic point in their paper. Depending on the round-trip

phase of the light in the slab, the power reflectivity in Si can
vary from nearly zero to above 0.7. It is easy to vary the
phase by using light of different wavelengths. Natural oxides
on silicon are normally only a few nm thick with refractive
indices near 1.5. We verified numerically that the oxide layers
have only a small influence on the reflectivity, transmissivity,
and the calculated force on the slab. But they may have a very
strong impact on the measured force due to thermal effects
caused by the absorption of the light in the slab. We shall
discuss this later on.

By rearranging the terms of Eq. (21), and by introducing
the power reflectivity, rTE,TM, and the power transmissivity in
the z direction, tTE,TM, we can simplify the expression for the
force to

Fz TE,TM = ε0|Ei |2(1 + rTE,TM − tTE,TM) cos2 �, (22)

with the effective incident electric field amplitude |Ei | and the
angle of incidence �. Equation (22) is in perfect agreement
with the simple lossless slab model first enumerated by
Goldhammer in 190124 and Debye in 1909.25 The immersion
of the slab into a homogeneous liquid or gas of refractive index,
ni , yields an increase of Fz TE,TM by a factor of n2

i , if we neglect
the dispersion term in 〈W 〉. The fractional loss in the slab,
aTE, TM, is obtained from energy conservation (1 = rTE, TM +
tTE, TM + aTE, TM). Together with the incident power flux,
Si = ni |E2

i |/Z0, the wave impedance, Z0 = (μ0/ε0)1/2 and
the speed of light, c = (μ0ε0)−1/2, we can express Eq. (22)
also as:

Fz TE,TM = (niSi/c)(2rTE,TM + aTE,TM) cos2 �. (23)

Equation (23) is quite suggestive of the force being due
to a rate of momentum change and momentum annihilation.
It is therefore not surprising that in the experiments by Jones
et al.,43,44 the first factor in Eq. (23) was interpreted16 as a proof
that the EM momentum in the incoming medium characterized
by ni has the Minkowski form. The first factor has nothing to
do with momentum, as it does not depend on the Minkowski
momentum. In Appendix A, we show for the case of Jones
et al.’s experiment that the measured force depends on the
boundary value (that is the mirror phase), if the dispersion term
in 〈W 〉 is properly included. It is noteworthy that the material
parameters of the slab do not explicitly appear in Eqs. (22)
and (23). If we do not consider dispersion, slabs with the
same reflectivity and absorption loss experience the same force
irrespective of their specific material parameters. Furthermore,
the force depends on the polarization of the incident wave.
We hasten to add that we could not arrive at such a simple
expression, when we assume different refractive indices on the
entrance and exit side of the slab. In this case, the observable
force always explicitly depends on the material parameters
of the exit face making a simple momentum assignment
impossible. These remarks invalidate any claim to the light
momentum in the slab or its surroundings drawn from such an
experiment.

B. Experimental configuration

To practically realize an experiment based on the slab
approach, we use the slab as a cantilever and intensity modulate
the light at a frequency close to its mechanical resonance.
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FIG. 2. Schematic of the plane view of the Si slab. The x direction
points to the top of the page, the y direction to the right, and the z
direction into the page. The measured dimensions are �1 = 492.2 μm,
� = 408.3 μm, Dp = 49.4 μm, b = 10.0 μm.

Figure 2 represents a schematic of the cantilever. Typical
resonance frequencies lie between 1400 and 1700 Hz. Similar
experimental arrangements have been used for optomechanical
cooling,72 for applications in atomic force microscopy,73 and
in an attempt to observe the Abraham force.57 The top view
of the cantilever shown by Fig. 2 is platelike near the end of
the slab with a diameter of 50 μm. The width of the slab is
b = 10 μm. The total slab length is ∼500 μm. The measured
dimensions of the cantilever used in these experiments are
given in the caption of Fig. 2. The nominal slab thickness
is d = 340 ± 40 nm. This value is not sufficiently precise
for our purposes. We measure it optically on the basis of
the published refractive index as described in Sec. IV. The
fabrication of the cantilever is described elsewhere.74 Figure 3
shows the schematic arrangement of the experiment. A tunable
Ti:Al2O3 laser beam or a homebuilt tunable semiconductor
laser emission of photon energy near 1 eV is focused into
a single mode fiber that serves as a spatial mode filter.
The Ti:Al2O3 laser beam is square-wave modulated with an
acousto-optical modulator (not shown). The semiconductor

LL

L

D1

D2
POL

DIF

BS

Vacuum P
Si BarLaser

F

M

FIG. 3. Experimental arrangement. F: fiber, L: lens, POL: polar-
izer, BS: beam splitter, D1: input power monitor, M: mirror, DIF:
Doppler interferometer, D2: reflected power monitor, P: ion pump.
The thin straight line indicates the excitation beam and the thick one
the DIF beam.

