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Influence of electron-acoustic phonon scattering on off-resonant cavity feeding within a
strongly coupled quantum-dot cavity system
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We present a quantum optics approach to describe the influence of electron-acoustic phonon coupling on
the emission spectra of a strongly coupled quantum-dot cavity system. Using a canonical Hamiltonian for light
quantization and a photon Green function formalism, phonons are included to all orders through the quantum-dot
polarizability function obtained within the independent boson model. We derive simple user-friendly analytical
expressions for the linear quantum light spectrum, including the influence from both exciton- and cavity-emission
decay channels. In the regime of semiconductor cavity QED, we study cavity emission for various exciton-cavity
detunings and demonstrate rich spectral asymmetries as well as cavity-mode suppression and enhancement
effects. Our technique is nonperturbative and non-Markovian, and can be applied to study photon emission from
a wide range of semiconductor quantum-dot structures, including waveguides and coupled cavity arrays. We
compare our theory directly to recent and apparently puzzling experimental data for a single site-controlled
quantum dot in a photonic crystal cavity and show good agreement as a function of cavity-dot detuning and as a
function of temperature.
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I. INTRODUCTION

The influence of electron-acoustic phonon scattering is
a well-known effect in semiconductor quantum dots (QDs)
for over a decade.1–3 One of the first approaches to calcu-
late the influence of the phonon scattering was based on
Fermi’s golden rule.4 The characteristic spectral lineshape
of longitudinal acoustic (LA) phonon scattering on electron-
hole pairs (“excitons”) in quasihomogeneous semiconductor
structures is well described, beyond perturbation theory,
through the independent boson model (IBM),5–8 and IBM
simulations have shown good agreement with experiments.
Due to the interplay of phonon emission and absorption,
the LA phonon bath manifests in spectral lineshapes that
are highly asymmetric at low temperature and sit on the
background of the symmetric zero phonon line (ZPL). In
addition to the IBM lineshape, the broadening of the ZPL
is usually described phenomenologically, although this can
be reliably fit to experiments;9 however, there is still some
controversy as to the origin of the ZPL broadening, which
can include contributions from radiative broadening, spectral
diffusion, anharmonicity effects,10,11 phonon scattering from
interfaces,12,13 and a modified phonon spectrum.14

While it is well known that the phonons cause the exciton
lineshapes to be highly non-Lorentzian (stemming from non-
Markovian decay), most of the present QD cavity quantum
electrodynamics (QED) theories only add in a Lorentzian
broadening mechanism for the QD excitons.

Recently, there have been several studies of the role of
electron-phonon coupling in semicondutor QD cavity systems.

Wilson-Rae and Imamoglŭ15 treated the phonon interaction
with QDs using polaron Green functions and derived an ana-
lytic linear absorption lineshape when the dot and cavity are on
resonance; in the polaron representation, new phonon-induced
interaction terms are introduced exactly, while a second-
order Born approximation was applied to include “residual”
exciton-photon-phonon bath coupling effects. Polaron and
time-convolutionless master-equation approaches have also
been recently employed to describe (i) phonon-induced decay
of optical pulse-excited QDs in the absence of any cavity
coupling,16 and (ii) the phonon-dressed Mollow triplet in the
regime of cavity QED.17 Milde et al.18 numerically solved
the IBM and coupled the QD susceptibility to a photonic
crystal cavity system through a semiclassical Green function
approach, demonstrating asymmetries in the on-resonance
Rabi doublet, a reduction of QD cavity coupling, and the
effect of increasing temperature for both the cavity-emitted
spectra and the side-coupled waveguide transmission. Xue
et al.19 have applied perturbation theory to study the phonon-
induced decoherence on vacuum Rabi oscillations as a function
of detuning between the cavity mode and exciton. Kaer
et al.20 also explored off-resonant interactions between the
QD and a cavity using a numerical solution to the system
master equations within a time-convolutionless approach.
With incoherent excitation, Ota et al.21 numerically solved
the Wilson-Rae and Imamoglŭ master equation,15 and demon-
strated the importance of asymmetric off-resonance coupling
and non-Markovian relaxation, finding good agreement with
their experiments. Hohenester22 introduced a useful model to
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derive an effective phonon-mediated scattering rate (see also
Ref. 19), and has found good agreement with experiments in
the weak-coupling regime.23

