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Full electrical control of charge and spin conductance through interferometry
of edge states in topological insulators
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We investigate electron interferometry of edge states in topological insulators. We show that when
interboundary coupling is induced at two quantum point contacts of a four terminal setup, both Fabry-Pérot-like
and Aharonov-Bohm-like loop processes arise. These underlying interference effects lead to a full electrically
controllable system, where the magnitude of charge and spin linear conductances can be tuned by gate voltages,
without applying magnetic fields. In particular we find that, under appropriate conditions, interboundary coupling
can lead to negative values of the conductance. Furthermore, the setup also allows to selectively generate pure
charge or pure spin currents by choosing the voltage bias configuration.
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I. INTRODUCTION

Interferometry is a hallmark of wave physics. While
optical interferometers have been known since centuries past,
more recently remarkable efforts have been made to realize
electronic interferometers which exploit the wavelike nature
of electrons, a signature of the quantum world. Due to the
decoherence effects that electrons experience in ordinary
macroscopic metals, such a type of wavelike phenomenon
can be observed only in mesoscopic systems. Fabry-Pérot
interference patterns caused by electron waves reflected at
the contacts between a carbon nanostructure and two metallic
electrodes have been observed in various experiments on
nanotubes1–4 and graphene.5 Similarly, clear evidence of the
Aharonov-Bohm effect has been demonstrated in semiconduc-
tor heterostructures and graphene rings threaded by a magnetic
flux,6,7 and various electron interferometers have been realized
in quantum hall effect (QHE) systems.8–11

Electron interferometry is not just a conceptually important
effect, it has significant practical consequences for it can
be exploited to realize quantum transistors with high
current-carrying capability.12 Indeed currents can be switched
“on” and “off” by varying the electron interference conditions
from constructive to destructive through a gate voltage or a
magnetic field.

At present, most electronic interferometers are based on
the electron charge. However, an electron is also character-
ized by its spin, and spintronics—the field investigating the
transport and manipulation of information with such degree of
freedom—is experiencing an extremely rapid growth. Indeed
spin is much more robust to environment decoherence effects
with respect to electron charge,13 and spin coherence lengths
may reach and exceed 100 μm (Ref. 14). For these reasons,
interferometry involving spin has been proposed to realize
transistors and filters exploiting spin-orbit-induced preces-
sion in semiconductors,15–19 ferromagnetic materials,20–23 and
magnetic fields.24 In spite of these advances, interferometric
control of spin currents remains a difficult task requiring ad hoc
optical techniques25,26 and has not reached the state of the art
level. Thus, as far as interferometry is concerned, spintronics
is not as competitive as ordinary charge-based electronics yet.

A major boost to spintronics is expected to come from
the recent discovery of topological insulators. A topological

insulator (TI) is a bulk gapped material exhibiting conducting
gapless channels at the boundaries.27 In these edge states the
generation of spin currents is greatly facilitated from the close
connection between motion direction and spin orientation
(helicity). In two-dimensional realizations of a TI, for instance,
only spin-↑ electrons propagate rightward and only spin-↓
electrons leftward along a given boundary. Remarkably, TI
edge states behave as perfectly conducting one-dimensional
ballistic channels since impurity backscattering is prevented
from time reversal symmetry. These peculiar properties,
theoretically predicted28–30 and experimentally observed in
HgTe/CdTe quantum wells31 and in various other materials,32

make TIs ideal candidates for spintronics.19,27,33–35

For these reasons the investigation of electron interfer-
ence effects in these systems appears to be a particularly
timely issue. Quite recently, for instance, evidence of the
Aharonov-Bohm interference pattern in the magnetoresistance
of TIs has been experimentally observed36 and theoretically
discussed.34,37 Notably, comparative analysis has pointed out
that, with respect to the cases of edge states in QHE bars38

and SU(2) symmetric systems,39 interferometry of TI edge
states exhibits intrinsically different behavior, and represents
a challenging open problem with its own peculiarities.

So far, most studies concerning TI interferometry have
involved magnetic flux or ferromagnets.34,36–39 However, TI
edge states appear even in the absence of magnetic field since
the mechanism underlying their properties is the spin-orbit
coupling and the related inversion of the electronic band order.
Indeed this represents one of the crucial advantages of TIs with
respect to QHE edge states in view of device miniaturization,
due to the difficulty in realizing scalable circuits operating
under high magnetic fields or space varying magnetizations
with nanoscale resolution. It is thus desirable to explore
TI interferometry also in the absence of magnetic fields or
ferromagnets.

In this article we address interferometry based on purely
electrical effects (i.e., in the presence of time reversal sym-
metry). We shall focus on a two-dimensional realization of
a TI and consider the interferometer sketched in Fig. 1,
where Kramers pairs of TI edge states flow at the top and
bottom boundaries of a quantum well. The electrochemical
potential of each injected edge state is controlled by a metallic
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FIG. 1. (Color online) Schematic description of the proposed
four terminal setup, where edge states flow at the top and bottom
boundaries of a TI quantum well. Blue (red) lines denote spin-↑
(↓) edge channels and are slightly separated for illustrative reasons.
The dashed box denotes the scattering region where interboundary
tunneling occurs at two QPCs, located around positions xa and xb and
separated by a distance L = xb − xa . Two gate voltages Vg,T and Vg,B

shift the edge state momenta in the top and bottom regions between
the QPCs, modifying the electron phase in the loop processes induced
by tunneling. No magnetic flux is present.

electrode, characterized by a voltage bias Vi (i = 1, . . . ,4).
Interboundary scattering between edge states can occur at two
quantum point contacts (QPCs), giving rise to the possibility
of loop trajectories, which determine the currents through
electron wave interference. Here the interference conditions
are set by two (top and bottom) gate voltages Vg,T and Vg,B ,
which modify the electron phase in the loop processes by
shifting the electron momenta in the regions between the two
QPCs. The setup of Fig. 1 can thus lead to a full electrically
controllable system, where charge and spin conductances of
each electrode can be tuned by the gates. We shall determine
and discuss the behavior of the conductances as a function of
Vg,T and Vg,B for various configurations of the biases Vi . In
particular, we shall show that, under appropriate conditions,
interboundary coupling can even lead to negative conductance
values. Furthermore, the setup also allows to selectively
generate and tune pure charge or pure spin currents.

