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Classical ratchet effects in heterostructures with a lateral periodic potential
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We study terahertz radiation induced ratchet currents in low dimensional semiconductor structures with
a superimposed one-dimensional lateral periodic potential. The periodic potential is produced by etching a
grating into the sample surface or depositing metal stripes periodically on the sample top. Microscopically, the
photocurrent generation is based on the combined action of the lateral periodic potential, verified by transport
measurements, and the in-plane modulated pumping caused by the lateral superlattice. We show that a substantial
part of the total current is caused by the polarization-independent Seebeck ratchet effect. In addition, polarization-
dependent photocurrents occur, which we interpret in terms of their underlying microscopical mechanisms. As
a result, the class of ratchet systems needs to be extended by linear and circular ratchets, sensitive to linear and
circular polarizations of the driving electromagnetic force.
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I. INTRODUCTION

Nonequilibrium spatially periodic noncentrosymmetric
systems are able to transport particles in the absence of an
average macroscopic force. The directed transport in such
systems, generally known as ratchet effect, has a long history
and is relevant for different fields of physics.1–9 If this effect is
induced by electromagnetic radiation, it is usually referred to as
photogalvanic (or sometimes photovoltaic) effect, particularly
if the breaking of spatial inversion symmetry is related to
the microscopic structure of the system.10–14 Blanter and
Büttiker15 have shown that one of the possible realizations
of a ratchet is a superlattice (SL) irradiated by light through a
mask of the same period but phase shifted with respect to the
SL yielding a directed current due to local electron-gas heating.
Recently, we have reported an experimental realization of
this idea with some modifications.16 The photocurrent has
been observed in semiconductor heterostructures with a one-
dimensional lateral periodic potential induced by etching a
noncentrosymmetric grating into the sample cap layer. Hence
the in-plane modulation of the pump radiation appears not
via a mask with periodic structures but due to near-field
effects of terahertz (THz) radiation propagating through the
grating. This photothermal effect, called also Seebeck ratchet
effect,1 is polarization independent and can be generated even
at normal incidence of light.

Here, we report on the observation and study of radiation
induced ratchet effects sensitive to the plane of polarization
of linearly polarized light and, in the case of circularly
polarized light, to the photon helicity. The theoretical analysis
has enabled us to propose microscopic mechanisms of the
observed circular and linear ratchet effects, and to demonstrate
that they are related to the combined action of an out-of-phase
periodic potential and an in-plane modulated pumping of the
two-dimensional electron system (2DES). The investigation
of these ratchet effects has also been performed on a new
set of laterally structured samples with a better controlled
asymmetry.

The paper is organized as follows. In the next section,
we present the theory of ratchet effects stemming from
the combined action of the lateral periodic potential and

the in-plane pumping by the THz field modulated by the
near-field diffraction. We formulate the model in terms of
the classical Boltzmann equation for the electron distribution
function, show the position of this model with respect to other
electronic ratchets, and propose a model picture to interpret
the observed photocurrents. The symmetry analysis in Sec. III
is followed by solving the kinetic equation (Sec. IV) and
deriving equations for the Seebeck ratchet current (Sec. V) and
polarization-dependent photocurrents (Sec. VI). In Sec. VII,
we describe details of the sample preparation and give a short
overview of the experimental technique. The experimental
results are presented and discussed in Sec. VIII. Section IX
summarizes the study.

II. MODEL

We consider a quantum well (QW) structure modulated
by a one-dimensional periodic lateral potential V (x) with the
period d: V (x + d) = V (x). Hereafter we use the right-handed
coordinate system x,y,z with the axes x,y lying in the interface
plane and the axis z parallel to the growth direction. In addition
to the static potential V (x), the two-dimensional electron gas is
subjected to the action of an in-plane time-dependent electric
field

E(x,t) = Eω(x)e−iωt + E∗
ω(x) eiωt

with the amplitude Eω(x) modulated along the x axis with
the same period as the static lateral potential: Eω(x + d) =
Eω(x). The electric field can be linearly polarized with

Im[Eω,α(x)E∗
ω,β(x)] = 0 (α,β = x,y),

or circularly polarized with Eω,y(x) = ∓iEω,x(x) for σ+ and
σ− polarization, respectively. Note that the signs in the latter
equation correspond to an experimental geometry where the
light propagates anti-parallel to z.

We will describe the ratchet effects by using the classical
Boltzmann equation for the electron distribution function
fk(x,t), namely,(

∂

∂t
+ vk,x

∂

∂x
+ F(x,t)

h̄

∂

∂k

)
fk(x,t) + Qk = 0. (1)
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Here, k = (kx,ky) and vk = h̄k/m∗ are the two-dimensional
electron wave vector and velocity, m∗ is the electron effective
mass, F(x,t) is the force consisting of two terms

F(x,t) = −dV (x)

dx
êx + eE(x,t), (2)

e is the electron charge (negative), êx is a unit vector along the
x axis, and Qk is the collision integral responsible for electron
momentum and energy relaxation. Equation (1) is valid for a
weak and smooth potential satisfying the conditions |V (x)| �
εe and q = 2π/d � ke, where ke is the typical electron wave
vector and εe = h̄2k2

e /2m∗ is the typical energy being much
larger than the photon energy h̄ω. The quantity of central
interest is the average electron current

j = 2e
∑

k

vkf̄k, (3)

where the factor 2 takes into account the electron spin
degeneracy and the bar means averaging over the spatial
coordinate x and time t . In order to get a nonvanishing directed
current, the force F(x,t) should be asymmetric which means
that there exists no coordinate xc such that F(x − xc,t) =
F(xc − x,t). Note that both the gradient dV (x)/dx and the
amplitude Eω(x) can possess centers of inversion but, in an
asymmetric system, these centers must not coincide.

