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Theory of optical spin orientation in silicon
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We theoretically investigate the indirect optical injection of carriers and spins in bulk silicon, using an empirical
pseudopotential description of electron states and an adiabatic bond charge model for phonon states. We identify
the selection rules, the contribution to the carrier and spin injection in each conduction band valley from each
phonon branch and each valence band, and the temperature dependence of these processes. The transition from
the heavy hole band to the lowest conduction band dominates the injection due to the large joint density of states.
For incident light propagating along the [001̄] direction, the injection rates and the degree of spin polarization
of injected electrons show strong valley anisotropy. The maximum degree of spin polarization is at the injection
edge with values 25% at low temperature and 15% at high temperature.
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I. INTRODUCTION

The optical injection of carriers is a powerful method for
the study of the properties of semiconductors, and the optical
injection of spins, i.e., optical orientation,1 is an important
element in the toolkit of the field of spintronics.2–4 Most
research has been focused on direct optical transitions. There
have been fewer studies of indirect optical transitions, in which
the excited electron and hole have different wave vectors,
and phonon emission or absorption processes are necessary to
conserve the total wave vector. In this paper, we consider the
indirect optical injection of carriers and spins in bulk silicon.

Macfarlane et al.5 first measured the fine structure of the
absorption-edge spectrum in intrinsic bulk germanium and
silicon in 1958 and identified the phonon-assisted indirect gap
absorption branches. Thereafter, these studies were extended
to doped silicon.6–10 Theoretically, Elliott11 was the first to
study indirect absorption of excitons under the effective mass
approximation and identified the absorption line shapes at
photon energy near and far away from the indirect gap.
He found that the line shapes are not sensitive to exciton
effects at high photon energy. The electroabsorption in
indirect gap semiconductor12,13 and the absorption spectra
of multiexciton-impurity complexes14 were also investigated.
Hartman15 determined the absorption spectra using a parabolic
band approximation. Dunn16 and Chow17,18 used a Green
function method to investigate the physical processes in
indirect absorption. All these models approximated the matrix
elements of the electron-phonon interaction by their band-edge
values. Later, pseudopotential models19–23 were employed
to calculate the transition matrix elements of the electron-
phonon interaction around the band edge. However, a full
band-structure calculation of the full spectrum of indirect gap
absorption is still absent, even with the neglect of the excitonic
effects.

Investigations of indirect optical spin injection are less
common than those of indirect gap carrier injection. They
are also less common than those of direct gap spin injection,24

despite the fact that the first optical orientation experiment,25

performed by Lampel in his study of the nuclear polarization of
29Si in bulk silicon, employed indirect absorption. The degree

of spin polarization in such an injection process is sometimes
understood as a spin-dependent virtual optical transition
combined with a spin-independent phonon absorption or
emission process.26,27 However, due to spin-orbit coupling the
electron states are not pure spin eigenstates, and the effect of
the electron-phonon interaction on the indirect gap injection
needs to be calculated in detail. While Li and Dery28 have
recently studied the degree of circular polarization of the
luminescence associated with the recombination across the
indirect band gap following the electrical injection of spins
in silicon, a theoretical investigation of indirect optical spin
injection is still absent.

In the present paper, we perform a full band-structure
calculation of the indirect optical injection of carriers and spins
using an empirical pseudopotential model29–31 (EPM) for elec-
tron states and an adiabatic bond charge model32 (ABCM) for
phonon states. Compared to k · p models and ab initio models,
which are widely used for direct gap carrier and spin-injection
calculation,24,33 the advantage of the EPM is that the electron-
phonon interaction in the whole Brillouin zone can be calcu-
lated consistently in combination with the ABCM. This ap-
proach has been successfully used to describe spin-relaxation
processes34 and photoluminescence28 in bulk silicon.

We focus on the calculated optical indirect injection coeffi-
cients of carriers and spins, identifying the contribution from
each valence band and phonon branch. We take the excited
electrons and holes as free carriers. Because the electron-hole
interaction is nearly spin independent, to good approximation
it should affect the spin-injection and the carrier-injection rates
in the same way and not affect the degree of spin polarization
(DSP) of the injected electrons, which is the ratio of these
two quantities. The dependence of the injection coefficients
and DSP on photon energy, conduction band valley, and
temperature are established. For the injection of carriers, our
numerical results agree with the experiments at high photon
energy. In the course of our investigations we also discuss in
detail a simple but widely used model, in which the values
of the transition matrix elements are approximated by their
values at the band edge, and we compare its predictions with
our calculations.
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We organize the paper as follow: We begin with the general
formula for indirect carrier and spin injection assisted by
phonon emission and absorption in bulk silicon in Sec. II.
Then the selection rules that follow from the crystal symmetry
are discussed in Sec. III. We introduce the EPM and ABCM
models in Sec. IV. Finally, we present our results and
conclusions in Secs. V and VI. In the Appendix, we describe
an improved adaptive linear analytic tetrahedral integration
method (LATM)24,35 that we use to perform the sixfold
integration over the Brillouin zone (BZ).

II. MODEL FOR CARRIER AND SPIN INJECTION
BY INDIRECT ABSORPTION

Figure 1 shows the band structure of silicon in the energy
range [−12 eV, 6 eV] calculated from the EPM; the details
are given in Sec. IV. The lowest four bands are valence
bands, of which the upper three are the heavy hole (HH), light
hole (LH), and spin split-off (SO) bands. The valence band
edge (red dot) is at the � point with k0

v = 0. All other bands
are conduction bands. From the figure, the conduction band
edge (red filled square) is at k0

c ≈ 0.85
−→
�X on the � symmetry

line and results in six equivalent valleys that can be denoted
as X,X̄,Y,Ȳ ,Z,Z̄, indicating the location of the valley center.
The calculated direct band gap at the � point is Eg = 3.4
eV, while the indirect band gap is Eig = 1.17 eV. When the
photon energy satisfies Eig < h̄ω < Eg , optical injection
occurs only across the indirect gap. Because the excited
electron and hole have different wave vectors, the transition
must be assisted by phonon emission or absorption. The green
and blue lines show two possible indirect gap transitions
between the valence and conduction band edges. The red
hollow square and circle indicate possible intermediate
states.
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FIG. 1. (Color online) Band structure of silicon, calculated from
the EPM, with symmetry notation at the � point and the conduction
band edge (�1). The valence band is noted by HH, LH, and SO bands.
Two important phonon-assisted transitions from valence band edge
(red dot) to conduction band edge (red filled square) are given by green
lines and blue lines. The dotted lines refer to optical transitions, while
the dashed lines refer to the transitions mediated by phonons. The red
hollow square (circle) stands for one of the possible intermediated
states in the transition given by blue (green) lines.

