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Ground-state properties of microcavity polariton condensates at arbitrary excitation density
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The ground state of microcavity polariton Bose-Einstein condensates (BEC’s) is determined as a function of
experimentally tunable parameters (the excitation density and the detuning of cavity photons), and also a material
parameter (the ultraviolet cutoff). To obtain the ground state at an arbitrary excitation density, an interpolation
method for the BEC-BCS crossover of excitonic insulators is extended to microcavity polariton systems in two
or three dimensions. The ground state of the condensate changes from excitonic to photonic with an increase in
the excitation density. This change is accompanied by several interesting features: (i) A laserlike input (excitation
density) and output (photon density) relation with a sharp onset for largely detuned systems, which changes to
that with a smooth onset for slightly detuned systems. (ii) The origin of the binding force of electron-hole pairs
changes from Coulomb attraction to photon-mediated interactions, resulting in the formation of strongly bound
pairs with a small radius, such as Frenkel excitons, in the photonic regime. The change in the ground state can be
a crossover or a first-order transition, depending on the above-mentioned parameters, and is studied by plotting
phase diagrams.
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I. INTRODUCTION

Polaritons in semiconductor microcavities have been ob-
served to exhibit Bose-Einstein condensation (BEC).1,2 Be-
cause of light-matter coupling, the polariton has an extremely
small mass (10−4 times the free-electron mass), resulting
in a high critical temperature and low critical density. The
transition temperature of polariton condensation can be higher
than room temperature,3 which is remarkable considering
that it has been difficult to realize BEC in exciton systems
for a long time.4 This implies that polariton condensates
are robust against fluctuations once they achieve quantum
coherence. In fact, in many ways, a polariton BEC is similar
to a BEC of neutral atoms in a thermal equilibrium,5 despite
its nonequilibrium nature. A great deal of evidence has been
obtained for the superfluidity of polariton condensates, such as
the detection of the Goldstone mode6 and quantized vortices,7

by measuring their collective fluid dynamics8 and Landau
critical velocity.9

All the above experiments have been carried out in a low-
density regime where excitons can be regarded as bosons (for a
recent review article, see Ref. 10). In the high-density regime,
the dissipative nature of polaritons dominates and normal
lasing occurs due to the carrier heating.11,12 The threshold
density of lasing is much higher than that of BEC. Therefore,
in the current experimental situations, polariton systems can
be regarded as ground states at low density and nonequilibrium
stationary-state like lasers at high density. In both cases, how-
ever, polariton condensates are in a nonequilibrium stationary
state with a balance between pumping and losses.13–15 Which
situation occurs depends on two time scales, i.e., the lifetime
of the polaritons and the thermalization time.14,16 Although not
observed in the current experiments, the possibility of quantum
condensation of polaritons at high density cannot be ruled out.
Such condensates formed at high density may differ from the
conventional lasers17 and the polariton condensates formed at
low density. Therefore, the relationship between a polariton
BEC at high density and lasers will have to be clarified. To this
end, here, we study the ground states of polariton condensates

at an arbitrary excitation density. We have recently reported
the main results in a Brief Report18 for this problem. In this
paper, more detailed results and a detailed comparison to other
related systems, such as electron-hole systems without cavity
and lasers, are shown.

When the polariton lifetime is longer than the thermaliza-
tion time, the stationary state of a closed microcavity polariton
system appears to be well described by its ground state.14,16 In
this study, assuming such a situation, we determine the ground
state for a fixed excitation density at zero temperature as a
function of experimentally variable parameters, i.e., excitation
density and detuning,19 and ultraviolet cutoff determined by
the lattice constant.18,20,21 In past studies, mean-field theories
have been used to discuss the low excitation density22,23

and high excitation density24,25 by considering two different
models. These theories are complementary,26 but their rela-
tionship is somewhat ambiguous. Here, we also investigate
the medium-density region where the electron-hole (e-h) wave
function of the relative motion assumes importance. It is
shown that the ground-state energy and wave function change
gradually from those of excitons to photons as the excitation
density increases. The change can be a crossover or a first-order
transition, depending on the parameters considered. The latter
is characterized by a jump in the photonic fraction, and a
sudden narrowing of the e-h wave function that is accompanied
by a change in the binding force from Coulombic force to
photon-mediated force. The momentum distribution function
and the excitation spectrum are also evaluated with the change
in the ground states.

This paper is organized as follows. In Sec. II, we explain
a model Hamiltonian describing the polariton systems in
semiconductor microcavities. In Sec. III, we describe the
variational approach employed to determine the ground state.
We also introduce the interpolating wave functions for the
polariton systems. In Secs. IV and V, the results obtained
for a small cutoff and a large cutoff are shown, respectively.
These results are compared to ascertain whether the evolution
of the system ground state is a smooth crossover or involves
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a first-order transition. In Secs. IV F and IV G, we carefully
compare our results obtained using an interpolation method
with those obtained using other models for the low-density
and high-density limits.22,23,25 We summarize our conclusions
in Sec. VI.

II. MODELS

The polariton system can be regarded as consisting of
electrons and photons with a total excitation number Nex, and
interacting through electric-dipole coupling. The Hamiltonian
is given by H = Hel + Hel-el + Hph + Hel-ph,25

Hel =
∑

k

ξe,ke
†
kek + ξh,kh

†
khk, (1)

Hel-el =
∑
q �=0

Uqρqρ−q, (2)

Hph =
∑

k

[
√

(ck)2 + (h̄ωc)2 − μ]ψ†
kψk, (3)

Hel-ph = −g
∑
k,q

(ψqe
†
k+qh

†
−k + ψ†

qh−kek+q), (4)

where ξe(h),k[= h̄2k2/2me(h) + (Eg − μ)/2] and Uq[= πe2/

ε∗Sq(= 2πe2/ε∗V q2)] are momentum representations of the
electronic dispersion in an effective-mass approximation and
the Coulomb interaction potential for 2D (3D) systems,
respectively. Here, the dielectric constant of a semiconductor
material and the quantization area for 2D (3D) systems are
given by ε∗ and S (V ), respectively. The reduced mass of
an e-h pair is denoted by mr . Further, ek , hk , and ψk are
the annihilation operators of conduction electrons, valence
holes, and photons with momentum k, respectively. The
chemical potential μ is introduced to fix the number of
total excitations Nex ≡ ∑

k ψ
†
kψk + (e†kek + h

†
khk)/2, which is

conserved for the Hamiltonian. Accordingly, the term −μNex

is included in the Hamiltonian. The Fourier transform of the
density operator is given by ρq �=0 = ∑

k(e†k+qek + h
†
k+qhk).