From an experimental viewpoint, significant off-resonant
coupling between an exciton and a cavity has been seen
in a number of semiconductor QD cavity systems (e.g., see
Refs. 24–28); and several theoretical and experimental works
have tried to explain the basic coupling mechanisms,29–33

most of which stem from the exciton broadening mechanisms
and the simple physics of two coupled oscillators. Given the
importance of exciton decay processes on the QD cavity
coupling, one can therefore expect that the interaction of
phonons can play a qualitatively important role when certain
coupling conditions are met. However, while the aforemen-
tioned theoretical phonon studies are interesting in their own
right, unfortunately, none of them present simple analytical
spectra that allow one to explore a wide range of coupling
phenomena both on and off resonance with a strongly coupled
cavity. Thus, many of the experimental, and theoretical, groups
continue to use the only available analytical formulas with no
phonon coupling directly included (e.g., see Ref. 34).

Here we apply a photon Green function method to derive
useful analytical spectra, with phonons included to all
orders through the exciton polarizability. Although a similar
semiclassical Green function approach was presented by Milde
et al.,18 only on-resonance conditions were studied and the
IBM was solved numerically. Tarel and Savona35 have recently
presented a semiclassical Green function spectra with phonons
included to second order (also previously presented in Ref. 18),
where numerical solutions of the phonon baths were exploited.

We first study leaky cavity emission with and without
phonons and briefly connect the results to the recent work
of Ota et al.21 and find good qualitative agreement with their
observations, namely, pronounced asymmetries for high- or
low-energy cavity coupling and an asymmetric vacuum Rabi
doublet (at low temperatures, T ≈ 4 K); we also demonstrate
that phonon-induced cavity suppression can occur, which is
an effect that stems from the real part of the phonon self-
energy. Second, we compare directly with recent experimental
measurements by Dalacu et al.,34 who studied QD cavity
coupling in single site-controlled QDs and found that the data
could not be fit without adding in some unknown (detuning-
dependent) cavity-pump term; in contrast, we show that these
experiments can be well reproduced using our analytic model
with no cavity-pump term included at all. Importantly, our
general theoretical approach be applied to a wide range of
systems, including waveguides, and it rigorously applies to
both weak- and strong-coupling regimes and contains phonons
to all orders (at the level of the IBM). We also show higher
temperature results (10–40 K) and systematically compare
these with experimental data. In our experimental-theory
analysis, we include two decay channels, accounting for both
the radiation-mode emission and the leaky cavity emission.

Our paper is organized as follows. In Sec. II, we introduce
the basic theory and analytical formulas for calculating the
emitted spectra from a strongly coupled QD-cavity system in
the presence of electron-acoustic phonon coupling. Examples
of computed emission spectra with and without phonon
coupling are shown in Sec. III. Section IV compares our

theory with recent data on site-controlled single QDs in
photonic crystal cavities,34 and demonstrates the significant
influence of electron-phonon coupling. In Sec. V, we conclude.

II. THEORY AND ANALYTICAL SPECTRA

For this paper, we are interested in the linear spectrum and
thus consider a QD cavity system that is weakly pumped,
incoherently, where the emission dynamics stems from an
excited electron-hole pair. In general, there have been several
theoretical approaches to this problem in the literature. Two
of the most powerful methods include the Green function
approach33 and the quantum master-equation technique.36–38

A major advantage of the Green function approach is that
one can obtain analytical spectra for any inhomogeneous and
lossy structures, including lossy metamaterial waveguides39

and a variety of coupled cavity-waveguide systems.40,41 In
contrast, a key advantage of the master-equation approach is
the ease with which it adds in additional dissipation effects
such as pure dephasing, although at the level of obtaining
emission spectra, both Green function and master-equation
approaches can be equivalent. A significant disadvantage of
the master-equation approach is that it is typically limited
to simple leaky cavity systems with a Lorentzian decay, i.e.,
Markovian theory. Master-equation solutions can also consider
more realistic initial conditions, such as those obtained through
steady-state pumping. Recent work of Roy and Hughes17 also
shows how a time-convolutionless master-equation formalism
can include LA phonons and cavity photons to all orders, which
is more important in the regime of resonance fluorescence and
coherent excitation.