laser is directly modulated by a square-law current signal.
In both cases the power modulation depth is 100% with the
repetition rate close to the mechanical slab resonance. The
modulated light emerging from the fiber is then collimated with
an achromatic lens of 50-mm focal length and passed through a
Glan-Thomson polarizer. The light intensity is monitored with
the aid of a beam splitter and a Si or InGaAs photodiode. An
achromatic lens of 75-mm focal length focuses the beam onto
the Si slab in the center of the plate. The effective numerical
aperture is ∼0.07. The moderately focused light impinges at
an angle � ≈ 12◦. This angle is sufficiently large to have
a measurable difference (∼3%) of the calculated reflectivity
between the TE and TM cases, but small enough to guarantee
that all of the incident light falls onto the plate. The intensity
of the reflected beam is monitored with a Si or InGaAs
photodiode. Incident beam powers vary typically from 1 to
10 μW. The slab is in a vacuum environment of a pressure
<10−8 Torr. We measure the oscillation velocity of the Si slab
with a commercial Doppler interferometer (DIF).75

C. Optomechanical model

The Si sample of Fig. 2 can be considered as a simple
harmonic oscillator74 with an effective mass me, an effective
spring constant ce, a resonant angular frequency ω0, and an at-
tenuation constant γ . An applied periodic force, Fz exp(iwt),
in the direction normal to the sample plane z results in a
periodic oscillation in the z direction,

z = [(Fz/me) exp(iωt)]/
[
ω2

0 − ω2 + iωγ
]
, (24)

with

ω2
0 = ce/me. (25)

We define the maximal spring elongation by z0 = Fz/ce.
Omitting the time factor, we express z as

z = z0ω
2
0

/[
ω2

0 − ω2 + iωγ
]
. (26)

The factor M ≡ ω2
0/[ω2

0 − ω2 + iωγ ] represents the fre-
quency dependence that we call the passive amplification
factor. The velocity of the oscillation is periodic and given
by

ż = iωz. (27)

Thermal noise fluctuations of the slab permit to directly
determine the resonant frequency, f0 = ω0/2π , and the
attenuation constant γ . At room temperature, we measure
f0 = 1441.62 Hz and γ � 0.36 s−1. This yields a quality
factor Q � 25000. From elementary elastic theory,76 we
calculate ce ≈ 2.27 × 10−4 N/m and me ≈ 2.86 × 10−12 kg
from the measured dimensions and the known material
constants of Si. The calculated value for me yields ce =
2.43 × 10−4 N/m from Eq. (25). The close agreement (∼7%)
between the two values of ce does not require a control
calibration.77 For the evaluation of the measurements, we take
the average of the two values, 〈ce〉 = 2.35 × 10−4 N/m.
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IV. RESULTS

A. Reflectivity

The thickness of the Si slab, d, is a very important parameter
for the determination of the reflectivity and transmissivity that
control the force exerted by the light beam. It also controls the
spring constant ce that is proportional to its third power. To rely
on the nominal thickness of the Si slab of 340 nm is insufficient
for a quantitative comparison between measurement and
theory. Moreover, the photon energies at the reflection minima
and maxima strongly depend on d. To determine the thickness
as precisely as possible, we measure the reflection signal in
the vicinity of the minima. By fitting the reflectivity data for
rTE,TM � 0.01 with a parabola, we establish the corresponding
photon energies and the refractive indices of the Si from
published data. Taking � = 12◦ and assuming no oxide layers,
we get 362.35 and 362.77 nm for the minima above and
below the band gap, respectively. The uncertainty is <0.05 nm
for each set of measurements. These values are sufficiently
close to give us confidence on the high precision of the
refractive index data. However, our Si slab is definitely covered
by thin native oxide layers having a refractive index close
to 1.5. Our reflectivity data are not sufficiently precise to
determine them uniquely. For reasons to be discussed in Sec. V,
we assume native oxide layer thicknesses of 5 and 1 nm
on the slab surfaces. To keep the reflection minima at the
proper photon energy, we have to reduce the Si slab thickness
slightly to d = 362.0 nm. As the reflectivity has sharp minima,
we represent the results logarithmically. Figures 4 and 5 show
the measured and calculated reflectivity for the photon energy
range above and below the band gap of Si, respectively. The
TE cases are shown in Figs. 4(a) and (5a) and TM cases
are shown in Figs. 4(b) and 5(b). The solid lines represent
the theoretical plane-wave reflectivity. In Fig. 4, we show the
slightly improved fit between measurements and calculations
with a Si slab thickness of 361.4 nm and oxide layers as stated
above. In view of this small discrepancy, we take d = 362 nm
throughout the paper. The measured data follow the theoretical
curve quite well except in the vicinity of the minima. The
measured points are increased by a constant factor ∼1.5 for
better comparison. We consider this procedure as acceptable,
because the Si slab has a small number of blemishes that give
rise to strong scattering. In addition, the thick window of the
vacuum chamber also causes aberration and coma that further
reduces the absolute reflectivity signal. The measured minima
are quite low (�10−3), but are considerably higher than the
ones expected theoretically when focusing and absorption are
taken into account. We estimate a discrepancy of at least one
order of magnitude for the case above the band gap and two
or three orders of magnitude for the case below the band gap.
Below the band gap, we observe a residual loss of unknown
origin. We should bear in mind, that the Si slab is nominally
p doped near 3×1015 cm−3. The He-Ne beam of the DIF may
result in additional free carriers, as its estimated power density
is ∼10 W/cm2. We try to determine the residual loss below.
Small local variations of the slab thickness and the number
of blemishes within the focalized beam area are probably
responsible for the strong deviation between measured and
calculated reflectivities near their minima. Our estimate of the
focused beam diameter is �14 μm in the 1.4-eV region and
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FIG. 4. Logarithmic reflectivity at a minimum above the band gap
of Si. The measured points (diamonds and triangles) are adjusted by
a common factor to account for the estimated signal loss. The solid
lines represent the calculated reflectivity. (a) TE polarization. (b) TM
polarization.