In terms of the models reviewed and discussed in Ref. 1, the
system under study is a pulsating ratchet described in terms
of the distribution function and Boltzmann equation with the
collision integral. It is analogous to a Brownian particle in
two dimensions with coordinates x, y and mass m∗, which is
governed by Newton’s equation of motion

m∗ (v̇ + ηv) = −∇V (x,y,t) + ζ (t). (4)

Here, the pulsating force −∇V (x,y,t) ≡ F(x,t) is given by
Eq. (2), η is the viscous friction coefficient and ζ (t) is a
randomly fluctuating force in the form of a Gaussian white
noise of zero mean. The system meets the main guiding
principles of a ratchet: (i) it is periodic both in space and time,
(ii) the force vanishes after averaging over space and time,
(iii) the system is driven permanently out of thermal equilib-
rium and (iv) the force F(x,t) is asymmetric.

Two mechanisms, a polarization-independent one and a
polarization-dependent one, contribute to the current (3). Here,
we present a qualitative interpretation of these mechanisms
based on the (static) Ohm’s law

j = e2τN0

m∗ E, (5)

with momentum relaxation time τ and electron density N0,
and reveal the basic physics behind the ratchet effects under
study. A more detailed discussion is given in Secs. V and
VI. In line with the first mechanism, the modulated light field
heats the electron gas and causes a periodic modulation of the
effective electron temperature �(x) which, in its turn, leads to
a redistribution of the electron density N (x) and appearance of
an electric-field-induced static correction δN (x) ∝ |Eω(x)|2.
The polarization-independent dc current is obtained from
Eq. (5) if the density N0 and the product eE get replaced

by δN (x) and −dV (x)/dx, respectively, and the current is
averaged over x as follows

jx = eτ

m∗

[
δN(x)

(
−dV (x)

dx

)]
= μe

(
δN (x)

dV (x)

dx

)
, (6)

where μe is the electron mobility |e|τ/m∗. Due to the
asymmetry of the system, the average of the product
|Eω(x)|2[dV (x)/dx] is nonzero. In the simplest case where

Eω(x) = E0[1 + h1 cos (qx + ϕE)],
(7)

V (x) = V1 cos (qx + ϕV ),

with h1 being real, one has

jx ∝ |Eω(x)|2[dV (x)/dx]

= |E0|2qV1h1 sin (ϕE − ϕV ). (8)

In a more general case with

Eω(x) = E0

[
1 +

∞∑
n=1

hn cos (nqx + ϕE,n)

]
,

(9)

V (x) =
∞∑

n=1

Vn cos (nqx + ϕV,n)

the current in x-direction is given by

jx ∝ |E0|2
∞∑

n=1

nqVnhn sin (ϕE,n − ϕV,n). (10)

According to a classification suggested in Ref. 1, a dc
current, resulting from a periodic temperature profile induced
by an ac driving force, represents the Seebeck ratchet effect.
This photothermal effect has been first considered theoretically
by Blanter and Büttiker15 (see also Ref. 17) for a lateral
superlattice covered by a periodic mask with a shifted phase
respective to the SL. These authors have shown that irradiation
of the SL by light through the mask results in a directional
current perpendicular to the grating due to local electron
gas heating. In the present work we assume, in accordance
with the modulation-doped QWs used in experiment, that
|V (x)| � εe in contrast to the opposite case discussed in
Ref. 15. In the experiment described below the mask is
replaced by a one-dimensional array of grooves etched into
the top cap of a semiconductor heterostructure or periodically
arranged metallic stripes on the sample surface. The effect of
the periodic structures is two-fold: Firstly, they generate a weak
one-dimensional periodic potential superimposed upon the
two-dimensional electron gas and, secondly, they modulate,
because of near-field diffraction, the electric field amplitude
and intensity of the incident light making them spatially
periodic in the interface plane (x,y). The system asymmetry
determined by the difference between ϕE,n and ϕV,n is a
natural consequence of the asymmetric shape of the grooves,
displayed in Fig. 1(b), or of a periodically repeated asymmetric
supercell ABCABC . . . where the stripe width follows a
10:6:3 ratio, as displayed in Fig. 1(c). The lateral pattern
gives rise to spatial modulation of the potential V (x) and the
near-field amplitude Eω(x) but, because of the asymmetry of
the pattern, the modulation phases ϕE,n and ϕV,n are, in general,
different.
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FIG. 1. Sample design. (a) Blanter and Büttiker’s geometry.
(b) The experimental geometry of the first set of samples (type 1,
ST1) with an asymmetric groove profile. (c) The geometry of the
second set of samples (type 2, ST2) with supercells ABCABC . . . of
metallic stripes on top of the sample. (d) Electron micrograph of the
first set of samples (ST1). (e) Electron micrograph of the second set
of samples (ST2). Here, the widths of the patterns A, B, and C are 1,
0.6, and 0.3 μm, respectively.

The polarization-dependent direct current stems from the
time-dependent electron density oscillation δN(x,t) linear in
both the electric field Ex and the lateral force −dV (x)/dx.
The direct current is obtained from Eq. (5) after substituting

E → E(x,t), N0 → δN (x,t) = δNω(x)e−iωt + c.c. (11)

and averaging over x and t , i.e.,

j = e2τ

m∗ [δN(x,t)E(x,t)] (12)

= 2|e|μeRe[δNω(x)E∗
ω(x)].

For the spatial modulation defined by Eq. (7), we get again
j ∝ |E0|2h1V1 sin (ϕE − ϕV ). Additionally, as will be shown
in Sec. VI, this current also depends on the orientation of the
polarization plane of linearly-polarized light and on the helicity
(degree of circular polarization) in the case of circularly-
polarized light. In this connection, we have supplemented
the classification scheme introduced by Reimann1 by adding
linear and circular ratchet effects in our previous short
article.16

III. SYMMETRY ANALYSIS

In this section, we will analyze symmetry restrictions
imposed on the polarization dependence of the ratchet cur-
rents. The system described by Eqs. (1) or (4) has the
point group symmetry Cs consisting of the identity element
and the reflection σ in the plane perpendicular to the y

axis. This symmetry is relevant for our asymmetric lateral
superlattices. While the one-sided modulation doped QWs
grown on (001)-substrates have the point group symmetry
C2v , the adding of the asymmetric lateral potential reduces the
overall symmetry to Cs or even to C1. It follows then that the
current density components jx,jy are related to components

of the polarization unit vector e = E0/|E0| by four linearly
independent coefficients

jx = Ī [χ1 + χ2(|ex |2 − |ey |2)],
(13)

jy = Ī [χ3(exe
∗
y + eye

∗
x) − γPcircêz],

where Pcirc ê = i(e × e∗), Ī is the average light intensity
defined by

Ī = cnω

2π
(|E0x |2 + |E0y |2),

c is the light velocity in vacuum, and nω is the refractive index.
Note that in the described geometry the light propagation
direction and the z axis are antiparallel, causing the minus sign
in the second Eq. (13). The Seebeck ratchet effect is connected
to the coefficient χ1, while the remaining three coefficients
describe the linear (χ2,χ3) and circular (γ ) ratchet effects.