The article is organized as follows. In Sec. II we present
the model for the setup, in Sec. III we discuss the interference
phenomena of the system and point out the relations with other
electron interferometers. Then, in Sec. IV we show the results
concerning charge and spin currents, mainly focusing on two
specific configurations of the four terminal setup. Finally, we
discuss the results in Sec. V and draw our conclusions in
Sec. VI.

II. THE MODEL

The edge states at the top and bottom boundaries of the
device are characterized, at low energies, by a linear spectrum
described by the following Hamiltonian40

H0 = −ih̄vF

∑
σ=↑,↓

∫
dx[: �

†
Rσ (x)∂x�Rσ (x) :

− : �
†
Lσ̄ (x)∂x�Lσ̄ (x) :], (1)

where x denotes the longitudinal coordinate, �Rσ and �Lσ

the right and left mover electron field operators, and σ =↑ , ↓
the spin component. Here we adopt the notation that spin-↑
right (left) movers and spin-↓ left (right) movers flow along
the top (bottom) boundary, as depicted in Fig. 1. Without loss
of generality we shall assume that the equilibrium Fermi level
EF of the device in the absence of any bias is located at the
Dirac point of the spectrum. The symbol :: in Eq. (1) denotes
the normal ordering with respect to the equilibrium state where
all levels below EF are occupied. Variations from this energy
level can be induced by the gate voltages, as discussed below.

The constrictions of the QPCs induce interboundary scat-
tering. It can be shown with quite general arguments29,41 that
time reversal symmetry only allows two types of tunneling
terms, namely a spin-preserving tunneling

Hp
tun =

∑
σ=↑,↓

∫
dx(�p(x)�†

Rσ (x)�Lσ (x)

+�∗
p(x)�†

Lσ̄ (x)�Rσ̄ (x)), (2)

and a spin-flipping tunneling

Hf
tun =

∑
α=R/L=±

α

∫
dx(�f (x)�†

α↑(x)�α↓(x)

+�∗
f (x)�†

α↓(x)�α↑(x)). (3)

In fact, the pinching of the two edges states at the QPCs causes
a local modification of the spin-orbit coupling with respect to
the bulk case, so that both terms are expected to contribute.41,42

In Eqs. (2) and (3) �p,f (x) denote space-dependent tunneling
amplitude profiles. The two QPCs will thus be described
through a profile peaked around two centers xa and xb (see
Fig. 1), and rapidly decaying beyond a longitudinal lengthscale
ξ . We shall assume that the constrictions are short with
respect to the Fermi wavelength λF , and that the distance
L = xb − xa between the two QPCs is large compared to ξ

(i.e., ξ � λF < L). Under these conditions, it is sufficient to
assume that tunneling is point-like. For the sake of simplicity
we shall also consider that the two QPCs are characterized by
equal tunneling amplitudes, so that the profiles can be taken as

�p(f )(x) = 2h̄vF γp(f )

∑
l=a,b

δ(x − xl), (4)

where γp and γf are real dimensionless spin-preserving and
spin-flipping tunneling amplitudes, respectively.

Finally, the coupling to the two gate voltages Vg,T and Vg,B

can be described by the term

Hg =
∫ xb

xa

dx{eVg,T [ρR↑(x) + ρL↓(x)]

+ eVg,B [ρR↓(x) + ρL↑(x)]}, (5)

where

ρασ
.=: �†

ασ (x)�ασ (x):, (6)

denotes the electron density, with α = R/L and σ =↑ , ↓. As
anticipated above, Vg,T and Vg,B shift the electronic spectrum
(1), and their difference breaks the degeneracy between the
top and bottom boundaries.
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The equations of motion for the four fields �ασ are easily
obtained from the total Hamiltonian of the device

H = H0 + Hp
tun + Hf

tun + Hg, (7)

where the four terms are given in Eqs. (1), (2), (3), and (5),
respectively. For �R↑, for instance, one obtains

∂t�R↑ = vF

{
− ∂x�R↑ − ikg,R↑θ (xa < x < xb)�R↑(x)

− 2i
∑
l=a,b

[γp�L↑(x) + γf �R↓(x)]δ(x − xl)

}
,

(8)

where θ is the Heaviside function. Similar equations are
obtained for the other fields. The four equations, coupled by the
interboundary tunneling terms, can be solved by superposing
solutions corresponding to fixed energy values. At a given
energy E, measured with respect to the equilibrium Fermi
level EF , the solution can be obtained by the Ansatz

�ERσ (x) = e− i
h̄
Et

√
hvF

⎧⎨
⎩

âERσ eikEx, x < xa,

ĉERσ ei(kE−kg,Rσ )x, xa < x < xb,

b̂ERσ eikEx, x > xb,

(9)

�ELσ (x) = e− i
h̄
Et

√
hvF

⎧⎨
⎩

b̂ELσ e−ikEx, x < xa,

ĉELσ e−i(kE−kg,Lσ )x, xa < x < xb,

âELσ e−ikEx, x > xb,

where kE = E/h̄vF , kg,R↑ = kg,L↓ = eVg,T /h̄vF , kg,R↓ =
kg,L↑ = eVg,B/h̄vF , and ĉEασ denotes the electron operator
inside the scattering region. The incoming and outgoing
electrons, respectively, described by the operators â and b̂

in Eq. (9), are connected via the entries Sij of the scattering
matrix S (Ref. 43)

⎛
⎜⎜⎜⎜⎝

b̂EL↑
b̂EL↓
b̂ER↑
b̂ER↓

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

âER↓
âER↑
âEL↓
âEL↑

⎞
⎟⎟⎟⎠ . (10)