The zero-point cavity frequency is denoted by ωc, and the
detuning parameter is defined as d = (h̄ωc − Eg)/ε0, where ε0

is the exciton Rydberg energy in 3D systems. The light-matter
coupling constant is given by g = dcv

√
2πh̄ωc/ε∗SLcav(=

dcv

√
2πh̄ωc/ε∗V ) for 2D (3D) systems. (Lcav is the effective

cavity length.27) The momentum dependence of the dipole
matrix element dcv is neglected here. Instead, a momentum
cutoff kc is introduced so as to restrict the electronic states
contributing to the polariton formation to |k| < kc. It is smaller
than or roughly equal to the inverse of the lattice spacing (e.g.,
60/a0 for a GaAs-based microcavity, with a0 being the exciton
Bohr radius).

III. VARIATIONAL APPROACH FOR TWO- AND
THREE-DIMENSIONAL SYSTEMS

Considering the coherent state of polarizations and photons,
the mean-field ground state of a polariton condensate is given
by

|	〉 = e(λψ
†
0−λψ0)

∏
k

(eiχkuk + vke
†
kh

†
−k)|vac〉, (5)

where |vac〉 denotes the vacuum state with no conduction
electrons, no valence holes, and no excited photons. The
normalization condition, u2

k + v2
k = 1, allows us to include

the phase-space filling effects of fermions. Without the loss
of generality, we can parametrize uk = cos θk and vk = sin θk .
The variational parameters λ, χk , uk , and vk are determined
by minimizing the total energy E(= 〈H + μNex〉) for a fixed
〈Nex〉. In the coherent state, all the e-h pairs are found to have
the same phase: χk = 0.22

After angular integration, for 2D systems, the mean-field
energy per excitation ε(=E/Nex) and the total excitation
density ρex(=Nex/S) are given by

ε/ε0 = R2
s

a2
0

(
dλ̃2 + 1

2

∫ κc

0
κ3v2

kdκ − g̃λ̃

∫ κc

0
κukvkdκ

−
∫ κc

0

∫ κc

0
Q2D

κ1,κ2
(v2

k1v
2
k2 + uk1vk1uk2vk2)dκ1dκ2

)
,

(6)

ρex = 1

πa2
0

(
λ̃2 + 1

2

∫ κc

0
κv2

kdκ

)
≡ 1

πR2
s

, (7)

where κ = ka0, κc = kca0, and Q2D
κ1,κ2

= 2κ1κ2
π(κ1+κ2)K1( 4κ1κ2

(κ1+κ2)2 ),
with K1(z) being the complete elliptic integral of the first
kind, Rs being the mean separation, λ̃(= λ

√
πa2

0/S) being
the normalized photon field amplitude, and g̃(= g

√
S/πa2

0ε
2
0)

being a dimensionless coupling constant. For 3D systems,
ε(=E/Nex) and ρex(= Nex/V ) are similarly given by

ε/ε0 = R3
s

a3
0

(
dλ̃2 + 2

3π

∫ κc

0
κ4v2

kdκ − g̃λ̃

∫ κc

0
κ2ukvkdκ

−
∫ κc

0

∫ κc

0
Q3D

κ1,κ2
(v2

k1v
2
k2 + uk1vk1uk2vk2)dκ1dκ2

)
,

(8)

ρex = 3

4πa3
0

(
λ̃2 + 2

3π

∫ κc

0
κ2v2

kdκ

)
= 3

4πR3
s

, (9)

where κ = ka0, κc = kca0, Q3D
κ1,κ2

= 4κ1κ2
3π2 ln | κ1+κ2

κ1−κ2
|, Rs is the

mean separation, λ̃ is the normalized photon field amplitude
given by λ̃ = λ

√
4πa3

0/3V , and g̃(= g
√

3V/4πa3
0ε

2
0) is a

dimensionless coupling constant.
It is convenient to use an approximate interpolation method

for the excitonic constituent,28 rather than treat an infinite
numbers of variational parameters uk and vk for all k. For 2D
systems, we use the following formulas:

ukvk

u2
k − v2

k

= ζ sgn[(κ/2)2 − �]√
1 + (κ/2)2

√
(κ/2)4 − 2�(κ/2)2 + η2�2

.

(10)

This form of the wave function is chosen so as to guarantee
correct results for three limiting cases: (i) exciton BEC
[λ̃Rs � a0, ζ � 1, � = −1, η = 1]—the low-density limit
with a negligible photonic fraction, (ii) electron-hole plasma
[λ̃Rs � a0, ζ � 1, � = (kF a0/2)2, η = 1]—the high-density
limit with a negligible photonic fraction, and (iii) photonic
BEC [λ̃Rs → a0, η = 0, ζ/

√|�| is finite while ζ = ∞, � =
−∞]—the photon-dominated regime with a small excitonic
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fraction. For 3D systems, we directly use a wave function
proposed by Comte and Nozieres,28

ukvk

u2
k − v2

k

= ζ

(1 + κ2)(κ2 − �)
. (11)

This functional form also covers the above-mentioned three
limits: (i) λ̃2/3Rs � a0, ζ � 1, � = −1; (ii) λ̃2/3Rs � a0,
ζ � 1, � = (kF a0)2; and (iii) λ̃2/3Rs → a0, ζ/|�| is finite
while ζ = ∞, � = −∞.

Limits (i) and (ii) are already known for the problem of
BEC-BCS crossover in electron-hole systems.28 As for the
limit unique to the polariton systems, i.e., (iii), the parameter
is defined to ensure vk ∝ 1/k2(�1) at a large momentum,
which will be shown in Sec. V. With the interpolating wave
functions defined above, we can discuss the crossover of the
ground states among the three limits via polariton BEC. We
solve the variational problem in terms of the four parameters
ζ , �, η, and λ for 2D systems, and the three parameters ζ , �,
and λ for 3D systems.

IV. RESULTS FOR A SMALL CUTOFF

In this section, we will present the solution to the variational
problem when the cutoff parameter kc is chosen not too large.
In this case, the cutoff effect is weak and the variational ground
states change smoothly for all excitation densities and for
all values of d. The case of a very large cutoff parameter
is discussed in Sec. V.