For an electric field E(t) = Eωe−iωt + c.c., the carrier- and
spin-injection rates in silicon can be generally written as

ṅ(T ,ω) = ξab(T ,ω)Ea
ω

(
Eb

ω

)∗
,

(1)
Ṡf (T ,ω) = ζ f ab(T ,ω)Ea

ω

(
Eb

ω

)∗
.

Here ξab(T ,ω) and ζ f ab(T ,ω) are the injection coefficients
for carriers and spins, respectively, at temperature T . The
superscript Roman characters indicate Cartesian coordinates,
and repeated superscripts are to be summed over.

Using Fermi’s golden rule, we find the injection coefficient
ξab and ζ f ab to be of the form

Aab =
∑

I ;cvλ±
Aab

I ;cvλ±, (2)

with

Aab
I ;cvλ± = 2π

h̄

∑
kc∈I,kv

δ(εckc
− εvkv

± h̄�(kc−kv )λ − h̄ω)

×N(kc−kv )λ±Aab
ckcvkv ;λ, (3)

where

Aab
ckcvkv ;λ =

∑
σcσ ′

cσv

〈c̄′kc|Â|c̄kc〉T a
c̄kc v̄kvλ

(
T b

c̄′kc v̄kvλ

)∗
. (4)

Here I is the valley index; c(v) is the conduction (valence)
band index without including spin; kc (kv) is the electron
(hole) wave vector, where kc ∈ I means the summation is
over the I th valley; εckc

(εvkv
) give the energy spectra of

conduction (valence) bands; h̄�qλ gives the phonon energy
at wave vector q and mode λ [longitudinal optical (LO)
and acoustic (LA), and transverse optical (TO) and acoustic
(TA) branches]; and Nqλ± = Nqλ + 1

2 ± 1
2 , where Nqλ is the

equilibrium phonon number. The operator Â in Eq. (4) stands
for the identity operator Î in the carrier injection calculation,
and the f th component of the spin operator in the spin-injection
calculation. The indirect optical transition matrix elements are

T a
c̄kc v̄kvλ

= e

h̄ω

∑
n̄

{
Mc̄kcn̄kv,λv

a
n̄v̄kv

ω − ωnvkv

+ va
c̄n̄kc

Mn̄kc v̄kv,λ

ωcnkc
− ω

}
, (5)

in which c̄ = {c,σc}, c̄′ = {c,σ ′
c}, v̄ = {v,σv}, and n̄ = {n,σn}

are full band indexes, with σc,σ
′
c,σv being the spin indexes; εnk

is the electron energy at band n and wave vector k, and ωnmk is
defined by h̄ωnmk ≡ εnk − εmk. The velocity matrix elements
are given by vn̄m̄k = 〈n̄k|v̂|m̄k〉, with the velocity operator
v̂ = ∂He/∂ p and the unperturbed electron Hamiltonian He;
Mn̄kcm̄kv,λ = 〈n̄kc|H ep

λ (kc − kv)|m̄kv〉 are matrix elements of
the electron-phonon interaction H ep, which is written as
H ep = ∑

qλ H
ep
λ (q)(aqλ + a

†
−qλ), with aqλ being the phonon

annihilation operator for wave vector q and mode λ.
We now turn to the symmetry properties ofAab

I ;cvλ±. Though
bulk silicon has Oh symmetry, each conduction-band valley
only has C4v symmetry.36 Therefore each AI ;cvλ± only has
C4v symmetry, since the summation over kc is limited to kc in
the I th valley. The summation of Eq. (3) can be rewritten as

Aab
I ;cvλ± = 2π

h̄
NvNc,I

∑
kc∈I

′∑
kv

′ 1

Nv

∑
Pv

δ(εckc
− εvkv

± h̄�(kc−Pv kv )λ − h̄ω)N(kc−Pv kv )λ±
× Ãab

I ;ckcv(Pv kv )λ, (6)
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where

Ãab
I ;ckcvkvλ

= 1

Nc,I

∑
Pc,I

Aab
c(Pc,I kc)v(Pc,I kv );λ. (7)

The prime indicates the summation is only over the irreducible
wedge of the Brillouin zone, Pc,I are theNc,I symmetry opera-
tions in C4v that keep the I th valley unchanged, while Pv are the
Nv symmetry operations in Oh. For each process {I ; cvλ±},
the symmetry properties of the tensor with componentsAab

I ;cvλ±
are the same as those of the tensor with components Ãab

I ;ckcvkvλ
.

Therefore, in the I = Z valley, the ξab
Z;cvλ± form a second rank

tensor with only two nonzero independent components,

ξxx
Z;cvλ± = ξ

yy

Z;cvλ± ≡ ξ
(1)
cvλ±,

(8)
ξzz
Z;cvλ± ≡ ξ

(2)
cvλ±.