The Green function approach to obtaining the electric-field
operator has been described elsewhere.33,42,43 Here, we will
briefly highlight the theoretical background and concentrate
on presenting the general expressions for the field operator and
the spectra. At first, we neglect nonradiative broadening on the
exciton decay (although this will be added back in later), which
allows us to obtain the exact analytical field operator without
coupling to phonons. Specifically, we use a canonical Hamilto-
nian that quantizes the macroscopic electromagnetic fields and
exploit the dipole approximation for the QD medium coupling,

Ĥ = h̄ωxσ̂
+
x σ̂−

x +
∑

λ

h̄ωλâ
†
λâλ

− ih̄
∑

λ

(σ̂−
x + σ̂+

x )(gλâλ − g∗
λâ

†
λ), (1)

where âλ represents the field mode operators, σ̂
+/−
x are the

Pauli operators of the QD excitons, ωλ is the eigenfrequency
corresponding to the transverse modes of the system [fλ(r)]
(excluding the dot), and gλ is the field-dot coupling coefficient,

defined through gλ =
√

ωλ

2h̄ε0
μx · fλ(r), with μx = nxμx the

optical dipole moment of the exciton, aligned along nx (a
unit vector). We consider only one target exciton in the
spectral region of interest for the coupled QD and assume that
coupling to the other polarized exciton(s) is negligible.

The Heisenberg equations of motion for the operators can
be used to derive the electric-field operator.33,43 Considering
a weak excitation condition (i.e., we neglect higher-order
photon-correlation effects, which is valid in these systems for
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weak powers38), and assuming an excited QD in vacuum, we
derive the quantum field operator33

Ê(r,ω) = G(r,rd ; ω) · d̂x(ω)/ε0

1 − nx · G(rd ,rd ; ω) · nxαx(ω)
, (2)

where rd is the QD position, αx(ω) = μ2
x

h̄ε0

2ωx

ω2
x−ω2 is

the bare (no radiative or nonradiative coupling) exci-
ton polarizability, and d̂x(ω) = −iμx[σ̂−

x (t = 0)/(ω − ωx) +
σ̂+

x (t = 0)/(ω + ωx)] is a quantum dipole source that origi-
nates from the excited QD. Without phonon interactions, the
above operator is exact within the stated model approxima-
tions. The propagator G(r,r′; ω) is the transverse38 photon
Green function of the medium, without any QD, and for cavity
systems it can be written down analytically in terms of the
cavity-mode decay (cavity emission) and the radiation-mode
decay (dot emission).33 Although electromagnetic field pump-
ing (e.g., cavity pumping) can be included in a straightforward
way, in this work we are primarily interested in the spectra
from an excited (and single) QD, so we treat the initial field as
in vacuum. For a Green function example with cavity pumping
in a system with two quantum dots, strongly coupled to two
nondegenerate modes of micropillar cavity, we refer the reader
to Ref. 44. Similarly, the formalism can straightforwardly
include a coherent linear field as the excitation source.

With a knowledge of the medium-dependent Green func-
tions, and a suitable initial condition for exciting the mate-
rial system, one can conveniently obtain the analytic emit-
ted spectrum, in any general structure, from33 S(r,ω) =
〈[Ê(r,ω)]†Ê(r,ω)〉. Using the above expressions, this spectral
form is exact, and no assumption has been made about the
form of the medium. For a semiconductor cavity system,
such as a planar photonic crystal cavity, one easily obtains
the cavity-emitted spectrum and the radiation-mode-emitted
spectrum33 analytically, yielding

Sr (r,ω) = Fr (r)�rad

×
∣∣∣∣∣∣

ωx + ω

ω2
x − ω2 − iω�x − 4g2ωxωc

ω2
c−ω2−iω�c

∣∣∣∣∣∣
2

, (3)