In the columns of Eq. (10) â and b̂ operators appear according
to the clockwise order of the four leads in the setup of Fig. 1.
A lengthy but straightforward calculation allows to determine
the scattering matrix entries Sij as a function of the tunneling
amplitudes γp, γf and the gate voltages Vg,T and Vg,B . Helicity
and time reversal symmetry lead to vanishing diagonal entries,

Sii = 0, (11)

while the other entries can be expressed in a compact form by
utilizing the transmission coefficients of each single QPC in

terms of the tunneling amplitudes γp and γf ,

T a
21 = T a

34 = 4γ 2
p(

1 + γ 2
p + γ 2

f

)2 ,

T a
31 = T a

42 = 4γ 2
f(

1 + γ 2
p + γ 2

f

)2 , (12)

T a
41 = T a

32 =
(
1 − γ 2

p − γ 2
f

)2

(
1 + γ 2

p + γ 2
f

)2 .

Here T a
ij (T b

ij ) denotes the transmission coefficient from lead j

to lead i of the left (right) QPC alone. Time reversal symmetry
ensures

T l
ij = T l

ji , l = a, b. (13)

Furthermore, we have assumed that the QPCs have identical
parameters

T a
ij = T b

ij . (14)

Then, the S-matrix entries read

S31 = −i

√
T a

31T
b

32e
−ikg,T L +

√
T a

41T
b

31e
−ikg,BL

1 +
√

T a
43T

b
21e

2i

(
kE− kg,T +kg,B

2

)
L

,

S32 =
√

T a
32T

b
32e

−ikg,T L −
√

T a
42T

b
31e

−ikg,BL

1 +
√

T a
43T

b
21e

2i

(
kE− kg,T +kg,B

2

)
L

, (15)

S34 = −ie−2ikExb

√
T b

34 + √
T a

34e
2i

(
kE− kg,B +kg,T

2

)
L

1 +
√

T a
43T

b
21e

2i

(
kE− kg,T +kg,B

2

)
L

,

where

kg,T /B = eVg,T /B

h̄vF

. (16)

Similar expressions are found for the other entries, together
with the following relations

|S13(E)| = |S31(E)| = |S24(E)| = |S42(E)|,
(17)|S14(E)| = |S41(E)| = |S23(E)| = |S32(E)|.

The S-matrix entries allow to define the system transmission
coefficient from lead j to lead i (computed at the Fermi energy,
i.e., at E = 0) as

Tij
.= |Sij (0)|2. (18)

It is well known43 that Tij appears in the expressions for the
current, as will be explicitly discussed below.

III. INTERFERENCE PHENOMENA IN THE SYSTEM

Before presenting the results for the currents (see Sec. IV),
in this section we describe the interference effects charac-
terizing the setup. This gives us the opportunity to point
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FIG. 2. (Color online) The two types of basic interference
processes allowed by time reversal symmetry of the system. (a) An
example of loop process induced by the spin-preserving tunneling
terms Eq. (2), reminiscent of a Fabry-Pérot interferometer. The
electron flows rightward in the top boundary and leftward in the
bottom boundary, so that the loop interference phase is φFP =
e(Vg,T + Vg,B )L/h̄vF . (b) An example of loop processes induced
by the spin-flipping tunneling terms Eq. (3), reminiscent of an elec-
trostatic Aharonov-Bohm interferometer. The electron maintains the
motion direction both in the top boundary and in the bottom boundary,
so that the loop interference phase is φAB = e(Vg,T − Vg,B )L/h̄vF . A
similar loop connects terminal 2 to 3. In general multiloop processes,
where the two processes interplay, are also possible.

out similarities and differences with respect to other electron
interferometers.

A. Fabry-Pérot interference

To simplify the discussion let us first assume that the spin-
flipping tunneling amplitude is vanishing (γf = 0). In this
case quantum interference is due to spin-preserving processes
(γp �= 0). An illustrative example is described in Fig. 2(a): a
spin-↑ electron is injected from terminal 2 and, when reaching
the right QPC, partly tunnels to the bottom boundary as a left-
mover; it then tunnels back to the top boundary at the left QPC
and eventually reaches terminal 3. The phase accumulated
in the loop causes the interference with the electron wave
that straightforwardly travels from terminal 2 to 3. Similar
processes occur for spin-↓ electrons injected from terminal 1
to 4. Notice that these processes involve a change in the motion
direction, that is, an energy dependent momentum transfer
(eikEx → e−ikEx), with kE = E/h̄vF .

This effect is reminiscent of the Fabry-Pérot (FP) in-
terference pattern occurring in carbon nanotubes1,2,44 or in

single channel quantum wires,45 and involving 2kF momentum
transfer. Indeed the interboundary terms (2), causing the loop
of Fig. 2(a), correspond to the backscattering terms originating
from the contact resistance at the nanotube (wire)/electrode
interfaces, while the distance L between the two QPCs plays
the role of the length of the nanotube (wire).

The electron phase accumulated in the loop depends on
the gate voltages, which modify the momenta in the top and
bottom regions between the QPCs. In view of the analogy
discussed above, we shall denote such a phase

φFP = e(Vg,T + Vg,B )L

h̄vF

, (19)

as the Fabry-Pérot (FP) phase of the device. Notice that φFP

depends on the sum Vg,B + Vg,T of the gate voltages and on
the QPC distance L.