Similarly, the ζ abc
Z;cvλ form a third-rank pseudotensor with only

two nonzero independent components,

ζ
zxy

Z;cvλ± = −ζ
zyx

Z;cvλ± ≡ iζ
(1)
cvλ±,

ζ
xyz

Z;cvλ± = −ζ
yxz

Z;cvλ± ≡ iζ
(2)
cvλ±, (9)

ζ
xzy

Z;cvλ± = −ζ
yzx

Z;cvλ± = −iζ
(2)
cvλ±,

where ξ (1), ξ (2), and ζ (1) are real numbers and ζ (2) is also a real
number because of inversion and time-reversal symmetry in
bulk silicon. The injection coefficients in other valleys can be
obtained by properly rotating the Z valley to the corresponding
valley. The total injection coefficients

Aab
cvλ± =

∑
I

Aab
I ;cvλ± (10)

have higher symmetry, and the nonzero components satisfy

ξxx
cvλ± = ξ

yy

cvλ± = ξzz
cvλ± = 2ξ

(2)
cvλ± + 4ξ

(1)
cvλ±,

ζ
xyz

cvλ± = ζ
yzx

cvλ± = ζ
zxy

cvλ± = −ζ
xzy

cvλ± = −ζ
zyx

cvλ± = −ζ
yxz

cvλ±
= i

(
2ζ

(1)
cvλ± + 4ζ

(2)
cvλ±

)
.

All quantities keep the identified symmetry properties on
summation of one or several subscripts in {cvλ±}.

III. TRANSITIONS AT THE BAND EDGE

The values of the matrix elements T c̄kc v̄kv,λ at the band
edge, T c̄k0

c v̄k0
v,λ

, provide insight into the importance of each
injection process. For the indirect gap injection in silicon, the
conduction band edge in the Z valley is at k0

c = (0,0,k�), while
the valence band edge is at the � point, k0

v = 0. In analyzing
transitions near the band edge, we can use the following two
approximations: (i) the values of the transition matrix elements
[Eq. (4)] are taken at their band-edge values and (ii) the values
of the wave vector, the energy, and the phonon number of
the phonons involved are all taken at their band-edge values.
Under these approximations, Eq. (6) becomes

Aab
I ;cvτ±(T ,ω) ≈ 2π

h̄
Jcv

(
h̄ω ∓ h̄�k0

cλ

)
Nk0

cτ±Āab
I ;cvτ , (11)

with

Jcv(h̄ω) =
∑

kc∈I,kv

δ(εckc
− εvkv

− h̄ω), (12)

Āab
I ;cvτ = 1

Nv

∑
λ∈τ

∑
Pv

Ãab
ck0

cv(Pv k0
v )λ. (13)

Here τ indicates the phonon branches (TA, TO, LA, LO),
Jcv(h̄ω) is the joint density of states (JDOS) for indirect
gap injection, Āab

I ;cvτ gives the symmetrized transition matrix
elements at the band edge, and

∑
λ∈τ indicates summation

over all modes in the τ th branch. Under the parabolic band
approximation,15 the JDOS is

Jcv(h̄ω) ∝ (Eig − h̄ω)2. (14)

We now turn to Āab
I ;cvτ . Because the HH and LH bands

are degenerate at the � point and their wave functions are
not uniquely determined, unambiguous values of Aab

ck0
cvk0

vλ
and

Ãab
ck0

cvk0
vλ

for the HH and LH bands separately do not exist at

the band edge. But this is not a problem for Āab
I ;cvτ , due to

the summation over all symmetry operations. To show this
clearly, we indicate all intermediate states in the transition
matrix elements implicitly by writing

T c̄kc v̄kv ;λ = e

ω
〈c̄kc|T̂ ckcvkv ;λ|v̄kv〉, (15)

with the operator

T̂ ckcvkv ;λ ≡ H
ep
λ (kc − kv)

1

h̄ω − He + εvkv

v̂

+ v̂
1

εckc
− He − h̄ω

H
ep

λ (kc − kv). (16)

Substituting Eq. (15) into Eq. (4), it is easy to find
that the expression for Āab

I ;cvτ includes a summation
Nv

−1 ∑
Pv

Pv|v̄k0
v〉〈v̄k0

v|Pv , which equals
∑

v̄′∈LH,HH |v̄′k0
v〉

〈v̄′k0
v|/4 when v is the HH or LH band. So Āab

I ;cHHτ = Āab
I ;cLHτ =

(Āab
I ;cHHτ + Āab

I ;cLHτ )/2 are unambiguous and give the same
value for both the HH and LH bands. This conclusion mirrors
a similar one in the study of injection across the direct gap.24

In the following, we focus on selection rules for Āab
Z;cvλ. Li

and Dery28 also discussed the selection rules in the context
of luminescence by considering only the lowest conduction
band and the highest valence band as the intermediate states;
they also assume equal amplitudes for the two interference
processes shown in Fig. 1. Here we give a general discussion
using Eq. (15), without relying on the properties of the
intermediate states.

Without spin-orbit coupling, the valence band states at
the � point transform according to the representation �′

25
(with basis functions that transform as {yz,zx,xy}, which are
labeled as {X ,Y,Z} here).24 We first consider the electron
states that lie in the Z valley, in which the conduction
band-edge state transforms according to the representation �1

(basis function {z}).36 The phonon states involved transform
according to the representation �1 (basis function {z}) for the
LA phonon mode, �′

2 (basis function {x2 − y2}) for the LO
phonon mode and �5 (basis functions {x,y}) for the TA/TO
phonon modes;36 H

ep

λ (k0
c) has the same symmetry properties

as the λth branch phonon polarization vector. The velocity
v̂ transforms according to the representation �1 ⊕ �2. All
nonzero components of the vector T ck0

cvk0
vλ

are listed in Table I
for the different valence bands and phonon modes. There are
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TABLE I. The transition matrix elements (T x

ck0
c ,vk0

v ,λ
, T

y

ck0
c ,vk0

v ,λ
,

T z

ck0
c ,vk0

v ,λ
). All quantities can be taken as real numbers. We use

(T (′)
1 ,T

(′)
2 ) to refer to (T1,T2) (TA phonon) or (T ′

1,T
′

2) (TO phonon) as
appropriate.