A. Energy per particle and chemical potential

Figure 1 shows the mean-field energy per excitation (ε) and
the chemical potential (μ) plotted as a function of Rs with
a varying detuning parameter. Here, μ is evaluated using a
variational equation ∂〈H 〉/∂λ = 0 that reduces to

μ = h̄ωc − g

2λ

∑
k

ukvk. (12)

Both ε and μ are monotonic in Rs for both 2D and 3D systems.
In the weak-coupling case with large detuning, h̄ωc −

(exciton level) � g̃, ε and μ are positioned at the energy
levels of a single exciton in the low-density limit with
large Rs : ε/ε0, μ/ε0 → −4 for 2D and ε/ε0, μ/ε0 → −1
for 3D. On the other hand, for the strong-coupling case,
h̄ωc − (exciton level) � O(g̃), ε and μ separate from the
single exciton level for large Rs , because the carriers are
already coupled with the photons in the low-density limit.
Thus, ε and μ are rather given by the energy levels of a single
polariton in the strong-coupling case: d = −3,0 in Figs. 1(a)
and 1(b), and d = −0.7 in Figs. 1(c) and 1(d). As the density
increases (Rs decreases), ε and μ increase monotonically and
follow the dashed curves obtained for electron-hole systems
without a cavity in Ref. 28 (Comte-Nozieres) for large d. On
the other hand, they gradually deviate from the dashed curves
for small d. In the high-density limit Rs � a0, ε and μ saturate
at energy levels below the photon levels for any value of d.

The energy saturation at high density is explained by
fermionic phase-space filling. The number of e-h pairs
increases until the conduction electron band is filled up to the
photon level, and thereafter, photonic excitations replace those
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FIG. 1. (Color online) Energy per excitation ε plotted as a
function of Rs for (a) 2D systems with g̃ = 1 and kca0 = 30 and
(c) 3D systems with g̃ = 0.1 and kca0 = 20, for various d . The
chemical potential μ is plotted as a function of Rs for (b) 2D systems
and (d) 3D systems, respectively, for the same sets of d as (a) and
(c). The dashed curves are obtained by applying the theory of exciton
condensation.28 The dotted curves denote the results for electron-hole
(e-h) plasma.

of e-h pairs to minimize the total energy (Fig. 2). This simple
explanation can be applied to the case of weak coupling with
large d and small g̃; however, it cannot be applied to the case of
strong coupling with small d and large g̃ because both photons
and carriers exist even in the low-density limit (although it is
correct qualitatively). The photonic characteristic is observed
above the density (Rs < R∗

s ), where ε and μ deviate from the
dashed curves.

The overall results can be roughly summarized as follows:
the excitation energy in the ground states of polariton conden-
sates changes from that of a single exciton to cavity photons,
indicating that the ground states change from excitonic to
photonic with an increase in the density.

B. Photon and carrier density

The crossover from excitonic BEC to photonic BEC
referred to in the previous subsection can be verified directly
from the Rs dependency of the photonic fraction in the
polariton condensates (λ̃2R2

s in 2D systems, and λ̃2R3
s in 3D

systems), which is shown in Fig. 3 [(a) for 2D systems and
(b) for 3D systems]. The photonic fraction is also monotonic
in Rs . For the weak-coupling case with large d, it increases
sharply from zero at the onset of Rs , which corresponds to
R∗

s mentioned above. Above the onset density (Rs < R∗
s ), the

polariton condensates exhibit photonic characteristics. For the
strong-coupling case with small d, the photonic fraction is
already finite in the low-density limit; hence, there is no onset
density above which the photonic characteristic appears. This
is consistent with the observation in Fig. 1 that the energies
ε and μ largely deviate from that of the exciton BEC in the
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FIG. 2. (Color online) Energy saturation found in Fig. 1. (μ ≡
μC − μV in the figure.)

low-density limit for small d. These characteristics are similar
for both 2D and 3D systems.

In Fig. 4, we plot the densities of photons (nph) and carriers
(ncar) as a function of the total excitation density (ntot) for
various d. For the strong-coupling case, densities of both
photons and carriers increase together with ntot from the
low-density limit, and the clear onset is not observed. On
the other hand, for the weak-coupling case with large d, the
sharp onset (inverted triangles in Fig. 4) like the input-output
curves of lasers is found clearly as well as in Refs. 29, 25,
and 21. At the onset, the increase of nph and the saturation of
ncar start sharply. The crossover between the smooth and sharp
onsets can be understood physically as follows. The laserlike
behavior with a sharp onset is observed if d is large and if
the values of ε and μ at the onset R∗

s are close to those of
e-h plasma (dotted line in Fig. 1). In this case, the carriers
are considered to form e-h plasma, and electrons and holes are
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FIG. 3. (Color online) Photonic fraction plotted as function of
Rs for (a) 2D systems and (b) 3D systems, for various d . The same
parameter sets are used as those in Figs. 1(a) and 1(b), respectively.
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FIG. 4. (Color online) Photon and carrier density in polariton
condensates as a function of total excitation density ntot: for 2D
systems with (a) d = −3, (b) d = 0, (c) d = 5, and (d) d = 20
and for 3D systems with (e) d = −0.7, (f) d = 0, (g) d = 1, and
(h) d = 8. Other parameters are the same as those in Fig. 1. In the
upper horizontal axes of each figure, the corresponding Rs values are
indicated. The onset densities where nph starts to increase are marked
by inverted triangles. For large d , curves are similar to input vs output
and input vs inversion-population curves typical of lasers.

unbound for Rs < R∗
s . This situation is quite similar to the case

of conventional semiconductor lasers at high carrier density
with negligible Coulomb interaction. On the other hand, for
the case of strong coupling with small d, the particles that tend
to form condensates are the polaritons—a mixed state of an
exciton and a photon—at low density. Thus, nph increases with
excitation at low density; hence, it shows the smooth onset of
the photon density.

C. Microscopic properties: Momentum distribution of carriers
and the wave function of e-h pairs

In the preceding subsections, we discussed macroscopic
quantities such as ground-state energies and photon and carrier
densities. Here, we focus on microscopic properties.