B. Aharonov-Bohm interference

Let us now consider the effect of the spin-flipping terms
(γf �= 0), and assume that the spin-preserving processes are
absent (γp = 0). Interference processes for this situation are
schematically depicted in Fig. 2(b): A right-moving spin-↓
electron injected from terminal 1 exhibits two possible paths
to reach terminal 3, corresponding to tunneling to the top
boundary occurring at the QPC on the left and on the right.
The phase difference

φAB = e(Vg,T − Vg,B)L

h̄vF

, (20)

between these two possible paths connecting terminals 1
and 3 causes an electron interference phenomenon similar
to the electrostatic Aharonov-Bohm (AB) effect occurring
in semiconductor and metallic rings.46,47 Similar AB-like
loop trajectories connect terminals 2 and 3. Notice that,
differently from the spin-preserving FP loop processes, the AB
interference due to spin-flipping processes is independent of
the energy E and involves the difference Vg,T − Vg,B between
the two gate voltages. This is due to the fact that, while in FP
processes the electron travels along the two arms of the loop in
opposite directions [see Fig. 2(a)], for spin-flipping processes
the electron always preserves its motion direction in order
for the spin to flip [see Fig. 2(b)]. This constraint originates
from time reversal symmetry, which leads spin-preserving
interboundary tunneling to occur backward [R ↔ L, see
Eq. (2)], and spin-flipping interboundary tunneling to occur
forward [α → α, see Eq. (3)]. This connection between spin
orientation and motion direction is a hallmark of topological
insulator edge states dynamics.

C. General case

The two processes of Fig. 2 described above refer to the
extreme cases where either γp or γf vanishes. In the general
case (γp �= 0 and γf �= 0) higher-order processes give rise
to multiple loops where the FP and the AB interference
effects interplay with each other. These processes directly enter
the scattering matrix entries (15) and thus the transmission
coefficients (18). In particular, to lowest order in the tunneling
amplitudes γp and γf , the “horizontal” transmission T32 is
determined by both FP and AB interference processes, whereas
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the “crossing” transmission T31 is only affected by AB loops.
Indeed, while terminal 2 can be connected to terminal 3
through either one FP loop or one AB loop (see Fig. 2),
terminals 1 and 3 can only be connected through one AB
loop, as can be formally checked by perturbative expansion of
Eqs. (15) and (18).

D. Differences from other electron interferometers

In the previous sections we have highlighted the analogies
between the basic interference phenomena of the setup in Fig. 1
and other electron interferometers. Here we wish to point out
the differences.

The first difference emerges at the level of the coupling to
the gate. To illustrate this point, one can realize that the gate
coupling term (5) can be rewritten in the following way

Hg =
∫ xb

xa

dx
[
(Vg,T + Vg,B)ρc(x) + v−1

F (Vg,T − Vg,B) Is(x)
]
,

(21)

where

ρc(x) = e〈ρR↑(x) + ρL↑(x) + ρR↓(x) + ρL↓(x)〉, (22)

is the charge density operator, and

Is(x) = evF〈ρR↑(x) − ρL↑(x) − ρR↓(x) + ρL↓(x)〉, (23)

is the spin current operator,48 with the electron densities ρασ

given by Eq. (6). Equation (21) shows that the sum of the gate
voltages [i.e., the FP phase (19)] couples to the charge density,
while their difference [i.e., the AB phase (20)] couples to the
spin current. The expression (21) points out a difference with
respect to FP electron interferometers realized with carbon
nanotubes or quantum wires. In these systems spin-↑ and
spin-↓ electrons flow along the same physical channel; the
gate voltage applies in the same way to all ρασ (α = R/L

and σ =↑ , ↓) so that it effectively couples to the charge
density ρc(x) only. In contrast, in TIs the space separation
between boundaries allows for the presence of two different
gate voltages [see Eq. (5)], and the helical nature of the
edge states leads to the coupling to the spin current Is(x) as
well. As we shall see, this additional handle offers interesting
possibilities to control the spin current.

The fact that only ρc and Is appear in Eq. (21) is due to the
time reversal symmetry of the system. Indeed electron charge
and spin current operators are the only two combinations of the
four densities ρασ that are even under time reversal, whereas
the electron current

Ic(x) = evF〈ρR↑(x) − ρL↑(x) + ρR↓(x) − ρL↓(x)〉, (24)

and spin density

ρs(x) = e〈ρR↑(x) + ρL↑(x) − ρR↓(x) − ρL↓(x)〉, (25)

are odd. This enables us to highlight the differences with
respect to the more traditional magnetic AB effect investigated
in semiconductors6 and graphene7 rings, QHE systems,10,11

and also TI edge states.39 In these systems a coupling occurs
between the vector potential and the charge current Ic, and
the interference is driven by the magnetic flux, breaking
time reversal symmetry. In contrast, the AB phase (20)

related to the process in Fig. 2(b) originates from a purely
electrostatic effect, preserving time reversal symmetry: The
electron momenta in the two “arms” of the ring are different
whenever Vg,T − Vg,B �= 0.

On the other hand, the interferometric process in Fig. 2(b)
also differs from the electrostatic AB effect.46,47 While in such
an effect the electron spin plays no role, here the helical prop-
erties of TI edge states relate the AB phase φAB to spin-flipping
processes, thus modifying the spin current, as we shall describe
below. A distinction can also be pointed out with respect to
the Aharonov-Casher effect, observed in various mesoscopic
semiconductor ring nanostructures.16,49 In that case a spin
precession along the ring arms is caused by a uniform Rashba
spin-orbit coupling, which can be controlled via a gate by
varying the asymmetry of the quantum well structure. This
yields a spin-dependent phase difference between the two ring
arms50 In contrast, here spin-flip processes occur only locally
at the QPCs, and φAB is actually independent of the spin.

Finally, another important difference with respect to elec-
tron interferometers realized with nanotubes or semiconductor
rings is concerned with the coupling to the biasing electrodes.
Such interferometers consist of two-terminal setups, where
spin-↑ and spin-↓ electrons are injected from the same
electrode and flow along the same physical channel. In
contrast, TI edge states are geometrically separated and the
four terminals in Fig. 1 allow for an independent control of the
four injected electron species. For these reasons the topology
of the interferometer under investigation here is intrinsically
much richer than the above interferometers. As we shall show,
this property enables a tunability of the type (charge or spin),
the magnitude, and, in some cases, also of the sign of the
currents.