Phonon mode λ

TA/TO LA LO

T ck0
c vk0

vλ x y z x2 − y2

|X 〉 0 (0,0,T
(′)

1 ) (0,T3,0) (T4,0,0)
|Y〉 (0,0,T

(′)
1 ) 0 (T3,0,0) (0,T4,0)

|Z〉 (0,T
(′)

2 ,0) (T (′)
2 ,0,0) 0 (0,0,T5)

totally seven nonzero quantities: T1 and T2 for TA phonon, T ′
1

and T ′
2 for TO phonon, T3 for LA phonon, and T4 and T5 for

LO phonon. In Li and Dery’s approximations, T2 = 2T1 and
T ′

2 = 2T ′
1 because the two transition processes summed are of

equal magnitude, and T5 vanishes due to their limitation of the
intermediate states. In contrast, we keep all nonzero terms in
our treatment and give their values in Sec. IV.

With spin-orbit coupling, the valence bands at the � point
are split into HH (| 3

2 , ± 3
2 〉), LH (| 3

2 , ± 1
2 〉), and SO (| 1

2 , ± 1
2 〉)

bands with the following states:∣∣∣∣1

2
, + 1

2

〉
= 1√

3

∣∣∣∣Z〉|↑〉 + 1√
3
|X + iY〉|↓〉,∣∣∣∣1

2
, − 1

2

〉
= 1√

3
|X − iY〉|↑〉 − 1√

3
|Z〉|↓〉,

∣∣∣∣3

2
, + 1

2

〉
=

√
2

3
|Z〉|↑〉 − 1√

6
|X + iY〉|↓〉,

(17)∣∣∣∣3

2
, − 1

2

〉
= 1√

6
|X − iY〉|↑〉 +

√
2

3
|Z〉|↓〉,∣∣∣∣3

2
, + 3

2

〉
= − 1√

2
|X + iY〉|↑〉,∣∣∣∣3

2
, − 3

2

〉
= 1√

2
|X − iY〉|↓〉.

The SO band at the � point is lower than the degenerate
HH and LH bands by 44 meV. At the conduction band edge,
the states can be approximately written as |z↑〉 and |z↓〉 due
to the very small spin mixing. The transition matrix elements
between these states with spin-orbit coupling can be obtained
by linearly combining the terms in Table I.

For σ− light, E = (x̂ − i ŷ)/
√

2, we show in Fig. 2 the
possible optical transitions from the valence bands to the Z

valley of the conduction band. Here the spin quantization
directions of both electrons and holes are chosen along the
z direction. It is obvious that the phonon states play a key
role in these transitions. For transitions from HH and LH
bands, the LA and LO phonon-assisted processes inject spin
polarization along the −z and z directions, respectively, with a
DSP of 50%, yet there is no spin polarization from the TA/TO
phonon-assisted processes. Despite its spin independence, the
electron-phonon interaction still affects the selection rules for
spin injection since all states involved are not pure spin states
due to spin-orbit coupling. Therefore, it is not adequate to
treat the indirect transitions as a spin-dependent virtual optical

FIG. 2. (Color online) Diagram for optical indirect transitions
from the band edge of the valence bands (HH, LO, and SO) to the
band edge of the conduction band (CB) in the Z valley, under σ− light.
Both the hole and electron states are quantized along the z direction.
The red arrows stand for allowed transitions, whose probabilities are
proportional to the product of the numbers next to the arrows and
factors of 1

3 T 2
3 , 1

3 T 2
4 , 1

3 [T2]2, and 1
3 [T ′

2]2 for LA, LO, TA, and TO
phonon-assisted processes, respectively.

transition combined with a phonon emission or absorption
process that does not affect the spin.26,27

Now we look at the transitions to the electron states in the
X valley. The possible optical transitions are complicated and
are shown in Fig. 3. To simplify the diagram, we choose the
quantization axis of the hole states along the x direction and
that of the electron states along the z direction. Here the LO and
TA/TO phonons can play a role in spin injection, but the LA
phonon cannot. Thus there is strong valley anisotropy in the
injection of spins. In Li and Dery’s approximations, the TA/TO
phonon-assisted processes give a DSP of 1/3 from the HH and
LH bands, and the LO phonon-assisted process gives no spin
polarization. In our more detailed analysis, we cannot simply
identify a DSP for each process, as some of these processes are
determined by more than one nonzero parameter. We discuss
the actual values of these at the end of Sec. IV.

Because the band-edge transitions strongly depend on the
choice of the electron and hole states, it is constructive to give
the nonzero components of Āab

Z;cvτ . They can be specified by
giving the values of Ā(1,2)

cvτ , in terms of which Āab
Z;cvτ are found

following the pattern of Eqs. (8) and (9). The results are shown
in Table II. In the calculation, we have used the result that the
contributions for the HH and LH bands at the � point are
exactly the same.

From Table II, we find that some results are similar to those
for direct gap injection: The band-edge transition magnitudes
for carrier injection are the same for each valence band, while
the ones for spin injection are only identical for HH and LH
bands and satisfy ∑

v

ζ̄ (1,2)
cvτ = 0. (18)
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FIG. 3. (Color online) Diagram for optical indirect transitions
from the band edge of the valence bands (HH, LO, and SO) to the
band edge of the conduction band (CB) in the X valley, under σ− light.
The electron states are quantized along the z direction, and the prime
beside the hole states indicate that they are quantized along the x

direction. The transition strength for each color arrows in each phonon
branch is as follows: In LA-assisted transitions, the factor is 1

24 T 2
3 for

black arrows. In LO-assisted transitions, the factors are 1
8 T 2

4 for black
arrows, 1

24 (T4 ± 2T5)2 for blue thin dotted (+) and red thin dashed (−)
arrows, and 1

12 (T4 ± T5)2 for brown thick dashed (+) and green thin
dotted (−) arrows. In TA-assisted transitions, the factors are 1

4 [T1]2

for black arrows, 1
12 [T 2

1 + 2T 2
2 ± 2T2T1] for red thin dashed (+) and

blue thin dotted (−) arrows, and 1
12 [2T 2

1 + T 2
2 ± 2T2T1] for green

thick dotted (+) and brown thick dashed (−) arrows. For TO-assisted
processes the same formula hold with (T1,T2) replaced by (T ′

1,T
′

2).