Sc(r,ω) = Fc(r)�c

×
∣∣∣∣∣∣

2gωc(ωx+ω)
ω2

c−ω2−iω�c

ω2
x − ω2 − iω�x − 4g2ωxωc

ω2
c−ω2−iω�c

∣∣∣∣∣∣
2

, (4)

with the total spectrum St (r,ω) = Sr (r,ω) + Sc(r,ω), where
Fr/c(r) represent the geometrical factors that depend upon
the collection geometry of the emitted light. We emphasize
that radiative coupling to the cavity system is fully included
by coupling to both the continuum of radiation modes and
the leaky cavity mode, where the latter has a decay rate
given by �c. Additional broadening of the ZPL has also been
included, phenomenologically, through �x ≡ �rad + �′, with
�′ due to pure dephasing processes; in general, for off-resonant
continuous wave (cw) pumping, both phonon effects and
spectral diffusion will enhance �′.9

It is important to note that, in a planar photonic crystal
structure, both Sr and Sc photon decay channels contribute
to vertical photon emission. The radiation-mode decay is due
to coupling to the continuum of radiation modes above the
slab light line.33 For a micropillar cavity system,45 typically
only the cavity emission is required in an identical form to
above, and so the prescription above applies to a wide range
of semiconductor cavity systems (and noncavity systems, if G
is known).

To include phonon interactions in a simple but rigorous way,
we assume that the cavity and phonon correlation functions
can be decoupled, and add in the phonon polarizability via the
known phonon self-energy �ph(ω) from the IBM. In essence,
we are considering the optical polarizability of the QD in
the presence of phonons as the exact perturbation to the
medium. Consequently, one has a slight modification to the
above spectra, resulting in

Sr (r,ω) = Fr (r)�rad

×
∣∣∣∣∣∣

ωx + ω

ω2
x − ω2 − iω�x − ω�ph(ω) − 4g2ωxωc

ω2
c−ω2−iω�c

∣∣∣∣∣∣
2

,

(5)

Sc(r,ω) = Fc(r)�c

×
∣∣∣∣∣∣

2gωc(ωx+ω)
ω2

c−ω2−iω�c

ω2
x − ω2 − iω�x − ω�ph(ω) − 4g2ωxωc

ω2
c−ω2−iω�c

∣∣∣∣∣∣
2

,

(6)

where the cavity emission is similar in form to the one pre-
sented by Tarel and Savona,35 where phonons were included
to second order and a rotating-wave approximation was made.
As limits, we obtain the correct IBM spectral form for exciton
decay and earlier derived spectra for semiconductor cavities.33

We also obtain ZPL broadening associated with the leaky
cavity system.

In the spirit of deriving a simple analytic solution, with
phonons included to all orders, the strategy is to use an analytic
phonon self-energy at the level of the IBM. To do this, we
exploit phonon spectral functions, similar to the ones used by
Wilson-Rae and Imamoglŭ,15 but we use a more appropriate
spectral function for phonon interactions via a deformation
potential46 (this form is known to account for the major phonon
interactions in our considered QD); similar spectral functions
are commonly used when describing LA-phonon coupling. To
obtain the phonon self-energy, the IBM time-dependent phase
must be added into the Lorentzian decay model for the exciton,
obtained from

ψ(t) =
∫ ∞

0
dωJ (ω)/ω2[coth(βh̄ω/2) cos(ωt) − i sin(ωt)],

(7)

which describes the electron-LA-phonon interaction at tem-
perature T = 1/βkb. The LO interaction can also give rise to
dephasing when confined LO phonons with a finite lifetime
are considered47,48 or when LO phonons couple to higher
states of the QD or to the continuum of the wetting layer.49,50
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However, since these additional couplings are neglected, the
LO interaction does not contribute to the dephasing and is
not considered in this work. We consider a spherical QD
model, with similar electron localization lengths in the valence
and conduction bands (le = lh ≈ 5 nm). Generalizing to
include electrons and holes with different localization lengths
is straightforward, but the equations become unnecessarily
complicated. Thus, a representative spectral function can be
conveniently defined as46