Figure 5 shows the momentum distribution of carriers
[fe(k) = fh(k)] given by 〈e†kek〉 = v2

k at various Rs and d for
2D [Figs. 5(a)–5(c)] and 3D [Figs. 5(d) and 5(e)] systems. For
the strong-coupling case with small d, fe(k) does not exceed
0.5 for all k and over the entire density regime, i.e., there is
no inversion population [e.g., see Figs. 5(a) and 5(b)]. For
the weak-coupling case with large d, on the other hand, fe(k)
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FIG. 5. (Color online) Momentum distribution of carriers
〈a†

kak〉 = v2
k for various Rs and d: for 2D systems with (a) d = −3,

(b) d = 5, and (c) d = 20 and for 3D systems with (d) d = −0.7,
(e) d = 1, and (f) d = 8. Other parameters are the same as those in
Fig. 1.

exceeds 0.5 and forms a Fermi surface at high density [e.g., see
Fig. 5(c), Rs = 0.5,0.3]. This is because photonic excitation
replaces carrier excitation at high density. For small d, the
crossover density (corresponding to Rs = R∗

s ) is small and the
carrier density cannot be large. For large d, on the other hand,
the carrier density can be sufficiently large to form a Fermi
surface, because the crossover density is sufficiently high.

As the density increases (Rs decreases), the momentum
distribution widens. In particular, for large d, the Fermi surface
disappears at high density and a plateau is found at fe(k) ∼ 0.5
for small k [e.g., see Figs. 5(c), Rs = 0.3 → 0.1, and 5(f),
Rs = 0.5 → 0.3]. This is due to minimization of total energy
in the presence of the large coherent photons. As Eastham
noted,22 the polarization 〈e†kh†

−k〉 = ukvk = sin θk cos θk tends
to maximize up to 0.5 [which means fe(k) → 0.5] to minimize
〈Hel-ph〉 when the coherent photon field grows. At the same
time, fe(k) → 0 for large k to minimize the kinetic energy.
To minimize the sum of kinetic energy and 〈Hel-ph〉 in the
photon-dominated regime, the broadening of fe(k) and the
plateau at fe(k) ∼ 0.5 occur (Fig. 5). As shown in the latter
section (Sec. V C), in the photon-dominated regime, the tails
of fe(k) at large k change from k−6 to k−4 in 2D systems, and

from k−8 to k−4 in 3D systems. The broadening of the large-k
tail is also a result of the light-matter coupling.

An interesting point is the nonmonotonic dependence of
the distribution function on the excitation density for large
d and small k; fe(k) increases and the carrier population
is inverted [fe(k) > 0.5] in the medium density region until
the photonic fraction is negligible. Above the onset density
(inverted triangles in Fig. 4) where the photonic fraction
becomes significant, the inverted population is depleted and
fe(k) decreases to ∼ 0.5. This feature is very similar to the
spectral hole burning in a laser.17 Besides, such nonmonotonic
dependencies of fe(k) are found only when the relationship
between the photon density and the excitation density exhibits
a curve similar to the input-output curves of the laser shown in
Fig. 4. Of course, there are differences between the depletions
of the carrier populations in the photonic regime of the
polariton condensates and in lasers. For lasers, the spectral hole
in the carrier distribution is found only in the small spectral
region, i.e., the width of the spectral hole in the momentum
space is small and corresponds roughly to the natural linewidth
of atomic transitions, γa . However, the depletion in the
carrier distribution function spreads over the entire momentum
space for the polariton condensates. Another difference is
that the saturated value of the population is determined by
nonequilibrium parameters such as cavity photon loss γph and
the natural linewidth of atoms γa in the case of the laser. In
fact, the saturated inversion is roughly ∝ γaγph/g

2 in the case
of lasers. On the other hand, the saturated inversion is ∼ 0 [i.e.,
fe(k) ∼ 0.5] in the case of the polariton condensates. However,
we neglected all the nonequilibrium loss parameters in our
model. Therefore, we find that the results for a polariton BEC
are consistent with those for lasers by setting γa = γph = 0.

The light-matter coupling effect is also seen in the wave
function of e-h pairs, pk = 〈a†

kbk〉 = ukvk , as shown in Fig. 6.
For small d, pk increases with the density, and the broadening
is already seen above relatively low density. For large d, pk

increases with the density at first. Thereafter, in the medium-
density regime, pk decreases for small k and increases for
k ∼ kF with a sharp peak, while the shape of the large k tail
does not change. This indicates the formation of the Fermi
surface. The carriers inside the Fermi sea cannot move freely;
hence, they do not contribute to the polarization. In contrast,
the carriers near the Fermi surface affect the polarization. In
addition, for the medium-density regime, coherent photons do
not affect the polarization. At the highest density with large
d, the coherent photons play a major role; the dip at small
k does not occur and a plateau is formed at the maximum
value pk ∼ 0.5 while a long tail is found at large k. In the
photon-dominated regime, the tails of pk change from k−3 to
k−2 in 2D systems, and from k−4 to k−2 in 3D systems.

D. Microscopic properties: Excitation spectrum of
Bogoliubov quasiparticles

In this subsection, we discuss the energy spectrum mea-
sured to add (subtract) one e-h pair to (from) the ground state
within the mean-field approximation. The energy spectrum
is described by the mean-field theory similar to that of the
excitation spectrum of Bogoliubov quasiparticles in BCS
superconductors.30 The energy spectrum will be observed in
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FIG. 6. (Color online) Momentum space profile of electron-hole
pairs pk = 〈a†

kbk〉 for various Rs and d: for 2D systems with
(a) d = −3, (b) d = 5, and (c) d = 20 and for 3D systems with
(d) d = −0.7, (e) d = 1, and (f) d = 8. Other parameters are the
same as those in Fig. 1.

the emission and absorption spectrum.23,31 The mean-field
Hamiltonian for the carrier part is expressed as H mf =∑

k 	
†
kHmf

k 	k in terms of 	k = (ek,h
†
−k) by neglecting the

constant shift. The self-energy �k and the pair gap �k are
given by

Hmf
k =

(
ξe,k + �k �k

�k −ξh,k − �k

)
,

�k = −2
∑
k′

Uk−k′v2
k′, (13)

�k = −2
∑
k′

Uk−k′uk′vk′ − gλ.

After the Bogoliubov transformation, we determine the energy
spectrum for the creation of an e-h pair as follows:

E±
k = ξe,k − ξh,k

2
±

√(
ξe,k + ξh,k

2
+ �k

)2

+ �2
k. (14)

In the polariton ground state, the Fermi sea is filled with
bogolons of the lower branch (E−

k ). Therefore, to create an
e-h pair with momentum k in the ground state, energy E(k) =
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FIG. 7. (Color online) Excitation spectrum of carriers E(k)/E(0)
for various Rs and d: for 2D systems with (a) d = −3, (b) d = 5,
and (c) d = 20 and for 3D systems with (d) d = −0.7, (e) d = 1, and
(f) d = 8. Other parameters are the same as those in Fig. 1.