Equations (13) should be compared to the ones of cor-
responding unpatterned samples, called reference samples
below, or structures with a symmetric potential. One-sided
modulation-doped QWs, grown along the crystallographic
[001] direction of zinc-blende-lattice semiconductors have
point-group symmetry C2v which excludes in-plane currents
for normal incidence where E0z = 0, in contrast to the ratchet
currents (13), allowed for this geometry. Under oblique inci-
dence, the reference samples admit directional photogalvanic
electric currents perpendicular to the plane of incidence,18,19

jx ′ = I [χx ′x ′z(ex ′e∗
z + eze

∗
x ′ ) + γx ′y ′Pcircêy ′ ], (14)

jy ′ = I [χy ′y ′z(ey ′e∗
z + eze

∗
y ′ ) + γy ′x ′Pcircêx ′ ],

which are caused by the lack of an inversion center in
the reference samples at the atomic level. Here, x ′ and y ′
denote the axes [1̄10] and [110], respectively, χ and γ are a
third-order tensor and a second-order pseudotensor describing
the linear (LPGE) and circular (CPGE) photogalvanic effects,
respectively. Equations (14) show that in reference samples
a photocurrent can be generated only at oblique incidence (z
component of the radiation electric field is needed). This is in
contrast to the asymmetric lateral structures where the current
given by Eqs. (13) reaches a maximum at normal incidence.

Since the lateral superstructure is responsible for the
photogalvanic effects observed at normal incidence then one
can, while developing a theory of the normal-incident currents,
ignore the initial (microscopic) symmetry C2v of the refer-
ence heterostructure, disregard mechanisms of photocurrents
related to the lack of an inversion center in the unstructured
sample, and rely only on the symmetry of the superstructure
potential V (x) and the in-plane intensity modulation. In this
case Eqs. (13) can be applied for any orientation of the axes
x,y irrespectively to the crystallographic directions [11̄0],
[110]. At oblique incidence, the photocurrent can be naturally
described by a sum of superstructure-induced and intrinsic
contributions, Eqs. (13) and (14).

In the lateral structure ST1 sketched in Fig. 1(b), the grooves
are oriented along the [100] direction and the axes x ‖ [100],y ‖
[010] in Eqs. (13) are rotated around z by 45◦ with respect to
x ′,y ′; in the sample ST2 of Fig. 1(c) the axes x,y coincide
with x ′,y ′. In both patterned samples ST1 and ST2, obliquely
incident light generates both the ratchet current (13) and the
photogalvanic current (14). This allows us to compare the
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contributions to the photocurrents due to the lack of inversion
symmetry on the atomic (intrinsic mechanisms) and on the
micron scale (periodic grating) experimentally.

IV. EXPANSION IN THE PERTURBATION THEORY

The ratchet currents given by Eqs. (6) and (12) can be
obtained by solving the kinetic equation (1) in third-order
perturbation theory, i.e., second order in the electric-field
amplitude and first order in the static lateral potential. In this
work, we use the collision integral Qk in the convenient form
of a sum of the elastic scattering term Q

(el.sc.)
k and the energy

relaxation term Qε. The former is taken in the simplest form,

Q
(el.sc.)
k = fk(x,t) − 〈fk(x,t)〉

τ
, (15)

where the brackets mean the average over the directions of
k, and τ is the momentum scattering time assumed to be
constant. The term Qε is treated in the approximation of
effective temperature; see below.

The electron distribution function is expanded in powers of
the light electric field up to the second order,

fk(ρ) = f
(0)
k (x) + f

(1)
k (x,t) + f

(2)
k (x,t), (16)

where f
(0)
k (x) is the equilibrium distribution function given by

f
(0)
k (x) =

[
exp

(
εk + V (x) − μ0

kBT

)
+ 1

]−1

with μ0, kB , and T being the chemical potential, Boltzmann
constant and absolute temperature, respectively, and εk being
the electron energy h̄2k2/2m∗. Here we consider the limit of
high temperatures and assume that the electron gas obeys a
nondegenerate statistics. Then, retaining terms of zero and
first orders in the lateral potential, we can approximate the
equilibrium function by

f
(0)
k (x) =

(
1 − V (x)

kBT

)
exp

(
μ0 − εk

kBT

)
. (17)

The first-order correction is time dependent and can be
arrranged as a sum of two complex-conjugate monoharmonic
terms,

f
(1)
k (x,t) = e−iωtf

(1)
kω (x) + eiωtf

(1)∗
kω (x).