J (ω) = ap ω3 exp
( − ω2/2ω2

b

)
, (8)

where we use ωb = 1 meV and ap/(2π )2 = 0.06 ps2 as typical
numbers for InAs-type QDs.19,51 The deformation coupling
constant used here is somewhat smaller than the value used in
Ref. 21 [where ap/(2π )2 ≈ 0.1 ps2], although in the literature,
there are no well-accepted values for InAs QDs; moreover, the
dimensionless Huang-Rhys SHR = ap/(2π )2 c2

l / l2
e/h ≈ 0.034

(where cl = 3800 m/s is the speed of sound) has been shown
to be significantly enhanced in QDs (i.e., from its bulk value);
for example, for InAs/GaAs QDs, SHR = 0.01–0.5 (Ref. 52)
and SHR = 0.5 (Ref. 53) have been reported, and various
mechanisms for such enhancements have been proposed,
including defects and nonadiabatic effects. The phonon in-
teractions also result in a polaron shift � = ∫ ∞

0 dωJ (ω)/ω =
SHR ωb

√
π/2 ≈ 42 μeV. In what follows below, we neglect

the polaron shift as it merely adds a fixed frequency shift to
the exciton resonance, and we can always redefine ωx , so our
ωx includes the polaron shift. We also point out that there will
likely be other nondiagonal phonon couplings as well and so,
in principle, the phonon parameters above could be varied and
used to fit experiments.

With the above analytical form for the phonon
bath, the time-dependent polarizability takes the form
αx(t) = αx(0) exp[−i(wx + � − i�x/2)t + ψ(t)], and the
frequency-dependent polarizability is obtained from a simple
Fourier transform, yielding

αx(ω) = d22ωx/h̄ε0

ω2
x − ω2 − iω�x − ω�ph(ω)

. (9)

To help better explain the phonon coupling effects shown later,
in Fig. 1 we show the phonon self-energies for the two different
temperatures of (a) T = 4 K and (b) T = 40 K. We recognize
a local minimum in Im[�ph] (red solid curve) near ωx , a
maximum in Im[�ph] near 1 meV, and significant Re[�ph]
(blue dashed curve) over a broad spectral range. These results
imply that both the real and imaginary contributions will have
a significant impact on phonon coupling effects in the regime
of cavity QED.

As mentioned above, our general methodology is sim-
ilar in spirit to a semiclassical approach. Specifically, we
have assumed a well-defined spectral lineshape for the
QD susceptibility, and then coupled this QD frequency
response, with phonons included self-consistently, to the
medium-dependent Green functions to obtain the analytical
spectra. By comparing, e.g., with the approach of Wilson-
Rae and Imamoglŭ, they have in their system Hamiltonian
a phonon-modified cavity coupling rate15 g → g 〈B〉, with
〈B〉 = exp[−0.5

∫ ∞
0 dωJ (ω) coth(βh̄ω/2)/ω2], which, using

the parameters above for T = 4–40 K, is around 〈B〉 =
0.91–0.55. We do not have this term explicitly, however,
our self-energy term naturally includes such coupling. To
make this clearer, we can rewrite the solution, e.g., for the
cavity-mode emission, as

Sc(r,ω) = Fc(r)�c

∣∣∣∣∣∣
2gωc(ωx+ω)
ω2

x−ω2−iω�x

(
1 + ω�ph

ω2
x−ω2−iω�x

+ · · · )
ω2

c − ω2 − iω�c − 4g2ωxωc

ω2
x−ω2−iω�x

(
1 + ω�ph

ω2
x−ω2−iω�x

+ · · · )
∣∣∣∣∣∣
2

,

(10)

where the real part of the phonon self-energy causes a reduction
in the g coupling.18