E+
k − E−

k is needed. We plot in Figs. 7 and 8 the pair-excitation
spectrum E(k)/E(0) and the density of states (DOS),

D(ω − μ) = 1

S

∑
k,τ=±

δ(ω − μ − Eτ
k ), (15)

for various d and Rs .
For small d [Figs. 7(a) and 7(d)], the excitation spectrum

broadens as the density increases, and the value of k at
the minimum energy stays almost constant at k ∼ 0. In the
high-density photonic region, the bottom of the energy band
becomes flat, because the constant pair gap −gλ plays a
dominant role. Accordingly, the peak of the DOS becomes
sharp and high in the photonic regime [RS < 0.5 in Fig. 8(a)]
whose position shifts to higher energies with |gλ|. This implies
that, in the photon-dominated regime, e-h pairs are bound
mainly by photon-mediated interaction while the Coulomb
attraction has a small effect. The broadening of the spectrum
in the k space can be directly interpreted as the e-h pairs having
a size much smaller than the Bohr radius in real space. These
effects originate from the fact that an e-h pair is created at
the same position where photons are absorbed. This feature is
discussed again in Sec. V.
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the upper branch E+
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For large d [Figs. 7(c) and 7(f)], as the density increases,
the value of k at the energy minimum changes from zero to
k > 0 and the minimum of E(k)/E(0) decreases. This reflects
the formation of the Fermi surface, and the system enters from
an e-h BEC regime into an e-h BCS regime. As the density
increases, min[E(k)/E(0)] ∼ �kF

/εF decreases, and becomes
zero if the system enters an e-h plasma regime [the lower
dashed arrow in Fig. 7(b)]. In the e-h BCS regime, in addition
to the peak, a steplike change is found in the DOS [RS < 1
in Fig. 8(b)]. The steplike change is due to the nonmonotonic
shape of the spectrum in k space, which originates from the
existence of the Fermi surface. This feature of an excitonlike
regime is exactly the same as the result of Comte-Nozieres.28

At high density (Rs < R∗
s ), the coherent photon develops in the

condensate, and the constant pair gap −gλ becomes dominant.
As a result, the bottom of the energy band becomes flat and
broadening is seen in the k space. Accordingly, the peak in the
DOS becomes sharp and high, and the width of the step region
[length of the arrow in Fig. 8(b)] decreases with the density
(for RS < 0.2). For the higher density in the photonic regime,
the step will disappear.

In Fig. 9, we plot the minimum energy needed for breaking
an e-h pair, Emin = E(k = kmin), as a function of the mean
separation between carriers rs = √

1/πncar given by the carrier
density ncar, for various detunings (solid lines). The dashed
lines show the results of exciton BEC without the cavity
photons, where we can clearly see the BEC-BCS crossover
of the e-h pair, i.e., the pair gap smoothly changes from the
exciton binding energy at low density (large rs) to small values
decreasing with ncar at high density. For large detunings, the
pair gap of the polariton systems is almost the same as that of
the exciton condensates at low density, because the photonic
fraction is almost zero. Once the photonic fraction become
finite, the pair gap increases with the photonic components
and eventually diverges at the high excitation density. This
implies that electrons and holes are strongly bound because of
an increase in the photon-mediated attraction. As seen at d = 8
in Fig. 9(b), for very large detunings, the pair gap can have a
nonmonotonic dependency on the density. For small detunings,
Emin shows a monotonic increase and becomes greater than the
value for the exciton condensates.
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FIG. 9. (Color online) Minimal excitation energy Emin needed for
breaking the e-h pair plotted as a function of mean separation between
carriers: (a) 2D systems where rs = (πncar)−1/2 and (b) 3D systems
where rs = (4πncar/3)−1/3.

E. Phase diagram

Figure 10 shows zero-temperature phase diagrams for 2D
and 3D systems, with small cutoff. They consist of four
different phases, as explained below.

In the excitonic regime where Rs > R∗
s , the ground state

is classified into two groups even though there are no clear
boundaries. This is well known in the theory of the BEC-BCS
crossover of electron-hole systems.28 If the energy level of
one-particle excitation in e-h systems (dashed curves in Fig. 1)
is close to the single-exciton level −4ε0, the e-h pairs can
be regarded as exciton condensates. Thus, the low-density
regime (Rs � 1 for 2D systems and Rs � 2 for 3D systems)
is categorized as an “exciton BEC.” For higher densities
(Rs � 1 for 2D systems and Rs � 2 for 3D systems), which
are categorized as “e-h BCS,” e-h pairs are regarded as weakly
bound fermions such as Cooper pairs in BCS superconductors.
In the highest density regime of e-h BCS (Rs � 0.4 for
2D systems and Rs � 1 for 3D systems), the curve of the
e-h system (dashed line in Fig. 1) overlaps with that of
the e-h plasma (dotted line in Fig. 1). In this regime, e-h
pairs are almost unbound like e-h plasma and all excitations
are fermionic. Because R∗

s varies, d determines the regimes
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FIG. 10. (Color online) Phase diagram of a polariton system in
(d,Rs) space for small cutoff: (a) 2D systems with g̃ = 1,kca0 =
30, (b) 3D systems with g̃ = 0.1, kca0 = 20. The changes between
different phases are crossover, and the phase boundaries are shown
by dashed lines. The region where Coulomb attraction dominates the
photon-mediated interaction in the formation of e-h pairs is shaded
(pink).

through which the polariton system passes—exciton BEC and
e-h BCS—before the ground state becomes photonlike.

In addition to the two excitonic phases—exciton BEC and
e-h BCS—the phase diagram contains a “polariton BEC”
phase and a “photonic BEC” phase. Although we observe large
coherent polarization and coherent photons in the latter two
phases, we classify them as follows: excitations of carriers and
cavity photons both make a major contribution to the formation
of the condensates in the polariton BEC phase. On the other
hand, photonic excitations dominate carrier excitation in the
photonic BEC phase. All the ground states cross over in the
phases stated above; hence, the boundaries between different
phases are determined under certain conditions.32 As seen in
the phase diagram, the detuning parameter determines how the
condensate evolves from the low-density to the high-density
regime. For large detunings, the system experiences four types
of ground states from (to) exciton BEC, e-h BCS, polariton
BEC, and photonic BEC. For small detunings, the ground state
changes from a polariton BEC to a photonic BEC.