For the second-order correction, it is sufficient to retain the
time-independent contribution f

(2)
k (x) ≡ ξk(x) only and to

reduce Eq. (3) to

j = 2e
∑

k

vk ξ̄k. (18)

By successive iteration of the kinetic equation, we obtain
equations for first- and second-order corrections,(

−iω + 1

τ
+ vx

∂

∂x
− dV (x)

dx

1

h̄

∂

∂kx

)
f

(1)
kω (x)

−
〈
f

(1)
kω (x)

〉
τ

+ Q(1)
ε = − e

h̄
Eω(x)

∂

∂k
f

(0)
k (x), (19)

(
1

τ
+ vx

∂

∂x
− dV (x)

dx

1

h̄

∂

∂kx

)
ξk(x) − 〈ξk(x)〉

τ

+Q(2)
ε = −2e

h̄
Re

[
E∗

ω(x)
∂

∂k
f

(1)
kω (x)

]
, (20)

where the superscript j in Q
(j )
ε labels the order of correction to

the collision integral. Next, we multiply terms in the equation
for ξk(x) by 2evk, sum over k and obtain for the ratchet current

j = 2eτ

h̄

∑
k

vk
dV (x)

dx

∂ξk(x)

∂kx

−4e2τ

h̄

∑
k

vkRe

[
E∗

ω(x)
∂

∂k
f

(1)
kω (x)

]
.

Integrating by parts over k and introducing the spatially
modulated electron densities

δN(x) = 2
∑

k

ξk(x) and δNω(x) = 2
∑

k

f
(1)
kω (x), (21)

we arrive at the final equation,

j = μe

{
δN(x)

dV (x)

dx
+ 2|e|Re[E∗

ω(x)δNω(x)]

}
, (22)

which is just the sum of the two currents (6) and (12) derived
heuristically in Sec. II.

The further development of the theory is based on additional
assumptions: (i) the energy relaxation time τε is assumed to
exceed the momentum relaxation time τ ; (ii) the electron mean
free path le = vT τ and energy diffusion length lε = vT

√
ττε

(see, e.g., Ref. 20) are both small compared with the SL period
d; (iii) we neglect the influence of ac diffusion on the first-order
amplitudes f

(1)
kω (x), which is valid if vT q � ω, where vT is the

thermal velocity
√

2kBT /m∗, or, equivalently, if the period of
the light, 2π/ω, is shorter than d/vT , the time of the free flight
of an electron over the spatial period d. On the other hand, no
restrictions are imposed on the value of the product ωτ .

V. SEEBECK RATCHET EFFECT

To calculate the Seebeck ratchet current (6), represented
also by the first term in Eq. (22), we need to find a static
correction δN(x) of the spatially modulated electron density.
Since the derivative dV (x)/dx already enters the right-hand
side of Eq. (6), this correction can be found neglecting the
lateral potential. In this case, we can approximately replace
the inhomogeneous term in Eq. (20) by

g(εk,x) ≡ −2e

h̄
Re

[
E∗

ω(x)

〈
∂

∂k
f

(1)
kω (x)

〉]

= 2e2τ |Eω(x)|2
m∗(1 + ω2τ 2)

εk − kBT

(kBT )2
f

(0)
k ,

where f
(0)
k = exp[(μ0 − εk)/kBT ] is the equilibrium distri-

bution function normalized to the average electron density
N0. Equation (20) with the inhomogeneous term g(εk,x) can
be reduced to the following macroscopic equations for the
two-dimensional electron density N (x), local nonequilibrium
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temperature �(x), current density jx , and energy flux density
J (x):

jx = μe

{
N (x)

dV (x)

dx
+ d

dx
[kB�(x)N (x)]

}
, (23a)

djx

dx
= 0, (23b)

J = [2kB�(x) + V (x)]
jx

e

−2μe

|e| N (x)k2
B�(x)

d�(x)

dx
, (23c)

dJ
dx

= h̄ωG(x)N (x) − kB[�(x) − T ]

τε

N (x). (23d)

Here, we introduced the energy relaxation time τε and the
generation rate G(x) defined as the Drude absorption rate per
particle,

G(x) = 2
∑

k εkg(εk,x)

h̄ωN0
= 2e2τ |Eω(x)|2

m∗h̄ω(1 + ω2τ 2)

= 4πe2

m∗cnω

τ

1 + ω2τ 2

I (x)

h̄ω
.

For the sake of completeness, we deliberately included into the
set of Eqs. (23) terms originating in the lateral potential. One
can check that averaging of Eq. (23a) over x leads to Eq. (6).

Under homogeneous optical excitation, G(x) ≡ G0,
Eqs. (23) have the following solution:

kB� = kBT + h̄ωG0τε, N (x) = N0e
−V (x)/kB�,

where N0 is x independent. For this solution, both jx and J
vanish. The current jx becomes nonzero only if the generation
rate G varies spatially. For the simple spatial modulation (7)
of the electric field with a small coefficient h1, we write
G(x) = G0[1 + 2h1 cos (qx + ϕE)]. Neglecting the energy
diffusion term in Eqs. (23) we obtain that the steady-state
generation produces a stationary periodic electron temperature
�(x) with �(x) − �̄ ≡ δ�(x) = k−1

B τεh̄ω[G(x) − G0]. Now
it follows from Eq. (23a) that this temperature modulation
is accompanied by a light-induced periodic correction to the
electron density δN (x) ≈ −N0δ�(x)/�̄.

For the lateral potential given by Eq. (7) where the
symmetry of the system is broken by a phase shift between
V (x) and �(x), the final result reads

jx = χS
1 Ī = ζμeN0h̄qωτε

G0V1

2kBT

= ζ
4πe2

h̄cnω

h̄q

m∗
μeN0ττε

1 + ω2τ 2

ĪV1

kBT
, (24)

where Ī is the averaged light intensity, ζ = h1 sin (ϕV − ϕE)
is the asymmetry parameter related to the inhomogeneous
photoexcitation, and �̄ is replaced by T . The Seebeck
ratchet current (24) is polarization independent and increases
with decreasing temperature. For a more complicated spatial
modulation (9), the product ζqV1 should be replaced by∑

n nqVnhn sin (ϕV,n − ϕE,n).