IV. RESULTS FOR CURRENTS

We shall now present the results concerning the currents in
terms of the applied biases and gate voltages. The definitions
of charge and spin current are given by Eqs. (24) and (23),
respectively. Using Eq. (9) and exploiting the scattering matrix
(10), the currents flowing in each terminal are easily evaluated
in terms of the Fermi distributions fj (E) (j = 1, . . . ,4)
of the states injected from the four leads.43 Due to the
presence of four distribution functions (each including bias
voltage and temperature) and to various parameters of the
FP interferometer, the behavior of the current exhibits an
extremely rich scenario. Since we are interested in the quantum
regime, we shall limit our analysis to the zero temperature
case. Furthermore, we shall focus on configurations where
nonvanishing voltage biases are applied to the electrodes on
the left-hand side of the sample (terminals 1 and 2), and
the currents are measured in the terminals on the right-hand
side (3 and 4), which are assumed to be grounded (i.e.,
f3 = f4 = feq) with feq denoting the Fermi distribution of any
lead at equilibrium. Under these circumstances, the expression
for the charge current in the ith lead (i = 3,4) reduces to

Ic(i) = e

h

∫
dE

∑
j=1,2

|Sij (E)|2 [fj (E) − feq(E)], (26)
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and the spin currents fulfill the following relations

{
Is(3) = Ic(3),

Is(4) = −Ic(4).
(27)

Equation (27) points out that the charge currents measured in
terminals 3 and 4 are always accompanied by a spin current,
as expected from the peculiar properties of TI edge states. The
difference in the relative sign between charge and spin currents
can be easily understood even in the absence of the QPCs.
Indeed a positive voltage bias applied to terminal 2 injects
spin-↑ electrons into the scattering region, whereas a positive
voltage bias applied to terminal 1 injects spin-↓ electrons,
leading to parallel charge currents and counterflowing spin
currents [see Eqs. (23) and (24)]. In particular, we are interested
in two configurations of applied voltage biases V1 and V2,
namely

(C) “Charge” − bias
Configuration =

{
V2 = V1 = V,

V3 = V4 = 0,
(28)

(S) “Spin” − bias
Configuration =

{
V2 = −V1 = V,

V3 = V4 = 0.
(29)

The labels “Charge” and “Spin” associated with these bias
configurations originate from the overall degree of freedom
injected into the scattering region, depicted in Fig. 1 as a
dashed box. Indeed in configuration (C) the amount of spin-↑
and spin-↓ electrons injected from terminals 1 and 2 is the
same, so that effectively only the charge degree of freedom
is injected and no net spin. In contrast, in configuration (S)
the lead 1 is negatively biased, determining a depletion of
spin-↓ electrons with respect to the equilibrium situation. In
this case only a spin degree of freedom is supplied to the
scattering region, with no net amount of injected charge.
Similar configurations have been discussed in Ref. 42. In
intermediate situations (i.e., when |V1| �= |V2|) both charge
and spin degree of freedom are involved. The injected degree
of freedom (charge and/or spin) experiences scattering events
due to the interboundary tunneling terms, which determine
the current actually measured in terminals 3 and 4. For each
configuration one can define charge and spin conductances in
the ith lead as the linear response of Ic and Is to the bias V

Gc(s)(i) = dIc(s)(i)

dV

∣∣∣∣
V =0

, i = 3, 4. (30)

In the following we shall describe the behavior of Gc and Gs

in the two configurations (C) and (S).

A. Charge-bias configuration (C)

Let us start by describing the charge-bias configuration (C)
Eq. (28). In this case, using the expressions (26) and (27) for

the currents, the definition (30), and the properties (17) of the
scattering matrix, one obtains

Gc(3)

Gs(3)

Gc(4)

−Gs(4)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= G(C) .= e2

h
(T32 + T31), (31)

where Tij denote the transmission coefficients of the setup.
Using Eqs. (18) and (15), one obtains

G(C) = e2

h

(
1 − T a

12

)2

1 + T a
12 + 2T a

12 cos φFP
, (32)

where T a
12 is the transmission coefficient of each single

QPC defined in Eqs. (12), and φFP is the FP phase. Here
we have assumed QPC with equal parameters (i.e., T a

12 =
T b

12). The oscillatory behavior of G(C) is shown in Fig. 3
for different values of T a

12. Recalling the expression (19)
for φFP, one can see that the oscillations have a period
�(eV) = hvF /L in the sum Vg,B + Vg,T . The maxima occur
at φFP = (2m + 1)π (m any integer), that is, when the two
paths of the FP loop [Fig. 2(a)] interfere destructively, favoring
direct transmission from terminal 2 to 3. These maxima are
indeed resonances, for the tunneling amplitudes of the two
QPC are equal; a slight difference in the parameters would
make resonances become maxima very close to 1. This type
of behavior of G(C) for the charge-bias configuration (C)
is quite similar to the gate-induced FP oscillations in the
linear conductance of a single channel quantum wire45 or a
carbon nanotube transistor.1,2,44 At the level of interference
processes, the relations between such systems and the electron

-3 -2 -1 0 1 2 3
0.00

0.25

0.50

0.75

1.00

G
(C

) /(
e2 /h

)

φ
FP /

FIG. 3. (Color online) Charge-bias configuration (C) [see
Eq. (28)]. The conductance (31) is plotted as a function of the FP
phase φFP = e(Vg,T + Vg,B )L/h̄vF , for different values of single QPC
“horizontal” transmission, namely T a

12 = 0.04 (solid curve), 0.15
(dashed curve), and 0.48 (dashed-dotted curve), corresponding to
spin-preserving tunneling amplitudes γp = 0.1,0.2,0.4, respectively,
and to spin-flipping amplitude γf = 0.1. The FP interference pattern
allows to switch from the “off” state (minima) to the “on” state
(maxima) by operating with the gate voltages. In configuration
(C) the conductance is independent of the AB phase φFP =
e(Vg,T − Vg,B )L/h̄vF .
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loops originating from spin-preserving tunneling processes
have been pointed out in Sec. III A. Here we find that, in
configuration (C), the analogy extends to the conductance
behavior as well. Indeed in configuration (C) the electrodes
1 and 2 are characterized by the same Fermi distribution,
and so are terminals 3 and 4. This configuration is thus
topologically very similar to a two-terminal setup realized
with carbon nanotubes or semiconductor quantum wires, and
the dependence of G(C) on the FP phase φFP can thus be
straightforwardly understood in terms of such analogy.