�20 μm in the 1-eV region. With a plate diameter of 50 μm,
there ought to be negligible diffraction loss. Considering the
slab thickness and the focal spot size of the beam, we are
also very confident that the simple plane-wave assumption
is justified except for very low (<10−6) reflectivities. The
reliability of the Si refractive index data and the high precision
of the sample thickness give us confidence to correctly predict
the reflectivity, transmissivity, loss, and the optical force
according to Eq. (22).

B. Force measurements

The Doppler interferometer measures directly the effective
velocity of the Si slab near the center of the plate. To ensure
that this is indeed the case, it is necessary to maximize the
force and reflection signals iteratively. As the slab oscillates
in the fundamental mode, the velocity is directly proportional
to its deflection amplitude that is proportional to the third
power of the distance from the slab suspension. We have
achieved a reproducibility of the measurements better than
5%. The thermal resistance of the slab is extremely high,
∼7.65×105 K/W. The laser power of the DIF is ∼0.1 mW,
its wavelength is 633 nm, and its angle of incidence is
zero. We calculate a fractional absorption loss of 0.0514.
This results in an expected temperature rise of the plate of
3.9 K. The slab temperature is thus not homogeneous. The
resonance frequency of the Si slab depends weakly on the
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FIG. 5. Logarithmic reflectivity at a minimum below the band
gap of Si. The measured points (diamonds and triangles) have been
adjusted by a common factor to account for the estimated signal
loss. The solid lines represent the calculated reflectivity. (a) TE
polarization. (b) TM polarization.

temperature. At room temperature, its value is −0.063 Hz/K
(Ref. 78) for a homogenous slab temperature. After careful
signal maximization, we observe a long-term variation of the
resonance frequency <0.03 Hz. This implies a temperature
stability of <0.5 K. With an ambient temperature of 295.6 K,
we have a Si plate temperature of ∼300 K. We use square-wave
optical power modulation at a frequency f = 1437 Hz, which is
4.62 Hz below the resonant frequency of 1441.62 Hz. Typical
optical power levels are 10 μW on and 0 μW off. The small
resonance frequency uncertainty yields a passive amplification
factor variation <1%. The amplification factor of Eq. (26) is
∼156.6 ± 0.5. By integrating Eq. (23) over the spot size of
the focused beam, we obtain within the first parentheses the
total incident power Pi as ni = 1. We define the normalized
force F0 = Pi/c. To easily compare our measurements with
the theory, we present the data in normalized form. We note
that the precision of the data practically is independent on
the precise intensity distribution of the light spot. The only
important fact is that all the light falls onto the plate and
that the power measurement is sufficiently precise. To glean
the order of magnitude of the measured force, we take Pi as
10 μW, which yields F0 = 33.4 fN.

Figure 6 presents the results for the photon energy
region above the band gap, where we have some noticeable
absorption. The TE case is shown in Fig. 6(a) and that
for the TM case in Fig. 6(b). The diamonds and triangles
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FIG. 6. Relative force acting on the Si slab for light above the
band gap. The solid line represents the pure radiation force. The thin
line includes the proposed extra force. (a) TE polarization (squares).
(b) TM polarization (triangles).

represent the measured data, while the solid lines show the
force calculation due to Eq. (22). We notice that both cases
have a dynamic range that is far below that predicted by
the calculations. The values for the TE and TM cases are
quite similar as expected. We do not show the data at the
reflectivity maximum near E = 1.617 eV. The calculated
reduced force maxima occur at E = 1.618 eV and have
the values FTEmax/F0 = 1.4378 and FTMmax/F0 = 1.4037. The
corresponding reflectivity values are rTEmax = 0.7434 and
rTMmax = 0.7253. The respective calculated losses are 0.0199
and 0.0192. Laser instabilities have not permitted to obtain
very precise values for the maximum force, but their respective
values, 1.9 and 1.8, are definitely higher than the calculated
ones. The calculated force minima lie near 1.415 eV and
have the values FTEmin/F0 = 0.019 and FTMmin/F0 = 0.0192.
The calculated force minima are dominated by the loss as
the theoretical reflectivities are �10−4. The observed relative
force minima are 0.58 ± 0.04, more than an order of magnitude
higher than the calculated ones. We suspect that the reason
for the discrepancy must be associated with some additional
effects that we discuss later on. Figure 7 shows the logarithmic
loss for the TE case. We have included an excess loss having
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FIG. 7. Logarithmic loss for the TE polarization. An excess loss
corresponding to 12 cm−1 at 1 eV is included.