VI. POLARIZATION-DEPENDENT RATCHET CURRENTS

Now we turn to the polarization dependent mechanisms of
the currents and discuss the linear and circular ratchet effects
described in Eqs. (13) by the terms proportional to χ2, χ3,
and γ . We will show that these ratchet currents can also
be generated in a lateral SL with the out-of-phase periodic
potential V (x) and electric field Eω(x). For this purpose we
consider the second term in Eq. (22) or, equivalently, the
contribution (12). The oscillation δNω(x) entering Eqs. (12),
(22) and defined by Eq. (21) satisfies the continuity equation

−iωδNω(x) + ∂jω,x(x)

∂x
= 0, (25)

where jω,x(x) is the amplitude of current oscillations at
frequency ω. It follows from Eq. (25) that, in order to
calculate the current given by Eq. (12), it is sufficient to find
a contribution to δNω(x), linear in the lateral potential and a
nonmodulated electric field replacing Eω(x) by E0 in Eq. (19).

The function f
(1)
kω (x) is conveniently rewritten as

f
(1)
kω (x) = eE0vkτω

kBT
f

(0)
k (x) + Fkω(x), (26)

where τω = τ/(1 − iωτ ). The correction Fkω(x) should be
calculated in first order in the lateral potential and, in this
approximation, satisfies the equation(

−iω + 1

τ
+ vx

∂

∂x

)
Fkω(x) − 〈Fkω(x)〉

τ
+ Q(1)

ε

= dV (x)

dx

eE0xτω

m∗kBT
f

(0)
k .

On summing this equation over k and neglecting the ac
diffusion, we find

δNω(x) = ieτωN0

ωm∗kBT

dV (x)

dx
E0x. (28)

Substituting Eqs. (28) to (12) and averaging over x we obtain
the ratchet photocurrents, which, together with the polarization
independent current (24), can be written as

jx = Ī [χ1 + χ2(|ex |2 − |ey |2)],
(29)

jy = Ī [χ3(exe
∗
y + eye

∗
x) − γPcircêz],

with coefficients

χ2 = χ3 = −ωτγ, χ1 = χS
1 − ωτγ (30)

and

γ = ζ
πe2

h̄cnω

h̄q

m∗
V1

kBT

μeN0τ

ω(1 + ω2τ 2)
, (31)

being in full agreement with the phenomenological Eqs. (13).
It should be noted that so far the parameter τ was kept
constant. In the general case of energy-dependent momentum
relaxation time τ (ε), the ratchet currents acquire an addi-
tional contribution proportional to d ln τ (ε)/d ln ε; see e.g.,
Refs. 21 and 22. We also note that we used the condition
τε � τ while deriving the equations for the coefficients γ

and χj . If these relaxation time parameters are comparable,
the relation between the phenomenological coefficients can
change but Eqs. (24) and (31) can still be used to estimate the
order of magnitude of the currents.
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The allowance for polarization-dependent effects is a
fundamental difference between systems with one and more
than one dimensional character of motion. Even if the pulsating
force is modulated in one dimension, say, along the axis x,
as presented by Eq. (2), but the carriers can move in two
dimensions x and y, both components of the electric field, Eω,x

and Eω,y , act on the electron motion. In this case the ratchet
current is related not only to the squared modulus |Eω,x |2 as in
the one-dimensional ratchet with the particle’s motion along
one axis x, but it also contains contributions proportional to
|Eω,y |2 as well as to real and imaginary parts of the product
Eω,xE

∗
ω,y . The density oscillation (28) is caused by the x

component of the electric field but, according to Eq. (12), both
components of the electric field act on this oscillation resulting
in a ratchet current both in x (“longitudinal ratchet effect”) and
y (“transverse ratchet effect”) directions. Moreover, the current
jy depends on the difference between phases of the complex
amplitudes E0x and E0y . If the phases coincide, the light is
linearly polarized and gives rise to the linear ratchet current
proportional to the coefficient χ3 in Eq. (13). If the phases
differ by ±90◦, the light is circularly polarized and induces
the circular ratchet current described by the coefficient γ .

VII. SAMPLES AND EXPERIMENTAL METHODS

We study photocurrents in GaAs/AlGaAs heterostructures
employing two types of lateral superlattice gratings.

The first type of superlattice (ST1) consists of asym-
metrically etched grooves with a SL period d of 2.5 μm.
A corresponding sketch of the grating and an electronic
micrograph are shown in Figs. 1(b) and 1(d), respectively. The
superlattices were prepared on molecular-beam epitaxy (001)-
grown Si-δ-doped n-type GaAs/Al0.25Ga0.75As QW structures
having at T = 4.2 K (= 300 K) a mobility μe ≈ 4.8 ×
106 cm2/Vs (≈6 × 103 cm2/Vs), and a carrier density N0 of
2 × 1011 cm−2 (≈1.2 × 1011 cm−2). At room temperature the
electron mean free path le is 0.3 μm and hence the condition
le � d holds. For the experiments we used 5 mm × 5 mm
square shaped samples oriented along the [11̄0] and [110]
directions. To measure photocurrents, pairs of ohmic contacts
were alloyed in the middle of each sample edge. Grooves
with 0.5 μm width and a period of 2.5 μm were obtained by
electron-beam lithography and subsequent reactive ion etching
using SiCl4. Care was taken not to etch through the two-
dimensional electron system. In order to get a large patterned
area of about 1.4 mm2, 64 squares, each 150 μm × 150 μm,
were stitched together. In sample ST1 the one-dimensional
grating is oriented along the [100] cubic direction, with a
slight misalignment of about 4◦. The micrographs reveal an
asymmetric shape of the grooves: The average depth on the
right side of a groove is smaller than that on the left side. The
reason for this is ascribed to the different etching velocities
along the [110] and [11̄0] directions.23,24 As reference samples
for this set of structures we used unpatterned samples R1
and/or structures R2 with grooves very close to 〈110〉. The
cross section of these grooves is oriented rather symmetrically
and does not introduce a structure asymmetry.