The vanishing sum does not mean that the spin polarization
becomes zero when the laser pulse is wide enough to involve
all valence bands, because the densities of states for different
valence bands differ. However, as the photon energy increases,
the optical transition occurs away from the band edge, where
the involved electron and hole states are superpositions of the
band-edge states of all valence bands. As a consequence of
Eq. (18), important band mixing leads to a small DSP.

TABLE II. Band-edge transition rates (Ā(1)
cvτ ,Ā(2)

cvτ ) with A being
ξ for carrier injection and ζ for spin injection. We use (T (′)

1 ,T
(′)

2 ) to
refer to (T1,T2) (TA phonon) or (T ′

1,T
′

2) (TO phonon) as appropriate.

τ TA/TO LA LO

ζ̄

SO (0, − 2
3 T

(′)
1 T

(′)
2 ) (− 2

3 T 2
3 ,0) ( 2

3 T 2
4 , 2

3 T4T5)

LH,HH (0, 1
3 T

(′)
1 T

(′)
2 ) ( 1

3 T 2
3 ,0) (− 1

3 T 2
4 , − 1

3 T4T5)

ξ̄

SO ( 2
3 [T (′)

2 ]2, 4
3 [T (′)

1 ]2) ( 2
3 T 2

3 ,0) ( 2
3 T 2

4 , 2
3 T 2

5 )

LH,HH ( 2
3 [T (′)

2 ]2, 4
3 [T (′)

1 ]2) ( 2
3 T 2

3 ,0) ( 2
3 T 2

4 , 2
3 T 2

5 )

IV. MODEL FOR ELECTRON STATES
AND PHONON STATES

To look at the carrier and spin injection away from the
band edge, a full band structure model of the electron and
phonon states is necessary. We use the EPM29–31 for electron
states and the ABCM32 for phonon states. We describe these
now and give the resulting electron-phonon interaction for
indirect gap injection. In the EPM, electrons are described by
the pseudo-Hamiltonian,

He = p2

2m0
+

∑
iα

v(r − Riα). (19)

Here p is the momentum operator; Riα = Ri + τ α is the
equilibrium position for the αth (α = 1,2) atom in the i th prim-
itive cell located at Ri with τ 1 = 0 and τ 2 = a

4 (1,1,1), and a

is the lattice constant; v(r, p) = vL(r) + vNL(r, p) + vso(r, p)
is the atomic empirical pseudopotential, in which vL(r)
and vNL(r, p) are the local and nonlocal spin-independent
pseudopotentials, respectively,29,30 and vso(r, p) is a spin-
dependent contribution31 introduced to fit the spin split-off
energy at the � point.34 Eigenstates of He are given by
the Bloch states |nk〉 = ∑

g cnk(g)|k + g〉, where |k〉 are
plane wave states, g is a reciprocal lattice vector, and

cnk = (c↑
nk c

↓
nk)

T
are coefficients obtained by solving the

single-particle Schrödinger equation.
The Fourier transform of the pseudopotential v(r, p) is

v(k1,k2) =
∫

d r
a3

e−ik1·rv(r, p)eik2·r . (20)

For the local pseudopotential vL(r) taken to be of the form
vL(r) with r = |r|, we have that vL(k1,k2) depends only on
|k1 − k2|, and we write it as vL(|k1 − k2|). Chelikowsky and
Cohen29,30 showed that a suitable electron band structure can
be produced by taking the values of vL(k) only at k2 = 3, 4, and
11 (2π/a)2, which lead to the conduction band energy at the X

point of 1.17 eV. In order to produce the direct band gap Eg , the
indirect band gap Eig, and the location of the conduction band
edge k0

c correctly after including the spin-orbit coupling, we
use the following parameters vL(k) = −3.496, −0.544, 0.437,
0.429, and 0.1373 eV for k2 = 3, 4, 11, 16, and 19 (2π/a)2. The
calculated band structure is shown in Fig. 1. The calculation
is for zero temperature. With increasing temperature, the
electron-phonon interaction induces changes at the band edge
and shifts the indirect and direct band gaps.37–40 For silicon,
the shift in the conduction band edge is minor; we absorb it
into Eig in the following.

For the phonons, the ABCM is used for calculating the
polarization vectors εα

qλ and energies h̄�qλ. The calculated
band structure fits the experiments well.32 The energies of
phonons with wave vector k0

c , which are involved in the band-
edge transition, are h̄�k0

c ,TA = 19 meV, h̄�k0
c ,LA = 43 meV,

h̄�k0
c ,LO = 53 meV, and h̄�k0

c ,TO = 57 meV.
By shifting the atom position from the equilibrium position

Riα to Riα + uiα , and then expanding the electron Hamiltonian
(19) to linear order in uiα , we identify the electron-phonon
interaction as H ep = −∑

iα ∇v(r − Riα) · uiα . The atomic

165211-5



J. L. CHENG, J. RIOUX, J. FABIAN, AND J. E. SIPE PHYSICAL REVIEW B 83, 165211 (2011)

TABLE III. Relative band-edge values of all quantities listed in Table II for the phonon emission process. The photon energies for
different phonon branches are taken as h̄ω = Eig + h̄�k0

cλ. All values are normalized with respect to the value of |T ′
2 |2 in case A. Its value is

(T ′
2)2 = 1.8 × 10−86 J2 V−2 m−1.