the form, fc = 12/E2, where fc is in units of cm−1 and E
is the photon energy in eV. The justification for this value is
given below. On the scale shown, the TM case is indistinct from
the TE case. These calculations reveal that the loss is relatively
high near the minima of reflection, and suppressed in the region
of high reflection, as one would expect from a Fabry-Pérot
resonator. But it is quite obvious that the magnitude of the
loss is quite small. The forces shown in Fig. 6 cannot be due
to light pressure alone. There must be another contribution to
the slab oscillation. As the vacuum is better than 10−8 Torr,
we can exclude any radiometric effect.41 To investigate the
behavior of the excess force, we evaluate the slab oscillations
for photon energies below the band gap. This reduces the loss
by a significant factor. The total loss reduction depends on the
unknown excess loss of the Si slab below the band gap. The
indirect gap absorption is well established and amounts to 280
cm−1 at 1.415 eV.

Figure 8 represents the force measurement for photon
energies below the band gap of Si. The measured results and
the reduced force calculations according to Eq. (22) for the
TE and the TM polarization are given in Figs. 8(a) and 8(b),
respectively. We note that the dynamic range of the measured
and calculated force is considerably larger than that above the
band gap in spite of the much reduced photon energy interval.
The calculated force minima due to the assumed excess
loss are FTEmin/F0 = 0.000 882 and FTMmin/F0 = 0.000 852
at E = 0.975 eV. The corresponding experimental minima are
0.026 ± 0.004. They are lower by a factor of ∼22 compared
to the ones above the band gap. We note that the energy
dependence of the measured force data closely follows the
calculated ones plus a constant. In this energy region, the loss is
dominated by some unknown mechanism and/or by free carrier
scattering. We now assume that the unknown contribution to
the motion of the Si slab is proportional to the absorbed power.
The absorbed power is roughly proportional to the respective
absorption coefficients above and below the band gap. The
photon energies at the minimum force above and below the
band gap are E′′ = 1.415 eV and E′ = 0.975 eV. The indirect
gap absorption at E′′ is αg = 280 cm−1. Assuming the energy
dependence of the excess loss as fc = fc0/E

2, and the ratio
of the extra force, Rm = 0.58/0.026 = 22.3, the following
relation,

Rm = (αg + fc0/E
′′2)/(fc0/E

′2), (28)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

F
T

M
 / 

F
0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

ENERGY (eV)

F
T

E
 / 

F
0

(a)

(b)

FIG. 8. Relative force acting on the Si slab for light below the
band gap. The solid line represents the pure radiation force. The thin
line includes the proposed extra force. (a) TE polarization (squares).
(b) TM polarization (triangles).

yields fc0 = 12 (eV)2/cm. The carrier generation due to the
DIF beam is unlikely to reach very high concentration levels
due to surface recombination and diffusion.79 For this reason,
we have to show by an additional experiment that there is
excess loss in Si below the band gap, and the extra force has a
thermal origin.

We observe the freely decaying slab oscillation after
excitation at the resonance frequency for two cw power
conditions of the excitation beam. From this we can determine
the resonance frequency and the damping decrement very
precisely. The excitation beam power at E = 0.94754 eV is
∼1.5 mW in case (i) and ∼0.1 mW in case (ii). Independently
of the DIF operating at 0.1 or 0.8 mW, we observe a reduced
resonance frequency for case (i) by 0.007 Hz relative to
case (ii). This resonant frequency shift can only be attributed
to heating by some optical absorption of unknown origin
at E = 0.94754 eV. The free carrier generation rate should
be proportional to the power of the DIF. As we cannot observe
any additional resonant frequency change for cases (i) and
(ii), the free carrier densities generated by the DIF beam
are thus negligible. The resonant frequency difference due
to the different power level of the DIF amounts to 0.208 Hz or
0.30 Hz/mW, whereas the frequency shift caused by the excess
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loss is 0.005 Hz/mW. The fractional absorption for the DIF
beam is 0.0514, and that for the excitation beam is 0.00082
using the value for fc0 deduced from the force measurement.
The ratio between the resonance frequency change per mW of
60 is practically identical to that calculated from the fractional
absorption of 63. This very good agreement definitely indicates
that the excess force must be of thermal origin as proposed
above. Unfortunately, we cannot say anything concerning the
frequency dependence, as free carriers are not responsible for
the excess loss. We nevertheless retain the assumed energy
dependence for the rest of the paper.

We might be tempted to reduce the measurements by the
observed extra force at the respective minima to compare with
the theoretical prediction. Such a simple procedure would
indeed yield a reasonable quantitative agreement. Over the
measured energy interval above the band gap (1.33–1.47 eV),
we get a loss variation from 0.005 to a maximum of 0.0223
from Fig. 7. Therefore, a simple subtraction procedure is not
permitted in the region above the band gap.