The phase diagrams are quite similar for 2D and 3D systems
in the case of small cutoff. The area of a polariton BEC phase is
larger in Fig. 10(a) than in Fig. 10(b); however, the difference
arises from our choice of coupling parameters g, and not from
the dimensionality.

F. Comparison with other models in the low-density limit

In this subsection, we compare our results to those obtained
with other models for the low-density limit.22,23 Eastham22

and Keeling23 studied the ground states and the fluctuations
around them in the low-density limits by using a generalized
Dicke model.33 In their works, they assumed an ensemble of
two-level atoms that interact with photons and not directly
with the other atoms by Coulomb force. Thus, the interaction
between atoms is only possible through interaction with
photons. The energy dispersion of the atomic transition is
described by a Gaussian distribution with a finite width.
An advantage of neglecting the two-body interaction is that
the full incorporation of the single occupancy conditions for
each atom, i.e., the Pauli blocking effect, is possible in the
path-integral formalism.22,23,34

The results obtained in Ref. 22 for the electronic distribution
(Fig. 2 of Ref. 22) can be compared with those shown in Fig. 5
in our paper. In Ref. 22, the distribution function changes
with an increase in the density as follows: (i) The Fermi step
shifts upward near the photon level and then broadens because
coupling to photons results in coherent polarization. In other
words, the e-h pair almost reaches the resonance level. (ii) In
the high-density limit, the excitations become photonic and
all atoms show Rabi oscillation by following the photonic
field oscillation. (iii) As a result, the electronic occupancy
is fixed at 0.5. The Fermi step observed at low density for
their model is as expected because coupling with photons and
polarization does not occur. However, our analysis reveals
different results. Because of the intrinsic Coulomb interaction
between electrons and holes, the polarization occurs before
photonic excitation and there is no Fermi step at low density.
This feature is usually observed in excitonic insulators.28

Owing to the Coulomb interaction, the distribution function
fe(k) in Fig. 5 appears similar to the wave function of a 1s

exciton fe(k) ∝ |ϕ1s(k)|2 at low density. Further, similar to the
analysis results of the Dicke model, our results also show a
broadening in the Fermi step in the medium-density regime
and a plateau at 0.5 in the high-density regime.

G. Comparison with other model in the high-density limit

In this subsection, we compare our results with those
obtained using two-band models of semiconductor carriers
in the high-density limit.24,25 They are based on the high-
density approximation in the weak-coupling limit (the pair
potential � � εF in their papers), which assumes the well-
defined Fermi surface. Further, Marchetti25 assumed the
screened Coulomb potential, which is reasonably treated
by a short-range contact potential with the strength V ∝
(1 + 8ncara

2
0/π )−1/2. Due to the screening effect, the pair gap

decreases with the density in the excitonic regime. Contrary
to that, at large density where photon-mediated attraction
becomes dominant, the pair gap increases with the density.
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This results in the nonmonotonic change in the pair gap as
a function of the density (Fig. 6 of Marchetti25). Marchetti’s
model for the photon-dominated regime can be replaced by
the free-carrier theory by Aleksandrov,24 where the pair gap is
given by gλ.

Our model reproduces the result of weak-coupling theories
including the nonmonotonic dependence (Fig. 9) for large
detunings between the e-h BCS phase and the (e-h) polariton
BEC phase. (See also Fig. 1 of Ref. 24 for the comparison
with the DOS in Fig. 8.) In our model, however, the Fermi
surface is completely smoothed and the distribution function
becomes flat at fe(k) ∼ 0.5 for the larger density in the
photonic regime. There, as they noticed,25 the weak-coupling
theory fails since the assumption (� � εF ) does not hold.
Therefore, our model extends the past theories not only to the
low densities, but also to the high-density limit of photonic
condensates gλ � μ − Eg .

Another difference from Marchetti25 is that our model
uses the bare Coulomb potential with no screening effects.
However, being similar to them, the pair gap decreases with
the density, as shown in Fig. 9 in the e-h-BCS regime, because
the formation of e-h pairs is possible only around the Fermi
surface [peaks at the Fermi surface in Figs. 7(c) and 7(f)]. For
high carrier density in 2D systems, the restriction of the phase
space of scattering processes reduces the Coulomb interaction
to a greater extent than screening does. In fact, the strength
of the bare Coulomb attraction for the e-h pair decreases with
the density roughly as 1/kF ∝ (ncar)−1/2 for 2D systems. In
the high-density regime, the dependency is approximately the
same for the screened model, ∝ (1 + 8ncara

2
0/π )−1/2. Thus,

our model gives results similar to those of the screened model
for the e-h-BCS regime. An advantage of our interpolation
method is that we do not need to assume that a Fermi
surface exists. As noted in Sec. III, our theory can interpolate
among three limits of (i) exciton BEC, (ii) e-h plasma, and
(iii) photonic BEC.

V. RESULTS FOR A LARGE CUTOFF

In this section, we will present the solution to the variational
problem when the cutoff parameter kc is large. In this case,
there arises a possibility for the first-order transition to occur
at high density owing to the large cutoff, especially for
3D systems. This is because the dipole-coupling parameter
does not depend on the momentum of carrier excitation
[see Eq. (4)]; in other words, each photon forms a pair of
an electron and hole at the same position. A photon-mediated
binding force introduces an attractive δ potential for the e-h
pairs, and the divergence of the binding energy without any
short-distance cutoff. The smallest length scale is the lattice
constant of semiconductors, and it affects the ground states of
polariton condensates. Here, we focus on such short-distance
effects in more detail.

A. Short-distance cutoff: Possibility of first-order transition

For a small cutoff, the variational problem always has
one solution that can smoothly connect the three limits of
different types of ground states, (i)–(iii) referred to in Sec. III,

(a) (b)

FIG. 11. (Color online) Change in the solution to the variational
problem. While an energy minimum (polariton solution) gradually
changes for small cutoff kc (a), the system ground state switches to
another minimum (photon solution) for large cutoff kc (b).

at different densities. We will call this solution a “polariton
solution.” For a polariton solution, the polariton BEC gradually
approaches the limit of (iii) a photonic BEC [Fig. 11(a)].
For a large cutoff, the energy profile within the space of
variational parameters shows an additional minimum even at
low excitation density. The corresponding solution is different
from the polariton solution and is located near the limit of (iii)
in the parameter space. We will call this solution a “photon
solution.” As shown in Fig. 11(b), the total energy of the
polariton solution is less than that of the photon solution at low
density. However, at a certain density, the energy of the photon
solution becomes less than that of the polariton solution.
This clearly suggests the possibility of the occurrence of a
first-order transition from the polariton solution to the photon
solution.