To achieve a better control of the asymmetry (which in the
previous set of samples depends on anisotropic etching) and to
enable both transport and photocurrent measurements in one

and the same device, another set of samples, ST2, has been
fabricated. For these devices, the lateral superlattices were
prepared on a (001)-grown Si-δ-doped GaAs/Al0.28Ga0.72As
heterostructure. The room-temperature mobility and carrier
density in the structures without grating are μe = 3.2 ×
103 cm2/Vs and N0 = 1.8 × 1012 cm−2. In order to compare
the data of modulated and unmodulated two-dimensional
electron systems, we prepared a Hall bar geometry with a
patterned region and an unpatterned reference part, as shown in
Fig. 7. The SL is defined by e-beam lithography and deposition
of micropatterned gate fingers using 15 nm Ti and 120 nm
Au. The schematics of the gate fingers, consisting of stripes
having three different widths A = 1 μm, B = 0.6 μm, and
C = 0.3 μm with ratio A : B : C = 10 : 6 : 3, and separated
by A, B, and C, is shown in Fig. 1(c) and a corresponding
electron micrograph in Fig. 1(e). This asymmetric supercell
is repeated to generate an asymmetric but periodic potential
superimposed upon the two-dimensional electron system.
The asymmetric supercells ABCABC . . . are patterned on a
500 × 140 μm2 area and generate a strain-induced potential in
the 2DES with a period d of 3.8 μm. The gate fingers, which
are all connected and grounded, are oriented along the 〈110〉
direction, perpendicularly to the Hall bar. Both parts of the Hall
bar were characterized by magnetotransport measurements
in a top-loading He3/He4 dilution cryostat at 100 mK using
standard four-probe lock-in technique. To avoid heating of
free charge carriers small currents, which do not exceed
100 nA, have been applied. The resulting low-
temperature electron density (mobility) are N0 = 2.3 ×
1011 cm−2 (μe = 1.1 × 106 cm2/Vs) in the modulated and
N0 = 2.3 × 1011 cm−2 (μe = 1.5 × 106 cm2/Vs) in the
unmodulated 2DES.

For optical excitation we used a pulsed molecular THz
laser with NH3 as an active medium.25,26 Circularly and
linearly polarized radiation pulses of about 100 ns duration
with the wavelength λ = 280 μm and power P � 2 kW
were applied. The photocurrents were induced by indirect
intrasubband (Drude-like) optical transitions in the lowest
size-quantized subband. Various polarization states of the
radiation are achieved by transmitting the linearly polarized
(E ‖ y) laser beam through λ/2 or λ/4 crystal quartz plates.
By rotating the λ/4 plate, one transfers the linear into elliptical
polarization. The polarization states are directly related to
the angle ϕ between the initial linear polarization of the
laser light and the optical axis of the plate, resulting in
Pcirc = sin 2ϕ for the degree of circular polarization and for the
bilinear combinations of the polarization vector components in
Eqs. (13),

S(ϕ) ≡ exe
∗
y + eye

∗
x = − 1

2 sin 4ϕ, (32)

C(ϕ) ≡ |ex |2 − |ey |2 = − cos2 2ϕ.

If the plane of polarization of linearly polarized light incident
upon a λ/2 plate is at an angle ϕλ/2 with respect to the slow
axis the plane of polarization of the transmitted light is rotated
by an angle α = 2ϕλ/2 and the above bilinear combinations
are given by

S(α) = − sin 2α, C(α) = − cos 2α. (33)
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FIG. 2. Circular photogalvanic current JC = [J (ϕ = 45◦) −
J (ϕ = 135◦)]/2 measured as a function of the angle of incidence θ0 in
a (001)-oriented GaAs/Al0.25Ga0.75 reference QW sample R1 without
a lateral structure. The current is measured at room temperature in
the direction normal to the light propagation. The photocurrent is
excited by radiation with the wavelength λ = 280 μm and power
P ≈ 2 kW. The inset (bottom, left) shows the dependence of the
total photocurrent J on the angle ϕ measured for angles of incidence
θ0 = ±35◦. Two other insets (right panels) show, respectively, the
experimental geometry and the quarter-wave plate which varies
the radiation helicity according to Pcirc = sin 2ϕ. Full lines are
fits to the phenomenological theory for C2v symmetry relevant for
(001)-grown unstructured III–V QWs and given by Eq. (34); see
Ref. 19.

Radiation was applied at oblique incidence described by the
angle of incidence θ0 varying from −25◦ to +25◦ (Fig. 2) and at
normal incidence (Fig. 3). The current generated by THz light
in the unbiased samples was measured via the voltage drop
across a 50-� load resistor in a closed-circuit configuration.
The voltage was recorded with a storage oscilloscope.

VIII. EXPERIMENTAL RESULTS

We begin by introducing the results obtained from the
reference samples. In the (001)-oriented unpatterned samples
R1, as well as for R2 with symmetric groves, a signal is
only detectable under oblique incidence. The photocurrent
measured perpendicularly to the wave vector of the incident
light is almost proportional to the helicity Pcirc and reverses
its direction when the polarization switches from left- to
right-handed circular (see the inset panel of Fig. 2). In the
whole temperature range from room temperature to 4.2 K the
variation of the angle of incidence from θ0 to −θ0 changes
the sign of the photocurrent J . For normal incidence, the pho-
tocurrent vanishes. This is shown in Fig. 2 where the circular
photocurrent in R1 is obtained by taking the difference between
photoresponses to right- and left-handed radiation yielding the
CPGE current JC = [J (ϕ = 45◦) − J (ϕ = 135◦)]/2. Similar
results are obtained for the sample R2 (not shown). The θ0

and polarization dependencies of the photocurrent are in a
good agreement with the phenomenological theory for the

FIG. 3. Photocurrent measured as a function of the angle ϕ at
normal incidence (θ0 = 0◦) in sample ST1 with the asymmetric lateral
structure prepared along the [100] cubic axis. The current is measured
at room temperature and T = 10 K, excited by radiation with the
wavelength λ = 280 μm and power P ≈ 2 kW. Full lines are fits
to Eq. (35), see also Eq. (29). The inset shows the experimental
geometry. The ellipses on top illustrate the state of polarization for
various angles ϕ.

circular and linear photogalvanic effects obtained for the
point group C2v . The total current is well fitted by Eqs. (14)
describing the dominating circular photogalvanic current Jref

of the unpatterned reference samples R1 and R2 as

Jref = JCref sin θ0ξPcirc, (34)

where J0,ref = γx ′y ′ t2
0 I0, I0 is the incident intensity, ξ =

tpts/t2
0 , tp and ts are the Fresnel transmission coefficients for

p- and s-polarized light, respectively, and t0 is the transmission
coefficient for normal incidence. The corresponding fit of
the circular photogalvanic current Jref excited by the right
circularly polarized light (Pcirc = 1) is shown by the full
line in Fig. 2. A photocurrent, but with substantially smaller
magnitude, is also obtained by applying linearly polarized
radiation. This current is caused by the LPGE and its
polarization behavior (not shown) is also well described by
Eqs. (14).