During the course of the measurements of the slab ve-
locity, we notice a significant change of its phase over the
measurement interval. According to Eqs. (24) and (27), the
phase should be constant for a fixed modulation frequency.
With our detuning from resonance f0 − f = 4.62 Hz and the
damping constant γ ∼ 0.36 s−1, the calculated phase angle
is ∼89.65◦. We note that the phase angle near the minima is
reduced by ∼20◦. The phase angle increases with increasing
reflectivity but never exceeds 83◦ in all of our measurements.
This behavior gives a strong clue to the phenomenon that
creates an excess force. As we have already noticed, the extra
force is due to thermal origin caused by the excess loss in the
slab.

V. DISCUSSION

The results shown in Figs. 6 and 8 confirm qualitatively the
predictions of Maxwell’s theory using the Minkowki’s stress
tensor formulation. In the region of the reflection minima, the
measured forces are much larger than the predicted ones based
on reflectivity and absorption even in the case below the band
gap. For this reason, it is important to bring our measurements
in line with the theory. That is to say, we must find the possible
origin of the extra force. As we have noticed above, we suspect
a thermal one, because the excess heights of the minima are
compatible with the absorbed power. The following facts could
give a clue. The modulation of the incident light power gives
rise to heat diffusion in the Si slab. This in turn creates
a modulation frequency-dependent temperature distribution
along the slab. If we assume that the Si slab has got oxides
of different thickness on the two sides, the slab also acts as a
bifilar temperature sensor, because the Si and the oxide have
different linear thermal expansion coefficients. Contrary to a
bifilar sensor, the temperature distribution is not uniform in this
case. In addition the heat diffusion introduces a dephasing of
the oscillations. Using a simple rectangular slab model, where
the heat flux enters at the end of the slab, we get the quasistatic
deflection zh� by omitting the time factor exp(iωt),

zh� = aCT0�
2{[sinh(κ)/κ − 1]/[κ2 cosh(κ)]}, (29)

with

κ2 = iω�2/Dh. (30)

The factor in the curly bracket is complex except for ω = 0
where it is 1/6. The prefactor C represents the bifilar bending
parameters, � is the distance from the center point where the
light is absorbed to the heat sink, and T0 is the temperature
difference of the respective temperatures of the end points,
if the heat removal is by heat conduction only. We get
� ≈ 0.041 cm from Fig. 2. Appendix B provides the derivation
of Eq. (29) and the definition of the numerical parameters.
The total quasistatic deflection is |z0 + zh�| with our choice
of the z coordinate. The sign of the curvature together with
the choice of the z coordinate agrees, because we assume
that the slab surface has the thick oxide layer (5 nm for the
calculation) on the entrance side of the light that is essentially
propagating along the +z direction. The thermal expansion
coefficient of the oxide is smaller than that of Si. In the static
case the curvature is against the pressure of the light. But in our
dynamic case, the phase depends on the modulation frequency.
At the modulation frequency near 634.5 Hz the real part of zh�

becomes negative. Above this frequency, the real part remains
negative for arbitrarily large modulation frequencies. The long
storage time (>12 months) of the slab in ambient air in a
horizontal position before it was mounted in a vertical position
into the high vacuum chamber justifies the asymmetry of the
oxide thickness, as the oxide buildup is favored by stress.
The storing position was such that the sample was subjected to
gravitational bending stress on the side that is now the entrance
side of the light. The measured reduced force, Fm/F0, can be
expressed for either polarization as

Fm/F0 = ce |z0 + zh�| /F0. (31)

For easier writing we have suppressed the polarization
indices. The fine lines in Figs. 6 and 8 represent the calculations
according to Eq. (31) for an oxide thickness difference of
4 nm. This corresponds to an oxide thickness of 5 nm at the
light entrance side and 1 nm at its exit face. These oxide
thicknesses have been assumed throughout all calculations.
The agreement with the measured data is quite acceptable in
the case of Figs. 8(a) and 8(b) by assuming the mechanical
compliance ratio between oxide and Si, and the thermal
expansion difference of −1.6×10−6 K−1. We have used iden-
tical parameters for all cases presented. The strong asymmetry
of the predicted Fm/F0 in Fig. 6 results from the rapid rise of
the loss above the band gap as shown in Fig. 7. This leads to a
strong asymmetry and shifts the force minimum toward lower
energies than those observed. This indicates that the assumed
energy dependence of the extra loss is not proportional to
E−2. In spite of the fact that we only have a semiquantitative
agreement between theory and experiment, all qualitative
observations including the phase behavior are fulfilled with
this model. The principal uncertainties besides the energy
dependence of the loss are the asymmetry of the oxide
thickness, mechanical compliance of the oxide, and the
difference of the thermal expansion coefficients. However, the
range of these parameters is quite limited. Most importantly,
the smallness of the oxide difference of only a few nanometers,
nevertheless, gives this model reasonable credibility.
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By changing the modulation frequency we could further
test the model. Unfortunately, the diffusion model depends on
the square root of the modulation frequency that necessitates
considerably lower frequencies than we have applied. The
ideal testing frequency for this case is ∼634.5 Hz, where
the real part vanishes and only the imaginary part of zh� is
nonzero. The real part provides for the principal interference
term with the direct light-induced deflection. However, the
passive amplification factor would drop to 1.24. Thus we
would lose the advantage of the resonance enhancement,
thereby losing sensitivity. The best approach would be an UHV
system (pressure <10−11 Torr) equipped to create atomically
clean surfaces.