On the other hand, Eq. (32) has been obtained also taking
into account spin-flipping tunneling terms. In view of the
discussion in Sec. III B, one would thus expect a dependence
of G(C) on the AB phase φAB = e(Vg,T − Vg,B )L/h̄vF as
well. Indeed such a dependence does occur in each of
the transmission coefficients T31 and T32 appearing in the
expression (31) for G(C) [see Eqs. (18) and (15)]. However,
the result Eq. (32) shows that this is not the case for the sum
T32 + T31 and for the conductance G(C), which are independent
of φAB . To understand this effect, one can consider Fig. 2 and
realize that any AB loop process increasing the transmission
from terminal 1 to terminal 3 has a partner AB loop process
decreasing the transmission from 2 to 3, characterized by
the opposite AB phase dependence, and leading to a perfect
cancellation of the φAB dependence in the sum T31 + T32.
Notice that, nevertheless, spin-flipping tunneling amplitude
γf do enter Eq. (32) through the coefficients T a

12 of each
single QPC. One can thus conclude that, for the charge-bias
configuration (C), spin-flipping processes affect quantitatively
the transmission of each single QPC, but do not lead to
any qualitatively visible interference effect between the two
QPCs in the conductance G(C). We emphasize that this lack
of dependence of φAB only arises because in configuration
(C) terminals 1 and 2 are biased with the equal voltages and
terminals 3 and 4 are grounded. It is thus not an intrinsic
property of the scattering region, but a specific feature of the
charge-bias configuration (C). As we shall see, the behavior is
different for the spin-bias configuration (S).

B. Spin-bias configuration (S)

Let us now consider the spin-bias configuration (S) Eq. (29).
Again, making use of Eqs. (26), (27), (30), and (17), one
obtains in this case

Gc(3)

Gs(3)

−Gc(4)

Gs(4)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= G(S) .= e2

h
(T32 − T31), (33)

where Tij are the setup transmission coefficients defined in
Eq. (18). Utilizing the parametrization in terms of the single
QPC transmission (12), one finds

G(S) = e2

h

(
T a

13 − T a
14

)2 − 4T a
13T

a
14 cos φAB

1 + T a
12 + 2T a

12 cos φFP
. (34)

Remarkably, a comparison between Eqs. (33) and (32)
allows to realize that, while the conductance G(C) obtained

-3 -2 -1 0 1 2 3
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/

-0.40
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0.30

0.65
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FIG. 4. (Color online) Spin-bias configuration (S) [see Eq. (29)].
The conductance G(S) (in units of e2/h) is plotted as a function
of the FP phase φFP = e(Vg,T + Vg,B )L/h̄vF and the AB phase
φAB = e(Vg,T − Vg,B )L/h̄vF . The tunneling amplitudes for spin-
preserving and spin-flipping processes are γp = 0.4 and γf = 0.2.
By tuning the gate voltages one can control both magnitude and
sign of the conductance. Negative conductance values originate from
spin-flipping interboundary coupling.

for the charge-bias configuration (C) only depends on the FP
phase φFP = e(Vg,T + Vg,B)L/h̄vF , the conductance G(S) in
the spin-bias configuration (S) depends on both φFP and the
AB φAB = e(Vg,T − Vg,B)L/h̄vF . The latter dependence leads
to novel features in the TI setup in Fig. 1 with respect to
carbon-nanotube-based interferometers. The behavior of G(S)

is shown in Fig. 4 as a function of φFP and φAB . By varying φFP,
the conductance exhibits a FP pattern, qualitatively similar to
the case of the charge-bias configuration (C) shown in Fig. 3.
However, by varying the AB phase φAB related to the gate
voltage difference, one obtains a modulation the FP peaks in
amplitude and sign. One can thus even realize a sign reversal
of the conductance G(S). This effect, absent in the conductance
G(C), is highlighted in Fig. 5, where slices of Fig. 4 at fixed
φFP values are shown, and regions of positive and negative
conductance are clearly visible.

To understand the physical meaning of the sign reversal
and negative conductance, we first analyze the problem on the
point of view of charge currents. By setting the voltage biases
in configuration (S) [Eq. (29)] two charge currents are injected,
one rightward along the top boundary and one leftward along
the bottom boundary.

The presence of QPCs induces interboundary coupling and
modifies these currents. In particular, interboundary forward
tunneling from one boundary opposes the charge current coun-
terflowing in the other boundary, and may cause the complete
blocking of the current [i.e., G(S) = 0] or even its reversal
with respect to the applied voltage bias, giving rise to negative
conductance values. This is illustrated by Eq. (33), where
the conductance G(S) is expressed as a difference between
T32 and T31. Negative conductance G(S) occurs whenever
the “crossing” transmission T31 (describing interboundary
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FIG. 5. (Color online) Slice plots of Fig. 4. The conductance (33)
in the spin-bias configuration (S) is plotted as a function of the AB
phase φAB , for different values of the FP phase φFP, namely φFP = 0
(solid curve), π/2 (dashed curve), and π (dash-dotted curve). The
dependence of G(S) on φAB results in an AB modulation of the φFP-
dependent Fabry-Pérot pattern, and regions of negative conductance
arise.

forward tunneling) overcomes the “horizontal” transmission
T32 in magnitude.51 This effect is, in principle, present also
in a system of two usual quantum wires in the presence of
interwire tunneling. In TI edge states, however, helicity implies
that forward tunneling processes necessarily involve a spin
flip [see Eq. (3)], thus transferring the effect onto the spin
currents as well. Notice that in the spin-bias configuration
(S) the counterflowing charge currents correspond to parallel
spin currents since the charge current injected along the top
boundary is carried by an excess of spin-↑ right-movers, and
the charge current injected along the bottom boundary by a
depletion of spin-↓ right-movers [see Eq. (23)]. Thus, in terms
of spin currents, the tunneling term (3) effectively tends to
anti-align their directions. This pictorial way also explains why
negative conductance are not observed in configuration (C),
where the injected spin currents are already counterflowing.
In fact, the two AB loop processes that mutually cancel in
configuration (C) (see Sec. IV A), contribute with the same
sign in configuration (S).