The situation changes drastically for samples ST1 with
asymmetric grating. Now a photocurrent can be detected even
at normal incidence. The width of the observed photocurrent
pulses is about 100 ns, which corresponds to the duration
of the THz laser pulse. In the patterned samples ST1
where the grooves are oriented along the [100] direction we
have measured a magnitude of the photocurrent at normal
incidence (Fig. 3) which is comparable and even larger than
the one obtained in the reference sample R1 at large angles
of incidence (Fig. 2). Moreover, the polarization behavior has
changed. Figure 3 shows the photocurrent generated at normal
incidence in sample ST1 as a function of the angle ϕ indicating
the helicity. The current is measured at an angle of 45◦ with
respect to the axes x and y and can be well fitted by an equal
superposition of jx and jy of Eqs. (29) yielding

J = J1 + J2S(ϕ) + J3C(ϕ) + JCPcirc(ϕ). (35)
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FIG. 4. Photocurrent measured as a function of the angle ϕ at
various angles of incidence θ0 in sample ST1 with an asymmetric
lateral structure prepared along the [100] cubic axis. The data for
θ0 �= 0 are shifted by ±5 μA for each ±5◦ step in θ0. The current
is measured at room temperature, excited by radiation with the
wavelength λ equals; 280 μm and power P ≈ 2 kW. Full lines are
fits to Eq. (35) [see also Eq. (29)]. The inset shows the experimental
geometry.

Here, the fitting parameters Jj (j = 1,2,3) and JC are
related to the coefficients χj and −γ in Eq. (29) by the
factor Ī /

√
2. Figure 3 shows that the helicity dependent

photocurrent JCPcirc(ϕ), denoted as circular transverse ratchet
effect, contributes a substantial fraction to the total current.

While the normal-incidence photocurrent is observed at
high and low temperatures and is always well described by
the phenomenological Eq. (13) (see Fig. 3), the microscopic
theory presented above [see Eqs. (29)–(31)] is only applicable
for the room-temperature data. Indeed, the theory has been
developed for the nondegenerate Boltzmann statistics and
is invalid for the low-temperature region characterized by
the Fermi energy εF � kBT . What is even more important,
with decreasing temperature the electron mean free path
length le becomes comparable with and even longer than the
lateral superlattice period. This should be accompanied by a
changeover from the mechanism related to the in-plane light
intensity modulation with j ∝ Ī h1V1 to the mechanism of
photocurrents arising in an asymmetric lateral potential for a
homogeneous excitation and obtained by solving the kinetic
equation (1) in the fifth-order perturbation theory, namely, the

second order in the amplitude of the light electric field E0

and the third order in the lateral potential; see Ref. 10. The
measurement of the detailed temperature dependence of the
photocurrent, the development of the theory in the case le > d,
and the comparison between theory and experiment is beyond
the scope of the present work. Therefore we focus below on
the room-temperature data.

Equations (29) suggest that the ratchet currents display a
maximum at normal incidence and are an even function with
respect to the angle of incidence. In order to verify this we
measured the polarization dependence of the photocurrent
for various angles of incidence. The corresponding data are
shown in Fig. 4. In this figure the full lines are fits to
Eq. (35), which is applicable not only for normal but also
for oblique incidence. In the latter case, the current is a
sum of contributions due to the ratchet effect described by
Eqs. (29) and the photogalvanic effect given by Eqs. (14).
Figure 5 displays the magnitude of the helicity dependent
currents as a function of the angle of incidence θ0 for sample
ST1 (full circles) and the unstructured reference sample R1
(open circles). In addition, the θ0 dependence of the other
three contributions in Eq. (35) are shown for the sample ST1.
To extract the current Jcirc from the total current we used the
fact that the corresponding contribution to J is proportional to
sin 2ϕ and changes its sign upon switching the helicity while
all the other terms remain unchanged. Taking the difference of
photocurrents of right- and left-handed radiation, we get the
values of Jcirc.

As addressed above, in the structured sample ST1, the
current Jcirc excited at oblique incidence consists of two
contributions. The first one has the same origin as the one
observed in the reference sample R1 and is described by
Eq. (34). The second one is due to the lateral structure and
corresponds to the transverse ratchet effect. The dependence
of the circular photocurrent on the angle of incidence θ0 can
be well fitted by

Jcirc = (J0,ref sin θ0 + JC cos θ0)ξ. (36)

 

FIG. 5. Angle of incidence dependence of the photocurrent.
• and ◦: current Jcirc measured in sample ST1 and the reference sample
R1, respectively. �, �, and � are current contributions proportional
to J3, J2, and J1. Dotted line is the fit after Eq. (38), solid and dashed
lines to Eq. (36).
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FIG. 6. Photocurrent J measured as a function of the azimuth
angle α under normal incidence at room temperature and T = 10 K
in sample ST1 with the asymmetric lateral structure along the [100]
axis. The photocurrent is excited by linearly polarized radiation with
the wavelength λ = 280 μm and power P ≈ 2 kW. Full lines are fits
to Eq. (37); see also Eq. (29). We used for fitting the same values of Jj

as in the experiments with elliptically polarized radiation; see Fig. 3.
Left inset shows the experimental geometry, and right inset defines
the angle α. Arrows on top indicate the polarization corresponding to
various values of α.