According to theory, the corrected force only implicitly
depends on the material parameter. Any other slab material
or composite slab that has the identical reflectivity and loss
will experience the same force for a given wavelength or
photon energy. Only a study of the dispersion behavior could
differentiate among different slabs. An experiment in which
we control the thickness of a slab at fixed photon energy is
conceptually similar to our experiment. This would result in
different observed forces in spite of the fact that the material
is still the same. Together with the different forces measured
for the TE and TM polarizations, we demonstrate that the
measured forces depend primarily on the boundary conditions.
All these observations do not depend on any specific form of
EM momentum in the material as is evident from Eqs. (17)
or (18). We calculate the contribution of the volume integral
of 〈∂GM/∂t〉 for normal incidence under the assumption
of zero reflection and absorption to guarantee a maximum
contribution. The force per unit area thus becomes∫ d

0
〈∂GM/∂t〉dz = −(Si/c)(εZ0ωd) sin(ωt). (32)

We neglect the very small phase term of ω dng/2c in
the time dependence of this force. ng is the group index
at the photon energy of the reflectivity minimum. We have
tacitly suppressed a comparable phase term in the power
modulation of Eq. (24). It is important to note that the time
dependence of the force term arising from reflectivity and
absorption is proportional to cos(ωt) in contrast to that of
Eq. (32). The dimensionless second factor is ∼1.4×10−16 for
our experimental parameters (ε � 16ε0, ω = 2π × 1437 s−1,
and d = 362 nm). It is to be compared to our measured
minimum value (2rTE,TM + aTE,TM) ≈ 10−3. Assuming a
comparable detection sensitivity as in our experiment, the
numerical value is indeed so small that even at ω = 1012 s−1

the reflectivity and loss part together must be �1.4×10−8 to
provide a reasonable chance to observe a direct contribution
caused by the derivative of the Minkowski momentum. Thick
samples and high modulation frequency would certainly relax
the extreme condition on reflectivity and fractional absorption.
However, the sensitivity to detect this force would be adversely
affected.

Labardi et al.57 essentially followed a suggestion of
Brevik16 to measure the Abraham force with a cantilever
arrangement immersed in a liquid. Labardi et al.’s product
ωd is larger than ours by approximately four orders of
magnitude, but the force sensitivity is also strongly reduced.
Their experimental parameters definitely are insufficient to

observe the Abraham force in view of the estimate of our
Minkowski correction.

The fine measurements of Jones and Leslie44 do not prove
anything concerning the momentum in the liquid. They used
a low loss multilayer dielectric mirror to get high reflectivity.
Their experiments anticipate ours in the limit r ≈ 1 and a ≈ 0
but in dispersive media characterized by ni . For this case our
Eq. (23) is not applicable, because it does not take dispersion
into account. We show in Appendix A that the measured
force depends on the mirror phase via the dispersive EM
energy of the liquid. This means a dependence on the balance
between electric and magnetic energy density in the liquid at
the mirror face. In other words, the measured force depends on
the boundary condition. Accordingly, their experiment cannot
uniquely determine the EM momentum in the liquids. The
claim16 of good quantitative agreement with theory can only
be accepted for an electric-field reflectivity phase angle of
∼π for which the interface energy density is dominated by
the magnetic field. A repetition of this experiment by taking
the phase dependence of the force into account would not
only settle the dispute concerning the EM momentum but
also provide an experimental demonstration of the dispersive
EM energy in nonmagnetic media. Nevertheless, Jones et al.’s
results43,44 convince us that our additional force is of thermal
origin and as such non-Maxwellian.

She, Yu, and Feng60 demonstrate the case of εr1 ∼ 2.2 >

εr2 = 1 in an experiment with a thinned optical fiber, the output
face of which is cut at an angle of 8◦. They demonstrate a
recoil force by the sideway motion of the fiber. They claim to
have demonstrated the Abraham momentum that we reject on
the grounds of our reasoning above. Their extremely high
power density (>1 MW/cm2) is likely to cause additional
uncontrolled nonlinear effects. On the same line of thought
one might consider the recoil of a semiconductor laser emitting
only from one face mounted on a soft pendulum or on a
torsional balance. For such a case we could profit from its very
high dispersive refractive index, but again we cannot draw any
conclusions concerning the light momentum in the laser.