To conclude this section, we wish to emphasize the
difference between our result of negative conductance and
the one obtained in Ref. 40 for a corner junction in a quantum
spin Hall system. In that case the possibility that a current
can flow out from the lead with the lowest applied voltage is
an effect due to the strong electronic interaction. In contrast,
our result shows that negative conductance values can be
obtained also in the absence of electron-electron interaction,
due to spin-flipping tunneling terms. Furthermore, we observe
that, in principle, negative conductance may occur also in
setups with one single QPC, like the ones considered in
Refs. 41 and 42. However, with one single QPC the value
of T31 may not be easily tuned: Due to the linear spectrum
of TI edge states, the application of a gate does not lead
to electron confinement, quite similarly to what occurs in
graphene. The QPC parameters are thus essentially determined
at fabrication level. In contrast, the presence of two QPCs gives

rise to loop processes, opening the possibility to modulate
T31 by interferometry instead of confinement. Indeed the total
“crossing” transmission T31 depends on both the single QPC
“crossing” transmissions T a

31,T
b

31 and on the AB phase φAB ,
allowing to control the sign reversal. Remarkably, sign reversal
only occurs as a function of φAB and not when varying φFP. An
intuitive argument to explain this property is based on the loop
trajectories depicted in Fig. 2: As observed in Sec. III C, to
lowest order in the tunneling amplitudes, T31 does not depend
on FP processes. This property holds to all orders though.

V. DISCUSSION

The results presented in the previous section show that
in both the “Charge” (C) and “Spin” (S) bias configurations
a tuning of the conductance is possible operating with the
gate voltages Vg,T and Vg,B . We recall that G(C) and G(S)

represent (up to a sign) the linear response of charge and spin
currents in terminals 3 and 4 [see Eqs. (31) and (33)]. In
particular, this implies that the interferometer Fig. 1 allows for
an all-electric tuning of the spin current, without invoking
magnetic fields or polarized ferromagnets. As observed in
the Introduction, this feature represents an advantage in
view of miniaturization with respect to spin-based devices
involving magnetic materials, due to the difficulty in realizing
magnetic fields at nanoscale resolution. Furthermore, due to
the intrinsic absence of backscattering in TI edge states, the
interferometer considered here exhibits typical values of the
conductance maxima of the order of the conductance quantum,
a relevant aspect for applications as well. In spintronics
devices based on ferromagnet-normal metal hybrid junctions,
for instance, the high tunnel energy barriers severely limit
transistor conductance in the “on” state, reducing the current
delivery capability per channel.

We now wish to comment the specific results obtained for
each configuration.

In charge-bias configuration (C) Eq. (28) the conductance
G(C) exhibits FP oscillations as a function of the FP phase
φFP = e(Vg,T + Vg,B)L/h̄vF similar to the case of nanotubes
and quantum wires. Notably, in this configuration charge and
spin conductances are independent of the AB phase φAB , so
that the additional degree of freedom Vg,T − Vg,B provided
by the edge channel space separation with respect to the case
of carbon nanotubes is actually ineffective. In this respect
configuration (C) is topologically very similar to the case
of other two-terminal charge-based electron interferometers.
Indeed Eq. (31) implies that, if one merges the currents flowing
into terminals 3 and 4, a pure charge signal is obtained, that
is,

Gtot
c

.= Gc(3) + Gc(4) = 2G(C), (35)

Gtot
s

.= Gs(3) + Gs(4) = 0, (36)

in accordance with the two-terminal setup analogy. Nev-
ertheless, because of the properties of TI edge states, the
four terminal setup offers the advantage of performing spin-
resolved measurements since currents flowing in terminals 3
and 4 are carried by a specific majority spin component. Indeed
configuration (C) can, for instance, be exploited to investigate
charge and spin tunneling currents through one QPC, as shown
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in Ref. 52, where relations similar to Eq. (31) have been found
between Gc and Gs even in the presence of interaction.

A richer scenario is obtained for the spin-bias configuration
(S) [see Eq. (29)], intrinsically different from a two-terminal
setup. In this case the FP oscillations of G(S) driven by
φFP are modulated by the AB oscillations driven by φAB =
e(Vg,T − Vg,B)L/h̄vF . In particular, a sign reversal of the
conductance is possible by varying the gate voltage difference.
As observed in Sec. IV B, the sign reversal of the conductance
is caused by the spin-flipping terms (3) that effectively behave
as an anti-aligning coupling for the injected spin currents.
Furthermore, we point out that in the bias configuration (S) the
charge conductances in terminals 3 and 4 have equal magnitude
but opposite signs, whereas the spin conductances have equal
magnitudes and signs. By merging the currents flowing in
terminals 3 and 4

Gtot
c

.= Gc(3) + Gc(4) = 0, (37)

Gtot
s

.= Gs(3) + Gs(4) = 2G(S), (38)

one obtains a pure spin current, a flow of electronic angular
momentum that is not accompanied by any net charge
current.53 The realization of pure spin currents represents an
extremely attractive problem nowadays, for it allows to avoid
charge-related spurious decoherence effects, and possibly
opens new perspectives for coherent transport and quantum
computing. Indeed a number of schemes have been proposed
to generate pure spin currents.54 On the other hand, the
absence of any net charge current also makes the detection
of pure spin currents a difficult task, which requires ad hoc
methods exploiting, for example, optical techniques14,26 or the
spin-valve effect.55 The setup described here, based on TI edge
states, is relatively versatile in this respect. Exploiting TI edge
state properties, it allows to generate spin currents by setting
the voltage biases in configuration (S), to measure them with
ordinary methods (amperometers) in separate terminals 3 and
4, and to adjust the conductances to the desired values by
operating with the gate voltages. Then, by merging the signals
of terminals 3 and 4, a pure spin current is obtained. The
ballistic behavior yields values of conductances comparable
with e2/h. These aspects are expected to contribute to make
the use of spin currents a realistic perspective within a short
time.