III. THEORETICAL SIMULATIONS AND PREDICTIONS

We first clarify that, with no phonon coupling included, our
Green function technique yields identical normalized spectra
to a master-equation approach in the low-power (excitation)
limit. Specifically, we use the equations in Ref. 38 with a
low-power incoherent exciton pump, and we compute the
total spectra from both cavity emission and QD emission
in the presence of pure dephasing; with the Green function
approach, we define �ZPL = �rad + �′. These spectral forms
are found to be identical, as previously discussed,33 so the
general phenomenon of cavity feeding is not unique to
pure dephasing processes. The only difference is the overall
magnitude, which is due to the different initial conditions.
Any exciton broadening (radiative or nonradiative) will feed
the cavity mode in the cavity-mode emission and scale with

−4 −2 0 2 4

−0.5

0

0.5

1

1.5 (a) T=4K

ω − ωx (meV)

Σ
(m

eV
)

−4 −2 0 2 4

−0.5

0

0.5

1

1.5 (b) T=40K

ω − ωx (meV)

FIG. 1. (Color online) Phonon self-energies for InAs QDs for
two different temperatures (T = 4 and 40 K), where the red (solid)
curves represent the imaginary contribution and the blue (dashed)
curves represent the real contribution. The broadening parameters
are �rad = 2 μeV and �′

x = 75 μeV. As discussed in the text, ωx is
considered to already include a polaron shift.
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FIG. 2. (Color online) (a) Cavity-emitted
spectra for various QD cavity detunings, ob-
tained for a temperature of T = 4 K. The red
(dark) and grey (light) curves display the Green
function solution with and without LA phonon
interactions. The corresponding imaginary part
of the polarizability with [red (dark) curve] and
without [grey (light) curve] phonon coupling is
shown in (b). The lower-frequency phonon bath
is suppressed in part due to the low temperatures
and in part due to the relatively large ZPL.
The polaron shift � ∼ 30 μeV is not included
as this just adds in a fixed resonance shift for
all detunings and temperatures. The parame-
ters are �rad = 2 μeV, ωx = 830 meV, �′

x =
75 μeV, �c = 100 μeV, and g = 0.13 meV (see
Ref. 55).

g2. However, the distinction of pure dephasing can sometimes
by necessary and, e.g., plays a much more important role
for computing higher-order quantum correlations54 and other
quantum optical effects.

In Fig. 2(b), we show the imaginary part of the QD
polarizability (which is proportional to the absorption) with
and without coupling to phonons via the IBM; this calculation
was obtained at a temperature of 4 K, and we clearly obtain the
familiar spectral form of the IBM spectral lineshape.5,6,8 The
phonon-induced lineshape is subsequently used to obtain
the modified spectra with phonon coupling. In Fig. 2(a), we
plot the Green function cavity spectra solution with [red (dark)
curve] and without [grey (light) curve] phonons, where the
QD and cavity parameters are given in the figure caption.
At zero detuning, we recover an asymmetric Rabi splitting
in agreement with Refs. 18 and 21; in addition, for small
detunings, a positive detuning can give a cavity suppression,
while a negative detuning gives a cavity enhancement. These
are due to the significant frequency shifts from the real part
of the phonon self-energy, the effects of which would be
absent in an effective rate approximation. This suppression,
followed by an enhancement, would exacerbate the effects
of cavity coupling for positive detunings and depend upon the
spectral form of the phonon bath. The off-resonant cavity peak
primarily stems from Sc and scales with g2.

It is also worth stressing that the asymmetric vacuum
Rabi doublet is an effect that can not be predicted with a
standard master-equation approach nor by using an effective
cavity feeding rate.23 As pointed out some time ago by
Carmichael and Walls,56 the usual decomposition of the system
Hamiltonian to include only the noninteracting QD and cavity
parts does not satisfy the detailed balance condition.56 This
is due to the fact that the cavity and the QD systems are
internally coupled, and the modified master equation must
be derived to account for this internal coupling. In fact, the
polaron transformation used by Wilson-Rae and Imamoglŭ15

adopts such an approach, and so their transformed system
Hamiltonian leads to the correct form of the density operator
since it preserves detailed balance conditions.56 Physically, the

asymmetric vacuum Rabi splitting,18 which has recently been
measured,21 comes from the fact that the two coupled Rabi
peaks sample different parts of the asymmetric phonon bath.
The Mollow triplet is another example where internal coupling
effects must be included in the phonon coupling formalism.17

With field-driven or cavity-driven dressed resonances, the
system must sample the phonon bath at these new dressed
resonances.