The introduction of material parameters ε, μ, and σ ,
together with Eqs. (5)–(7), eliminates a host of fundamental
problems of the physics of matter. However, we cannot expect
too much from it. Approaches due to Shockley33 or Peierls35

while interesting do not resolve the general problem of the
forces either. Nelson’s Lagrangian approach26 to treat the
matter part in a quasicontinuum fashion is self-consistent.
His theory is valid in the limit of the crystal unit cell being
much smaller than the wavelength of the EM field, a condition
that is fulfilled in our experiment.80 To our knowledge this
theory is the only one that derives the momentum and energy
expressions ab initio.

The important points of Nelson’s theory concerning
dispersion26,28,81 unfortunately cannot be tested with this
experiment, because our strongly dispersive slab is embedded
in vacuum. Only a dispersive embedding medium permits the
observation of dispersive aspects, but they are dependent on
the boundary condition, as we show in Appendix A. Therefore,
force measurements that depend on boundary conditions can-
not uniquely determine the EM momentum in the medium. The
theoretical considerations given by Kemp et al.82 concerning
left-handed materials confirm this reasoning.
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Two very recent theoretical papers83,84 review the observ-
able forces and momentum from a treatment of Maxwell’s
equations and a generalized Lorentz force treatment but fail
to recognize the importance of the boundary conditions. The
same is true for another paper85 that considers a simple thought
experiment.

In conclusion, we have quantitatively measured and an-
alyzed the reflectivity and force response of a very thin Si
slab for different photon energies. We get fair agreement
between theory and experiment and demonstrate conclusively
that measurements of this type cannot determine the electro-
magnetic momentum in the sample nor in the surrounding
medium. For this reason, we also conclude that the Abraham
and Minkowski controversy is unnecessary. This is valid in
the realm of classical electromagnetism, where the matter
part is at a quasithermodynamical equilibrium. In this case
we can describe the matter part with constants ε, μ, and σ .
Moreover, the application of Minkowski’s stress tensor results
in the simplest representation of ponderomotive forces, as it
is part of a vector identity derived from Maxwell’s equations.
But it does not include dispersive effects. Calculations based
on the Lorentz force are physically more transparent but are
more difficult to formulate properly. Grzegorczyk et al.22,23

have demonstrated the equivalence of force calculations based
on the Lorentz force with those based on Minkowski’s stress
tensor for a case similar to ours. To settle the question
concerning dispersion, we propose a repetition of Jones
et al.’s experiments44 in which the reflectivity phase depen-
dence of the force is analyzed.
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APPENDIX A: DISPERSION CONSIDERATIONS

It is generally acknowledged28,81 that the energy density
of EM fields of frequency v in an isotropic, dispersive
nonmagnetic medium characterized by its refractive index n is
represented by

W = 1
2ε0E

2 ∂(vn2)
/
∂v + 1

2μ0H2. (A1)

This definition of EM energy agrees with the Planck relation
for a freely propagating wave, where the Poynting vector is
proportional to the group velocity and the EM energy density.
The extension to magnetic media is straightforward, but not of
concern here. We consider a plane wave of normal incidence
on a multilayer, high-reflectivity (∼1), lossless dielectric
mirror. This exactly represents one of the experiments by
Jones and Leslie.44 We denote the incoming power density
by S = P/A = n|E2

i |/Z0, where P is the incoming power,
A is the effective beam area, and Ei is the effective incident
electric-wave amplitude. We note that a dielectric multilayer
mirror of unit power reflectivity has an electric field reflectivity
given by

R = exp(iφ), (A2)

where φ is the reflectivity phase that depends on the layers and
the optical frequency. The fields at the mirror are

E = (1 + R)Ei (A3)

and

H = (1 − R)nEi/Z0. (A4)

According to Eqs. (19) and (21), the pushing force, F ,
exerted by this beam onto the mirror is simply given by the
energy density of Eq. (A1) multiplied by A, because the field
on the far side of the mirror is zero:

F = (2nP/c) {1 + [cos(φ) + 1] (v/n)∂n/∂v} . (A5)

Therefore, the force depends on the phase of the mirror
and the dispersion of the refractive index. It seems evident
that the EM momentum in the liquid cannot depend on the
phase of the mirror. For this reason, it becomes clear that this
experiment is not able to determine the EM momentum. Jones
et al.’s experiment found a proportionality with n, from which
we conclude φ ∼ π (equivalent to a “short-circuit” situation).
Unfortunately, this fact was not addressed in their paper. For
φ = π /2 or 3π /2, the force becomes proportional to the group
index, whereas for φ = 0 or 2π (equivalent to an “open-
circuit” situation), the dispersion effect is enhanced, yielding
an effective index larger than the group index. The extension
of this result to a lossy, multilayer sequence is straightforward
and confirms the phase dependence of the force.