TA TO LA LO

T 2
1 T 2

2 T1T2 (T ′
1)2 (T ′

2)2 T ′
1T

′
2 T 2

3 T 2
4 T 2

5 T4T5

A 0.020 0.018 −0.019 0.131 1.000 −0.358 0.018 0.218 0.001 −0.014
B 0.066 0.090 −0.077 0.120 1.024 −0.348 0.020 0.192 0.026 −0.070

displacement is usually expanded by the phonon polarization
vectors as

uiα =
∑

q∈1stBZ,λ

(
h̄

ρ�qλ

)1/2

(aqλ + a
†
−qλ)εα

qλe
iq·Ri , (21)

with ρ being the mass density of silicon. The transition matrix
elements between different electron states are given as

Mn1 k1n2 k2,λ = −i

√
h̄

ρ�qλ

∑
g1 g2

[
�k ·

∑
α

ελ
q,αe−i�k·τα

]

× c
†
n2 k2

(g1)v(k1 + g1,k2 + g2)cn2 k2 (g2),

(22)

where q = k1 − k2, �k = k1 + g1 − k2 − g2.
In calculating the matrix elements of the electron-phonon

interaction given in Eq. (22), the values of vL(k) at all k

points are necessary, and they are obtained using the natural
cubic spline interpolation41 on the discrete points given above
and two further restrictions: the first is the value vL(0); the
second is a cutoff at high k, vL(k > kcut) = 0, where kcut is a
cut-off value. Bednarek and Rössler20 showed that the values
assumed for vL(0) and kcut strongly affect the calculated matrix
elements of the electron-phonon interaction in Eq. (22). In our
calculation, we find that the assumed value of kcut does not
significantly affect H ep for kcut > 3kF , and we set kcut = 3kF .
We show the dependence of indirect absorption on vL(0) in
Tables III and IV by taking vL(0) = − 2

3EF (denoted as case
A) and vL(0) = 0 (case B). Here kF and EF are the Fermi wave

vector and Fermi energy of the free electron gas appropriate
to the valence electron density in silicon.

For carrier injection, the contributions from the phonon
branches other than TA are essentially the same in case A
and B, while for spin injection the phonon processes involving
TA or LO phonons and electron injection into the X valley
give contributions that depend strongly on the value of vL(0).
The DSP for the LO phonon-assisted process is about 6%
in case A and 32% in case B. Nevertheless, by far the most
important contribution to indirect gap injection comes from
the TO phonon-assisted process, which is almost independent
of vL(0) for both carrier and spin injection. In the following,
we use the parameters of case A.

Contrary to what was assumed in Li and Dery’s results,
our results show that T2 = 2T1 or T ′

2 = 2T ′
1 cannot be well

satisfied. But the calculated DSP for TA/TO phonon-assisted
processes in the X valley is still close to 1/3. The value of T5

is reasonably small.

V. CALCULATIONS

To obtain the injection rates, we can focus only on energies
near the band edge and rely on Eq. (11) or numerically evaluate
Eq. (6) using the results of a full band structure calculation.
Both strategies require a six-dimensional integration over the
electron and hole wave vectors ranging within the BZ. In the
present work, we vary the photon energy h̄ω to about 1.5 eV
above Eig, which results in an effective integration volume
consisting of about 3/8 of the volume of the whole BZ, and
a very demanding calculation. Similarly to the integration

TABLE IV. Band-edge values of Ā(1,2)
cHHλ. The classification in Z and X valleys follows Eq. (23). All values are normalized with respect to

the value of |T ′
2 |2 in case A.

Z valley X valley Total

cZ ≡ sZ ≡ DSPZ ≡ cX ≡ sX ≡ DSPX ≡ c ≡ s ≡ DSP ≡
ξ̄

(1)
cHHλ+ − 2

h̄
ζ̄

(1)
cHHλ+ sZ/cZ 1

2 (ξ̄ (1)
cHHλ+ + ξ̄

(1)
cHHλ+) − 2

h̄
ζ̄

(2)
cHHλ+ sX/cX 4cX + 2cZ 4sX + 2sZ s/c

A
TA 0.0117 0 0 0.019 −0.006 −32% 0.100 −0.025 −25%
LA 0.0122 −0.0062 −51% 0.006 0.00022 4% 0.0488 −0.0115 −24%
LO 0.145 0.0727 50% 0.073 0.00473 6% 0.583 0.164 28%
TO 0.667 −0.0056 −1% 0.42 −0.119 −28% 3.01 −0.489 −16%

B
TA 0.0603 −0.00045 −1% 0.074 −0.026 −35% 0.42 −0.103 −25%
LA 0.0135 −0.0067 −50% 0.0068 0 0 0.054 −0.013 −24%
LO 0.128 0.064 50% 0.072 0.023 32% 0.546 0.222 41%
TO 0.682 0 0 0.421 −0.116 −28% 3.05 −0.475 −16%
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used in the calculation of direct gap injection, the integrand
here is composed of an energy conservation term, i.e., the
Dirac δ function, and a transition matrix element term. In a
calculation of direct gap injection, the δ function is evaluated
using a LATM24,35 on a very fine grid, and the transition matrix
elements are calculated on each grid point. However, this
method is not practical in a calculation of indirect gap injection,
because the transition matrix elements are too complicated to
be evaluated on each point of a fine grid. Instead, we find that
we can obtain a converged result by using separate grids for
these two terms, adopting a finer grid for the Dirac δ function
and interpolating the transition matrix elements on a rougher
grid. The details of this method are in the Appendix. In our
calculation, the valence bands include HH, LH, and SO bands,
the conduction bands include the lowest and the first excited
conduction bands, and the intermediate states are chosen as
the lowest 30 bands to ensure convergence.

The total carrier and spin injection from any pair of
valence bands via an emission or absorption process involving
a phonon of any branch, as well as the carrier and spin
injection into any conduction band valley, are completely
determined once the quantities ξ

(1,2)
cvλ± and ζ

(1,2)
cvλ± are specified:

The nonvanishing Cartesian tensor components follow from
Eqs. (8) and (9), the sum over the different valleys follows
from Eq. (10), and the full response tensors follow from Eq. (2);
once these are determined the injection rates can be calculated
from Eq. (1) for any light polarization. Instead of presenting
our calculated results for ξ

(1,2)
cvλ± and ζ

(1,2)
cvλ± below, we present

instead

ξ
(X)
cvλ± ≡ 1

2

[
ξ

(1)
cvλ± + ξ

(2)
cvλ±

]
,

ξ
(Z)
cvλ± ≡ ξ

(1)
cvλ±,

(23)
ζ

(X)
cvλ± ≡ −ζ

(2)
cvλ±,

ζ
(Z)
cvλ± ≡ −ζ

(1)
cvλ±.