Since we include phonons to all orders, it is also possible
to study elevated temperatures, which is highly desired from
a device viewpoint. In Fig. 3, we repeat the same calculation
as before, but at T = 40 K (chosen primarily to connect to
the experiments below), and the ZPL has been broadened
(doubled) to be consistent with experiment.9 Again, we see
the same phonon coupling trends as before, but now with a
significantly larger phonon feeding to the cavity mode. Also,
the effective cavity coupling rate is significantly reduced by
about 50% in the presence of phonons, resulting in a vanishing
Rabi splitting on resonance. All of these predicted trends, such
as a cavity mode enhancement and an asymmetric vacuum
Rabi doublet, are consistent with the experiments of Ota et al.21

IV. COMPARISON WITH RECENT EXPERIMENTAL DATA
ON A SINGLE QD PHOTONIC CRYSTAL CAVITY

SYSTEM

We now apply our analytic theory to help explain the model
discrepancies that were previously employed for simulating
experimental data. Very recent experiments by Dalacu et al.34

reported measurements on a single QD cavity system at low
power and, using a master-equation theory of Refs. 38 and 57,
clearly demonstrated that an extra cavity-pump term had to
be included by hand to explain their data. The cavity-pump
contribution was found to be cavity QD detuning dependent.
The origin of this cavity pump was unknown and cited to
be somewhat mysterious for its excitation conditions and
sample, but similar couplings have been shown already to
be due to electron-phonon coupling.19,21,23 The site-controlled
QD allows one to suppress other extraneous cavity feeding
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(a)

c FIG. 3. (Color online) As in Fig. 2, but with
T = 40 K and �′ = 150 μeV.

mechanisms,26,32 and, for detunings greater than 5 meV, ex-
periments show no cavity-mode emission at low temperatures;
this is expected for a single exciton-cavity coupling33 since the
cavity-mode emission diminishes as a function of detuning.

The single QD cavity system is realized by nucleating one
InAs QD at the apex of a InP pyramid (see Fig. 4) grown
using selective-area epitaxy.58 Dot formation on these InP
pyramidal nanotemplates proceeds via the Stranski-Krastanow
growth mode59 similar to growth on planar substrates, although
some subtleties of the strain distribution will differ due to the
proximity of the {110} planes that make up the sidewalls of
the InP pyramid. Once planarized, however, any signature of
the InP pyramid vanishes, leaving a coherent InAs dot in
a uniform InP matrix. One distinction between planar and
site-controlled dots pertains to the wetting layer. Although the
presence of a wetting layer is assumed, its lateral extent is

FIG. 4. A single InAs quantum dot nucleated at the apex of a
InP pyramid. The pyramid is grown using selective-area epitaxy on a
electron-beam patterned SiO2-coated InP substrate. The scale bar is
210 nm.

limited to the apex of the pyramid and is thus only slightly
larger than the QD. The site-controlled dots are therefore
expected to have a modified shape compared to planar dots,
and the absence of an infinite two-dimensional wetting layer.
Although these differences do not manifest in the electronic
structure of the dots,60 the absence of a wetting layer and
associated continuum of states may have implications related
to additional nonresonant dot-cavity coupling.32 Clearly, re-
ducing unknown and unwanted excitation mechanisms should
be avoided from a practical perspective, which makes dots
without a wetting layer advantageous, e.g., for creating cavity-
assisted single photons on demand.61
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FIG. 5. (Color online) (a) Recently published experimental data
[Dalacu et al. (Ref. 34)], taken at T = 4 K, normalized to show the
effect of detuning on the exciton and cavity mode. (b) Theoretical
simulations with [red (dark)] and without [grey (light)] phonon
interactions. The parameters are similar to those used in Fig. 1,
except that �′ = 150 μeV and we have convolved with a Lorentzian
function with FWHM �spec = 250 μeV to account for the spectral
resolution in the experiment (Ref. 34). The detunings are not exactly
fit to experiment, but rather are chosen to cover a similar range to the
experiments with equal frequency spacing. Both sets of calculations
are normalized to their peak value for clarity. We also include the
radiation-mode emission, with Fc = 2Fr .
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FIG. 6. (Color online) (a) Measured spectra at various temper-
atures, taken at T = 10, 20, and 40 K. (b) Theoretical simulations
with [red (solid) curve] and without [grey (light) curve] phonon
interactions. The parameters are similar to those used in Fig. 5,
except that �′ = 225–300 μeV (increasing linearly with temperature)
and we have convolved with a Lorentzian function with FWHM
�spec = 400 μeV (Ref. 62).