Now we turn to the photon helicity independent contribu-
tions to the photocurrent, denoted by the coefficients Jj in
Eq. (35), which describe photocurrents generated by linearly
polarized radiation and a polarization independent contribution
J1. Figure 6 shows the dependence of the normal-incidence
photocurrent J on the azimuth angle α. We have found that all
data can be well fitted by

J = J1 + J2S(α) + J3C(α) (37)

in agreement with the microscopic theory of ratchet effects
given by Eqs. (29). We emphasize that, as expected from the
theory, Jj are the same fitting parameters as the ones used for
the data shown in Fig. 3. Figure 5 shows the dependence of
the polarization independent contribution, proportional to the
coefficient J1, on the angle of incidence θ0. In this case, the
experimental data can be well fitted by

J = J1 cos θ0ξ. (38)

Figures 3 and 6 demonstrate that the dominant contribution to
the photocurrent is polarization independent and can therefore
be obtained by unpolarized radiation. In the microscopic
theory this photocurrent is mostly due to Seebeck ratchet effect
and is described by the term proportional to χ1 in Eqs. (29).

The results obtained on the second set of lateral samples,
ST2, are shown in Fig. 7. Again, we start the discussion with
the photocurrent in the reference, here the unstructured part of
the Hall bar (see inset of Fig. 7). Also here, a photocurrent
is only observed at oblique incidence. This finding is in
agreement with the results above underlining once again
that ratchet effects do not occur in unpatterned structures.
In the patterned part of the sample, however, a remarkable

FIG. 7. Photocurrent Jx measured at sample ST2 as a function
of the azimuth angle α at normal incidence and a wavelength of
λ = 280 μm and power P ≈ 9 kW. The dependences for both parts
with and without asymmetric stripes are shown. The current induced
in the structured part by linearly polarized radiation is well fitted
by Eq. (39); see also Eq. (29). The inset displays the design of the
Hall bar with the structured and the unpatterned part. Arrows on top
indicate the polarization corresponding to various values of α.

photocurrent Jx can be observed at normal incidence. As
shown in Fig. 7, the current, which flows perpendicularly to
the asymmetric stripes, strongly depends on the azimuth angle
α of the light’s polarization defined above and can be well
fitted by

J = J1 + J2C(α). (39)

This is fully in line with the theory of the ratchet effect
discussed above (see Secs. III and VI) and given by Eqs. (29).
Our observation demonstrates that an asymmetric periodic
potential can be controllably introduced by the ABC gate.
We note that in this sample the interplay of the polarization
independent Seebeck photocurrent J1 [Eq. (24)] and linear
ratchet photocurrent proportional to J2 [or to the coefficient

FIG. 8. Shubnikov–de Haas oscillations measured at 100 mK in
the unpatterned reference section of the ST2 sample.
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FIG. 9. Longitudinal resistance ρxx in the modulated part of the
Hall bar sample ST2. At low B, 1/B periodic commensurability
oscillation indicate the presence of a weak periodic potential. The
1/B periodicity of the low-field oscillations is evident from the inset
where the oscillation index λC is plotted vs the resistance minima
position 1/B.

χ2 in Eqs. (29)] yields a maximum of the signal for the
radiation electric field aligned perpendicular to the direction
of modulation.

To check that the 2DES potential is in fact modulated,
we carried out magnetotransport measurements at low tem-
peratures. Corresponding data of the longitudinal resistance
ρxx of the unpatterned reference area as a function of the
magnetic field Bz are shown in Fig. 8 and display pronounced
Shubnikov–de Haas oscillations. As the mean free path le
in the superlattice device is about 9 μm and hence longer
than the period of the SL as well as much longer than the
average distance between neighboring finger strips we expect
commensurability effects to occur. 27 In this limit the periodic
potential causes 1/B periodic resistance oscillation where
minima are given by the condition

2RC =
(

λC − 1

4

)
d, λC = 1,2,3 · · · . (40)

Here, 2RC is the semiclassical cyclotron orbit diameter and
λC is the oscillation index. Such commensurability (or Weiss
oscillations) are clearly visible at low magnetic fields of the
trace measured in the superlattice part of the sample, as
presented in Fig. 9. The SL period d extracted from the Weiss
oscillations (WO) is about 570 nm and agrees with one of
the Fourier components of the asymmetric periodic potential.

Why this particular Fourier component dominates is a subject
of future investigations. Qualitatively it is understandable
that the contribution stemming from the full periodicity of
3.8 μm is cut off due to scattering, as the circumference
of the corresponding cyclotron orbit is about le, and that
contributions with much smaller periodicity are cut off as the
corresponding Fourier coefficients get exponentially damped
with increasing surface-2DES distance. 28 Nonetheless, the
presence of commensurability effects is a clear signature of
the presence of a weak periodic potential.

IX. SUMMARY

The lateral grating etched into the sample’s surface or
deposition of periodic metal stripes on the sample top induce a
periodic lateral potential acting on the two-dimensional elec-
tron gas. As a consequence, the magnetotransport properties
of the heterostructure changes and 1/B oscillations appear
at low temperatures in the longitudinal magnetoresistance.
In addition, if illuminated, it modifies the normally incident
radiation causing its spatial modulation in plane of the
electron gas. If the lateral superlattice is asymmetric the
spatial modulations of the static lateral potential V (x) and
the radiation intensity I (x) are shifted relative to each other.
As a result the product of the static force −dV (x)/dx and
the photothermal modulation of the electron density δN(x)
has a nonzero space average and therefore a homogeneous
electric current is generated, an effect previously predicted
by Blanter and Büttiker.15 The class of electronic ratchets is
extended to polarization-sensitive linear and circular ratchets.
The ratchet currents which are sensitive to the linear and
circular polarization of the light arise in the same system
with broken symmetry due to the phase shift between the
periodic potential and the periodic light field resulting from
near field diffraction. They appear because the carriers in the
laterally modulated quantum wells move in two directions and
are subjected to the action of the two-component electric field.
In contrast to the photothermal current, the linear and circular
ratchet currents are independent of the energy relaxation time
and controlled only by the momentum relaxation time.
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