In Figs. 12(a) and 12(b), we show the Rs dependencies of
the ground-state energy per excitation and photonic fraction in
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FIG. 12. (Color online) (a) Energy per excitation ε and (b)
photonic fraction are plotted as a function of Rs for various cutoff
parameters kca0 = 20, 60, 80, 100, and 120 and for 3D systems with
d = 1, g̃ = 0.1. The dashed curve in (a) represents the result obtained
by applying the theory of exciton condensation.28
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the condensate, calculated for d = 1 and various values of kc.
The change in the polariton state at kca0 = 60, 80, 100, and
120 is not a crossover but rather a first-order transition because
of a discontinuous jump in the slope of the curve in Fig. 12(a).
Similarly, as shown in Fig. 12(b), the photonic fraction jumps
to almost 100% at the transition density. The system ground
state is described by the photon solution in the high-density
regime where the photonic fraction is almost 100%. The energy
of the photon solution is almost independent of the density
whose value decreases with an increase in kc. This is due to
the enhancement of the binding energy by the photon-mediated
short-range attraction for large kc. This point is discussed
in Sec. V C in further detail. For large kca0, the energy of
the photon solution is always below that of the polariton
solution for all densities. However, this situation arises only
when the cutoff parameter is chosen to be unrealistically
large.

The first-order transition observed with a jump in the
chemical potential in Refs. 22 and 23 (e.g., Fig. 1 of Ref. 22) for
large detunings should be mentioned here. The physics of the
transition studied therein is different from the one found in our
model. The former transition is explained by the symmetry of
a Gaussian distribution of atomic transition energies about the
center. For large detunings, the dipole interaction energy Hel-ph

increases from zero to the maximum value and then decreases
to zero when the atomic excitation increases from zero to that
for half-filling and then to that for full occupancy. Owing to
the nonmonotonic change in the dipole coupling strength, the
photonic density increases and decreases again from zero to
that at full occupancy of atomic excitations. Above the density
at full occupancy of atoms, the photonic excitation dominates
and increases again. The nonmonotonic dependency of the
photon amplitude (Fig. 3 of Ref. 22) causes a first-order
transition from excitonic to photonic condensation.23 Indeed,
the transition occurs only for large detunings. The symmetry
is not observed for small detunings because the photonic
excitation increases monotonically with the excitation density.
The transition is also affected by inhomogeneous broadening,
especially of the bandwidth, because the symmetry is lost if
the strength of the coupling to photons depends on the energy
separation of atomic transition from the photon level. Thus, the
jump in the chemical potential is smooth for a large bandwidth
(see Fig. 1 of Ref. 22).

These features of the first-order transition observed for the
generalized Dicke model are different from the ones found
in our study, because we assume the effective bandwidth
given by the cutoff parameter kc is always large such that
the cavity-mode frequency is within the continuum of the
atomic transition. Thus, the occupation of the full bandwidth
does not occur owing to the carrier saturation discussed in
Secs. IV A and IV B. The first-order transition in our model
occurs because of the large cutoff, i.e., large bandwidth, rather
than the detuning; it occurs even at small detunings. In our
study, the jump is found in the photon amplitude (Fig. 12)
instead of the chemical potential observed by Eastham and
Keeling. The transition found in our model, as shown later, is
rather attributed to the formation of a strongly bound state of
the e-h pairs due to the photon-mediated short-range attraction,
which is sensitive to the cutoff of large momentum states of
carriers.
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FIG. 13. (Color online) Phase diagram of 3D polariton system
in (d,Rs) space (same as Fig. 10) for g̃ = 0.1 and large cutoff
parameters: (a) kca0 = 40, (b) kca0 = 60, and (c) kca0 = 100. In
the gray area, the photon solutions become the ground state. The
first-order transition from the polariton solution to the photon solution
occurs at the boundary. The dashed lines show that the changes
between different phases correspond to a crossover. The region where
Coulomb attraction dominates the photon-mediated interaction in the
formation of e-h pairs is colored (pink).

B. Phase diagram

Figure 13 shows phase diagrams in the (d,Rs) space
for large cutoff parameters. The polariton solution is al-
most independent of the cutoff parameter. Therefore, the
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shows a magnified view of the region r/a0 < 0.5. We set g̃ = 0.1 and
d = 3 for both graphs.

low-density regime of the phase diagrams where the polariton
solutions represent the ground states are the same as those
shown in Fig. 10 (for 3D systems with small kc = 20). The
gray area in the high-density regime indicates that the photon
solutions represent the ground states. We can clearly see
that the gray area widens for large kc and small d. This
implies that the photon solution becomes more stable for
large cutoff owing to the enhancement of the photon-mediated
attraction, as discussed in Sec. V C. Moreover, the photon
solution becomes more stable for small d because the photon-
mediated interaction increases as d decreases. This can be
understood by considering the analogy of the enhancement of
two-particle interactions by a Feshbach resonance in fermionic
neutral atomic gases.35,36 We will discuss the photon-mediated
interaction in the next subsection.

Finally, note that the gray area (which corresponds to the
ground states of the photon solution) is not observed for
realistic values of kc in the case of 2D systems because the
cutoff effect is weaker than that in 3D systems.

C. Wave function of e-h pairs

To evaluate the difference between the polariton solution
and the photon solution, we plot the wave function of an
e-h pair P (r) = (1/V )

∑
k〈ekh−k〉 exp(ikr) as a function of

the relative coordinates r between an electron and a hole, as
shown in Fig. 14. The plots are obtained at various densities
(Rs) for d = 3 and kca0 = 20 [Fig. 14(a)] and for d = 3 and
kca0 = 100 [Fig. 14(b)]. In the former figure, the wave function
changes its shape and narrows gradually with increasing
density as compared to the wave function of the 1s exciton,

indicating that the parameter used is in the regime where all the
expected changes in the ground state are crossovers. The width
a0 is determined by the Coulomb attraction in the exciton BEC
regime, and it is modified by the electric-dipole interaction for
Rs < R∗

s , where the photonic characteristics are observed. The
change in the binding force is seen more clearly in Fig. 14(b).
The wave function gradually narrows as Rs decreases from 3 to
0.8, and it shows a sharp peak at r = 0 for Rs � 0.7, i.e., in the
photonic BEC regime. Clearly, the width is determined by a
new length scale and not by a0, which indicates that the mecha-
nism of e-h pairing is completely different from that in the case
of dilute excitons. We find that the photon solution satisfies
the conditions vk � 1, uk → 1, and λ̃ �= 0. Therefore, the
variational equation for the e-h wave function P (r) reduces to(