In Fig. 5(a), we display the previously published data of
Dalacu et al.,34 and, in Fig. 5(b), we show our analytical
model with [red (dark) curve] and without [grey (light)
curve] phonon coupling. Evidently, the analytic phonon model
well reproduces the experimental data without the need
to artificially add in a cavity-pump term, and the phonon
coupling manifests in a detuning-dependent cavity feeding
mechanism. This general conclusion is consistent with earlier
works,20,21,23,35 although some of the qualitative trends are
significantly different (e.g., a cavity suppression followed by
an enhancement); since our final spectral forms are analytic,
one can sweep a wide range of parameters in a straightforward
and simple way, equally covering weak- and strong-coupling
regimes in a self-consistent way. Moreover, our formulas can
be applied to fit spectra over a wide range of temperatures,
where one must go beyond a second-order approximation for
the phonon baths.

Finally, we fit the emission spectra for elevated tempera-
tures, using data that have not previously been shown. The

sample and experiment are very similar to those described by
Dalacu et al.34 In Fig. 6, we show the experimental data (a) and
simulations (b) for a temperature-controlled cavity detuning
for temperatures of 10, 20, and 40 K. Once more, we see a
good trend with the experiments, and the effect of the phonons
is to enhance the strength of the cavity-mode emission relative
to the exciton mode, which becomes stronger as a function of
temperature.

V. CONCLUSIONS

We have presented a Green function theory to describe
photon emission in arbitrary QD cavity systems without
recourse to either the weak-coupling regime or a perturbative
approximation for the phonons. We have exploited this
approach to model the strong-coupling regime between a
single exciton and a photonic crystal cavity, and, using a
simple initial condition of an inverted electron-hole pair,
obtained the emission spectra for various dot-cavity detunings.
Phonon-related effects such as cavity-mode suppression and
enhanced cavity feeding are demonstrated, showing the need to
include both real and imaginary phonon self-energy terms with
internal coupling. The model was then applied to help explain
experimental data as a function of cavity-exciton detuning
and as a function of temperature; good agreement has been
found without artificially adding in a cavity-mode pump, as
was done previously.34 The phonon-induced cavity coupling
thus mimics an incoherent cavity-pump term, which naturally
would be detuning dependent because of the asymmetric
phonon bath. Our results and general predictions are also
consistent with the recent data and polaron master-equation15

simulations of Ota et al.,21 including the prediction of an
asymmetric doublet on resonance.
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Hu, and A. A. Imamoglŭ, Nature (London) 445, 896 (2007).

25R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski,
D. O Brien, T. F. Krauss, D. Sanvitto, A. M. Fox, D. M.
Whittaker, M. Hopkinson, and M. S. Skolnick, Opt. Express 15
17221 (2007).

26M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler,
M.-C. Amann, and J. J. Finley, Phys. Rev. B 77, 161303(R) (2008).

27J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes,
L. Lanco, J. Bloch, P. Voisin, and P. Senellart, Phys. Rev. Lett. 103,
027401 (2009).

28T. Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, and
T. Sogawa, Opt. Express 17, 6643 (2009).

29A. Auffeves, B. Besga, J.-M. Gérard, and J.-P. Poizat, Phys. Rev. A
77, 063833 (2008).

30M. Yamaguchi, T. Asano, and S. Noda, Opt. Express 16, 18067
(2008).

31A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, Phys. Rev. A 78,
045802 (2008).

32M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J.
Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and
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