These are the terms that appear in a simple excitation
scenario using σ− light, as described in the following section.
They correspond to the injection into different valleys via
the different processes. Nonetheless, we stress that given
the quantities in Eq. (23), we can construct the carrier
and spin injection in Eq. (1) for any polarization using
Eqs. (8), (9), and (2).

VI. RESULTS

In the following, we focus on injection under σ− light. In
this case, the six valleys can be divided into two sets: {Z,Z̄}
and {X,X̄,Y,Ȳ}. The injection is identical for all the valleys
within each set. The carrier and spin injection from the valence
band v into the conduction band c in the I th valley via a λth-
branch phonon emission (+) or absorption (−) are identified
by ṅI ;cvλ± and ṠI ;cvλ±, respectively, which are given from
Eq. (23) as

ṅI ;cvλ± = ξ
(I )
cvλ±|E0|2, (24)

Ṡz
I ;cvλ± = ζ

(I )
cvλ±|E0|2,

with Ṡ
x/y

I ;cvλ± = 0. Accordingly, the coefficients

ξ =
∑

I ;cvλ±
ξ

(I )
cvλ±, ξ (I ) =

∑
cvλ±

ξ
(I )
cvλ±,

ξ (I )
τ =

∑
cv±;λ∈τ

ξ
(I )
I ;cvλ±, ξ (I )

cvτ =
∑

±;λ∈τ

ξ
(I )
cvλ±,

are also used in the following to understand the injection
properties. Here τ = TA, LA, LO, and TO are the phonon
branches; as before,

∑
λ∈τ indicates to a sum over all phonon

modes in the τ th branch. Similar notation is used for the
injection coefficients of spins. We find that the polarization
direction of injected spins in each valley is parallel or
antiparallel to the z direction. The DSP is defined as

DSP = ζ

h̄ξ/2
, DSP(I )

{···} = ζ
(I )
{···}

h̄ξ
(I )
{···}/2

. (25)

Here {· · ·} indicates the subscripts for DSP(I ) are the same as
that for ξ (I ) and ζ (I ).

A. Carrier injection

1. Band-edge carrier injection at 4 K

We first study the carrier injection at the band edge at
4 K. For band-edge injection, only the transitions between
the lowest conduction band and the valence bands need to be
considered; the first excited conduction band is ignored due
to its small density of states. At this low temperature, only
the phonon emission process is important. In Fig. 4 we show
the spectra of the total injection rate (black thick solid curve)
as well as the injection rates in Z and X valleys (black thick
dashed and dot-dashed curves). All injection rates increase
with increasing photon energy. These results are consistent
with the analytical results in Sec. III, where the injection rates
around the band edge are approximately proportional to the
JDOS. The difference between the injection rates in the Z

and X valleys shows that the injection is valley anisotropic.
To understand the contribution from each phonon branch, we
plot phonon-resolved injection rates in Fig. 5. We find that
each phonon-resolved spectrum has a shape similar to the
total. In our calculation, the importance of the phonon-assisted

ξ(X)

ξ(Z)

ξ

ω − Eig (eV)

ξ
(1

020
V

−
2 m

−
1 s

−
1 )

0.30.250.20.150.10.050

16

14

12

10

8

6

4

2

0

FIG. 4. (Color online) Spectra of carrier injection rates ξ (solid
curves), ξ (Z) (dashed curves), and ξ (X) (dot-dashed curves) at 4 K.
The black thick and red thin curves are the results calculated from
Eq. (6) and Eq. (11), respectively.

165211-7



J. L. CHENG, J. RIOUX, J. FABIAN, AND J. E. SIPE PHYSICAL REVIEW B 83, 165211 (2011)

ξ(X)

ξ(Z)

(d) TO

ω − Eig (eV)

ξ
(1

020
V

−
2 m

−
1 s

−
1 )

0.30.250.20.150.10.050

2.50

2.00

1.50

1.00

0.50

0.00

ξ(X)

ξ(Z)

(c) LO

ω − Eig (eV)

ξ
(1

020
V

−
2 m

−
1 s

−
1 )

0.30.250.20.150.10.050

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

ξ(X)

ξ(Z)

(b) LA

ω − Eig (eV)

ξ
(1

020
V

−
2 m

−
1 s

−
1 )

0.30.250.20.150.10.050

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

ξ(X)

ξ(Z)

(a) TA

ω − Eig (eV)

ξ
(1

020
V

−
2 m

−
1 s

−
1 )

0.30.250.20.150.10.050

0.60

0.50

0.40

0.30

0.20

0.10

0.00

FIG. 5. (Color online) Phonon-resolved injection rates ξ (Z)
τ (solid

curves) and ξ (X)
τ (dashed curves). The black thick and red thin curves

are the results calculated from Eqs. (6) and (11), respectively.

processes are in order of TO > LO > TA > LA, in which the
contribution of the LA-assisted process is less than 5%.

At the band edge, the injection rates can also be obtained
from the simplified calculation given by Eq. (11), which can
be used to identify how well the selection rules in Table II
work. The results of the simplified calculation are also plotted
in Figs. 4 and 5 as red thin curves. Compared to the full
calculation, Fig. 5 shows that these results have smaller values
for the TA, LA, and LO branches, and a larger value for the TO
branch. The differences are significant for acoustic phonons
and minor for optical phonons. Even for optical phonons,
the difference is about 30% at excess photon energy of
0.25 eV. However, because the errors for the two most
important phonon branches, i.e., TO and LO branches, are
opposite, the difference in the total injection rates between
these two methods is not so great. This difference illustrates
not only the variation of the transition matrix elements on kc

and kv but also the failure of the simplified formula at high
photon energy. Nevertheless, the simplified formula gives the
correct qualitative results.