−h̄2∇2

2mr

− 4πe2

ε∗
1

|r|
)

P (r) − gλδ̃(r) = μP (r), (16)

where δ̃(r)[= (1/V )
∑

|k|<kc
exp(ikr)] is localized at r = 0

with a width of ∼ 1/kc and becomes a δ function if kc = ∞.
Since the third term on the left side can be rewritten as
− g2V

2(d−μ) δ̃(r)P (r), we see that the photon field induces an

attractive δ potential mediated by photons.25 When considering
two or three dimensions, the lowest bound-state energy of the
real δ potential becomes −∞. However, a momentum cutoff is
introduced at this point; hence, the bound-state energy remains
finite. The energy is estimated as ε/ε0 ∼ d − 3π

8 g̃2kca0 using
some approximations and the conditions vk � 1, � → −∞,
and R

3/2
s |ζ/�| � 1 (the photon solution satisfies these

conditions). We can conclude that the first-order transition
occurs when the bound-state energy owing to the short-range
attraction falls below the energy of the polariton solution. The
solution to Eq. (16) for large kc is

P (r) = g̃λ̃

⎛
⎝ ∞∑

n=1

ϕb∗
ns (0)ϕb

ns(r)

(Eb
ns − μ)/ε0

+
∑

|k|<kc

ϕs∗
k (0)ϕs

k(r)

(Es
k − μ)/ε0

⎞
⎠ ,

(17)

where ϕb
ns and Eb

ns (ϕs
k and Es

k) are the wave functions and
the energy of the ns-exciton bound state (scattering state with
momentum k), respectively. As discussed above, the chemical
potential has an upper limit, i.e., μ/ε < d. For a large momen-
tum, the main contribution to P (r) comes from the scattering
states with P (k) ∝ k−2, and the tail of P (k) is longer in the
photonic regime as compared to the case of the dilute limit of
1s excitons [P (k) ∝ k−4]. This directly leads to the narrowing
of P (r). This type of strong light-matter coupling effect in a
microcavity has been discussed in the literature,37,38 wherein
a similar conclusion is drawn that the effective Bohr radius of
an e-h pair is reduced in the photonic branch of an exciton
polariton. In our study, too, we found e-h pairs with a small
radius in the photonic regime. However, the treatment of an
exciton polariton by Khurgin and Citrin is different from ours;
they determined the wave function of an e-h pair by solving
a one-body problem in the presence of a cavity field while
the carrier population, and thus the effect of Pauli blocking,
was neglected. However, the physics is the same: the effective
Bohr radius is reduced when the photon-mediated attraction
plays a role. The difference is that the chemical potential
is self-consistently determined by taking into account the
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minimization of the total energy in the e-h-photon many-body
systems in our calculation. Therefore, the change in the e-h
wave function can be evaluated even in the case of a large
carrier density.

Finally, in this subsection, we refer to the difference due to
the dimensionality. The main contribution to P (r = 0) comes
from e-h pairs 〈ekh−k〉 ∝ k−2 for k � 1/a0 in the photonic
regime. After summation over high momentum states in
Eq. (17), we have P (0) ∝ log(κc) in 2D systems and ∝ κc in
3D systems. This indicates that the photon-mediated attraction
is stronger in 3D systems than in 2D systems. In fact, the large
cutoff effect is very weak in 2D systems compared to 3D
systems, and the first-order transition is not observed unless
the cutoff parameter is chosen to be unrealistically large.

VI. CONCLUSIONS

The mean-field ground states of microcavity polaritons are
determined by adopting a variational approach.28 The ground
state changes from excitonic to photonic as a function of
the excitation density and detuning parameter. The detuning
parameter determines how the excitonic excitation becomes
photonic when the density is increased. Laserlike behaviors
are found for large detunings: a clear onset density is found in
the photonic fraction where the carrier density starts to saturate
when the detuning parameter is large. On the other hand, for
small detunings, no clear onset is found.

Microscopic quantities such as electronic distribution func-
tion, wave functions of e-h pairs, and quasiparticle energy
spectra are also determined and are found to be characterized
in each regime of the phase diagram. In particular, in the
photonic regime, e-h pairs are shown to be bound within
a small radius because of photon-mediated δ attraction.
The polariton condensates are shown to have similarities with
the conventional lasers in terms of input-output curves and
the hole-burning feature when the photon level is chosen to
be excessively greater than the exciton level. The input-output
curves with a smooth onset smoothly approach those with a
sharp onset as a function of the detuning parameter.

Finally, we discuss the strong binding of an e-h pair, which
is expected in the photonic regime for a large cutoff parameter.
As noted above, the photon-mediated short-range attraction

results in the strong binding between the e-h pairs with a
small radius, which is determined by the inverse of the cutoff
momentum kc. Since the radius is of the same order as the
lattice constant ∼ 1/kc, an e-h pair should be identified as a
Frenkel exciton; this is beyond the scope of our model, which
employs the effective-mass approximation. This indicates the
need for other models to treat excitons with a small radius,
such as the Dicke model.22,23

Moreover, in previous experiments,12 normal lasing (kinetic
regime) has been observed at high density before the system
enters the photonic BEC regime for the following reasons:
carrier heating12 or shortening of the lifetime of polaritons
in the photonic regime.16 However, if excitation with quantum
degeneracy is achieved up to sufficiently high density (possible
in the future), a photonic BEC can be observed and the optical
spectrum will be clearly different from that of lasers. As found
in this study, the electron distribution function fe(k) = v2

k

forms a plateau at fe ≈ 0.5, spread over the k space.22,33 No
such feature is expected in normal lasing; instead, a dip in
fe at a momentum corresponding to the laser frequency is
found (spectral hole burning17). In laser systems, spectral hole
burning is experimentally accessible, e.g., small change in the
gain spectrum at the laser frequency.39 If similar experiments
are carried out for the polariton BEC, a clear difference can
be observed. The characteristic emission spectrum in the
photonic BEC has also been discussed by Byrnes et al.,31

wherein the possible observation of the Mollow triplet has bee
mentioned.

An interesting future topic will be to clarify the difference
between the photonic BEC phase in our semiconductor models
and the BEC of photons in thermal equilibrium, which
was found quite recently in a dye-filled microcavity laser
system.40,41
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