The controlling of the phase is easy by keeping track of
the layer sequences. For example, an additional quarter-wave
layer deposited onto the original mirror changes the reflectivity
π/2. The application of Eq. (A1) results in a periodic z

dependence for the unity tensor 1W that leads to a periodic
space dependence of div 〈T 〉. This violation of our premises
of W being constant is not critical, because the dispersive
liquid remains in equilibrium, and the force onto the mirror
is local. Therefore the experiment by Jones et al.44 should be
repeated by measuring the phase dependence of the force. The
positive outcome of such an experiment would also provide
an experimental verification of Eq. (A1) and gives an ex-
perimental demonstration that simple Gedankenexperiments45

or experiments described in our paper cannot determine the
momentum in matter. In addition, it also shows that the
Minkowski description is incomplete.
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In an earlier paper, Jones and Richards43 reported on a
similar experiment using a metallic mirror. They did not detect
any dispersive contribution to the force. The precision of this
experiment is considerably lower than that mentioned above.
In spite of the loss in the metal, the optical electric field at
the mirror is considerably reduced compared to the magnetic
one. Accordingly, the dispersive contribution to the force is
practically eliminated in agreement with our contention.

APPENDIX B: EFFECT OF HEAT DIFFUSION

To calculate the diffusion contribution to the observed force,
we neglect the plate and the appendix. The cross section
is A = 3.62×10−8 cm2. (ii) The heat flux generated by the
absorbed power is distributed uniformly over the cross section
in the plate center, thus the power being absorbed uniformly
over the cross section. (iii) We neglect the contribution of
the oxide layer to the heat diffusion. (iv) We put the origin
of the y coordinate at the virtual interface between the heat
sink and slab. (v) In spite of the fact that we use a square-
wave modulation, we are only interested in the fundamental
oscillation frequency of 1437.00 Hz, because this is the
only part that gets mechanically amplified. (vi) We neglect
the temperature dependence of the elastic compliance. As
throughout the paper, we use an effective normalized incident
power, P0 = 10 μW. The unidimensional heat diffusion is
controlled by the temperature ϑ(y,t) using the following
equation, where Dh = 0.9 cm2/s is the heat diffusion constant
of Si (Ref. 86) at room temperature:

∂ϑ/∂t = Dh∂
2ϑ/∂y2. (B1)

With the usual separation of the variable, we write ϑ(y,t) =
ϑw(y) exp(iωt), where ϑw(y) is the effective temperature
amplitude function, and Eq. (B1) reduces to

d2ϑω/dy2 − (iω/Dh)ϑω = 0. (B2)

Equation (B2) is a standard differential equation of second
order that has to satisfy the boundary conditions. We set
ϑw(0) = 0 at y = 0. At y = �, we demand that the absorbed
heat is flowing toward the heat sink. With the absorbed heat
fraction a we write for this condition with the heat conductivity
σh = 1.48 W/(K cm),

aP0 = σhA dϑω/dy |
y=�.

, (B3)

Defining the dimensionless argument as in Eq. (30), we
write for the solution of the temperature distribution amplitude
using κ2 = iω�2/Dh:

ϑω(y) = a[P0�/(σhA)] {sinh(κy/�)/ [κ cosh(κ)]} . (B4)

The first factor in square brackets of Eq. (B4) has
the numeric value T0 ≡ 7.65 K for a power of 10 μW.
The polarization-dependent fractional loss a is obtained
from the calculated reflectivity and transmissivity with
Eq. (23).

With the local temperature distribution now known, we
can calculate the local curvature of our Si slab covered by
the oxide.87 As the oxides and the Si layer are very thin, the
induced local stress variation along the z direction is negligible.
The local curvature C ′ only depends on the difference
of the oxide layer thickness dox ∼ 4 nm for this case. With
the respective compliances sSi and sox and the respective
linear thermal expansion coefficients αSi = 2.6 × 10−6/K and
αox ∼ 1 × 10−6/K for Si and oxide, we obtain for C ′,

C ′ = 6(sSi/sox)(dox/d
2)(αox − αSi)ϑω(y) ≡ C ϑω(y). (B5)

For our Si crystal (100) orientation, we get sSi = s11 +
s12 = 0.5559 × 10−11 m2/N. The compliance for the native
oxide can only be estimated. For pure SiO2, the elastic
modulus is 7.3×1010 N/m2 and the Poisson ratio is 0.165. We
think this yields an upper value for sox < (1 − 0.165) /7.3 ×
1010 = 1.144 × 10−11 m2/N. The oxide thickness difference
is a guess to satisfy approximately the observed force data.
According to Eq. (B5) only the ratio of dox to sox enters
as an unknown parameter. C ′ is identical with the second
derivative of the slab displacement zh(y). With the choice
of the z direction, we have C < 0. At the heat sink there is
no deflection and also the first derivative vanishes. As we are
only interested in the deflection at y = �, we get the final result
zh� ≡ zh (�):

zh� = aT0C�2{[sinh(κ)/κ − 1]/[κ2 cosh(κ)]}. (B6)

The frequency-dependent part is in the curly brackets. For
very low modulation frequencies, the real part of the curly
bracket is +1/6 and the imaginary part is −ω�2/Dh. The real
part of the curly bracket changes sign at f ∼= 634.5 Hz, yielding
positive values for the real part of zh�. The imaginary part is
negative for all frequencies.
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