We now provide some typical values of the relevant
quantities involved in the setup, which can be realized in HgTe
quantum wells,31 where multiterminal transport measurements
have recently been performed.56 The period characterizing the
oscillatory behavior of the conductances as a function of φFP

and φAB , when expressed in terms of gate voltages, equals
e�Vg,T/B = h/vF L. Assuming a distance between the two
QPCs L � 1 μm, and a Fermi velocity42 vF � 0.5 · 106 m/s,
one obtains a value e�Vg,T/B � 1 meV. The possibility for
conductance sign reversal is related to the order of magnitude
of T31, the “crossing” transmissions of the setup. The important
parameter that ultimately determines T31 is the value of the
single QPC transmission T a

31 and T b
31. We emphasize that

relatively weak spin-flipping probabilities are sufficient to
obtain sign reversal. Indeed, the values γp = 0.4 and γf = 0.2
used for Fig. 4 correspond to single QPC “crossing” transmis-
sions T a

31 = T b
31 = 10% and T a

32 = T a
41 = T b

32 = T b
41 = 45%.

Assuming two equal QPCs, one can see from Eq. (34) that
the condition to observe a sign reversal can be expressed as
the inequality

(
T a

31 − T a
14

)2 − 4T a
31T

a
14 < 0, (39)

in terms of the single QPC transmission probabilities. The
values of T a

31 and T a
14 can be operatively determined by

biasing only terminal 1 (V1 = V and V2 = V3 = V4 = 0) and
measuring the linear response of the currents in terminals 3
and 4, respectively.

Before concluding, a comment about the effect of electron-
electron interaction is in order. Similarly to other one-
dimensional systems like carbon nanotubes or semiconductor
quantum wires, in TI edge states the Coulomb interaction,
which is screened at short and long distances, leads to a
Luttinger liquid behavior.29,40,42,52,57,58 For edge states in
HgTe quantum wells the Luttinger parameter g, describing
the strength of the screened Coulomb interaction, has been
estimated to range from the weakly interacting limit g �
1 (Ref. 59) to the moderate interaction regime g ∼ 0.8,
(Ref. 41,52) down to the strongly interacting case g ∼ 0.5,
(Ref. 40) depending on both geometrical parameters such as
the quantum well thickness and the conditions of material
growth. The analysis carried out here has focused on the
regime of noninteracting edge states. This has enabled us to
derive a complete solution of the edge state dynamics for
arbitrary values of tunneling parameters and gate voltages,
which we expect to qualitatively hold for weak interaction
as well. In contrast, in the regime of strong interaction the
scattering matrix approach is not applicable and an exact
solution is not available. The use of other methods (such as
renormalization group analysis or perturbative treatments) is
mandatory,29,52,57 and determining the properties of the setup
in the strongly interacting case represents a demanding task,
in general. For a single QPC or a corner junction, for instance,
it has been shown that Luttinger liquid signatures emerge
as a power-law behavior in transport properties.40,42,52,58

For the two QPC interferometric setup in Fig. 1, one can
speculate about interaction effects exploiting some analogies
with the recently studied Fabry-Pérot interferometers in the
strongly correlated regime.45 In particular, a modification of
the oscillation periods in φFP and φAB may be expected. Also,
in the low bias regime the noninteracting limit result may
qualitatively be preserved by the finite distance between the
electrodes, while Luttinger liquid signatures should emerge at
nonlinear transport. However, we emphasize that the helical
nature of edge states in topological insulators makes them
intrinsically different from other Luttinger liquid realizations,
possibly causing the emergence of new features. Furthermore,
strong correlation makes edge states more sensitive to local
defects such as fluctuations of ion concentration in the doping
layers60,61 or random bonds at the quantum well interfaces62

that may even localize the edge states.63 For these reasons the
determination of transport properties of the setup in Fig. 1
in the strongly interacting regime is an extremely rich and
interesting problem, which deserves a separate analysis beyond
the purpose of the present paper.
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VI. CONCLUSION

In conclusion, we have shown that interferometry of TI
edge states allows to realize a full electrically controllable
charge and spin transistor, without the use of magnetic fields.
The charge and spin conductances of the proposed setup in
Fig. 1 can be tuned by operating with electric gate voltages
applied to the top and bottom regions between the two QPCs,
which modify the phase of the two interference phenomena
characterizing the system: Fabry-Pérot-like loops generated by
spin-preserving tunneling processes and Aharonov-Bohm-like
loops generated by spin-flipping tunneling processes. Two
voltage bias configurations have been particularly addressed
[Eqs. (28) and (29)]. The charge-bias configuration (C) leads
to a conductance behavior that is qualitatively similar to the
Fabry-Pérot oscillations observed in carbon nanotubes electron
interferometers, with the additional advantage of allowing
for a measure of spin-resolved conductances as well. In the

spin-bias configuration (S), where counterflowing injected
charge currents correspond to parallel spin currents, the Fabry-
Pérot conductance pattern is modulated by Aharonov-Bohm
oscillations. This modulation originates from spin-flipping
tunneling processes, tending to anti-align the spin currents
and leading to a current blocking or reversal with respect
to the applied bias, yielding negative conductance values.
Furthermore, this configuration also enables to obtain a pure
spin current. These peculiar features suggest that the proposed
TI edge state setup may have a relevant interest for spintronics
applications.
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