To better understand the details of carrier injection, we
also plot the contribution from each valence band to ξ (X,Z)

for the TO-assisted process in Fig. 6. There are two important
features: First, all injection rates increase with photon energy,
which can be understood by the increase of the involved JDOS
with photon energy. Second, the HH band gives the greatest
contribution to the injection rate, and the SO band gives the
smallest. As the transition matrix elements are the same for
these three bands at the band edge, the magnitude is determined
only by the density of states of each valence band. Similar
results are obtained for the other three phonon branches.

2. Comparison with experiment at 4 K

Figure 7 gives the photon energy dependence of
√

α(ω)h̄ω

at T = 4 K. Here α(ω) = h̄ωξ (ω)/(2n(ω)cε0) is the absorption
coefficient, n(ω) is the refractive index of silicon, c is the

ξ(X)
SO: ξ(Z)

ξ(X)
LH: ξ(Z)

ξ(X)
HH: ξ(Z)
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ξ
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−
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−
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0.80
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0.40

0.20

0.00

FIG. 6. (Color online) The contribution from each valence band
to the injection rates ξ (Z) (thick curves) and ξ (X) (thin colored curves)
for the TO-assisted process.

speed of light, and ε0 is the vacuum permittivity. Our result
(the solid curve) shows two important features of the indirect
gap injection: Near the onset of absorption, for h̄ω < Eig +
h̄�0

k0
c ,LO

, the TA phonon emission process dominates, and then
the optical phonons make important contributions for h̄ω >

Eig + h̄ωk0
c ,LO

. The separation between these two regions is
indicated by the kink in the figure. In each region, the line shape
of

√
αh̄ω is approximately a linear function of h̄ω, which is

consistent with the results in the parabolic band approximation,
i.e.,

√
αh̄ω ∝ h̄ω − Eig − h̄�k0

cλ
.11,15 With respect to these

features, our results match the experimental results very well.
Yet compared to the experiment by Macfarlane et al.,5

our result fails to show the correct energy shift and line
shape at the beginning of each region. Both of these features
are related to the excitonic effect, which is absent in our
calculation. When the excitonic effect is considered, both
the bound and continuum exciton states contribute to the
absorption, as discussed in detail by Elliott11: The onset of
absorption is shifted to lower energy by the presence of
exciton bound states and modified to give a line shape α ∝√

h̄ω − (Eig + h̄�k0
cλ

− Eex) associated with the first exciton
bound state and each phonon branch, with an exciton bind
energy Eex ≈ −14 meV39; the line shape of the absorption
associated with the exciton continuum states is similar to
that calculated without including the electron-hole interaction.
Despite all this, in the next we will see that the absorption at
high photon energy can still be well described by our model.
Even at low photon energy, we expect our model can give

Exp.
Theory

ω (eV)

√
α

ω
(m

−
1 2
eV

1 2
)

1.281.241.21.16

45
40
35
30
25
20
15
10
5
0

FIG. 7. (Color online) Spectra of
√

αh̄ω. The solid curve is our
theoretical result. The red thin curve is experimental data.5
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FIG. 8. (Color online) Spectra of ξ , ξ (Z), and ξ (X) at 77 K (black
thick curves) and 300 K (red thin curves).

a reasonable description of the DSP, because the excitonic
effects are, to good approximation, spin independent.

3. Carrier injection at high temperature

The indirect gap injection rates depend on the phonon
number and thus on the temperature. With increasing temper-
ature, the phonon absorption processes come into play, and the
onset of the injection spectrum moves to lower photon energy.
The equilibrium phonon numbers Nk0

cλ
at different temper-

atures are as follows: At 77 K, all phonon numbers can
approximately be ignored, so only the emission processes
occur. At 300 K, the phonon numbers become 0.92 for TA,
0.23 for LA, 0.15 for LO, and 0.12 for TO. Because the TA
phonon has smaller energy, the absorption induced by the TA
phonon-assisted process is the most temperature sensitive.

In Fig. 8 the spectra of ξ , ξ (Z), and ξ (X) are plotted for
77 K (black thick curves) and 300 K (red thin curves).
All injection rates increase remarkably with temperature: ξ

displays an approximately 50% increase when the excess
photon energy is 1.5 eV. Note that the injection rates at
77 K and 4 K are approximately the same. The phonon-
resolved absorption spectra at different temperatures are
plotted in Fig. 9. The injection rate from each phonon
branch increases with temperature, and the increment is most
significant for the TA phonon branch. At 300 K, ξ

(X)
TA is

comparable to ξ
(X)
TO ; at low temperature, ξ

(X)
TA is less than half

of ξ
(X)
TO .

4. Comparison with experiment at high temperature

In Fig. 10, we compare our results for the absorption
coefficient α with experimental results42 at 77 and 300 K.
Compared to the results near the band edge, the calculations
without including excitonic effects fit the experiments better
at high photon energy. The difference between theory and
experiment at low photon energy can be attributed to excitonic
effects and the temperature dependence of the indirect band
gap energy, neglected in our calculation which takes that
energy as its zero temperature value. Clearly, our neglect
of excitonic effects and of this gap energy shift has less
consequence at higher energies. In the calculation, we use
the experimental frequency-dependent refractive index n(ω).6

Because of the increase in phonon number, the absorption
coefficient at 300 K is remarkably larger than at 77 K.
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FIG. 9. Phonon-resolved ξ (Z) and ξ (X) at 77 K and 300 K.

5. Temperature dependence of carrier injection

Figure 11(a) gives the temperature dependence of the
ratio ξ (T )/ξ (0) (black solid curves), ξ (X)(T )/ξ (X)(0) (green
dash-dotted curves), and ξ (Z)(T )/ξ (Z)(0) (red dashed curves)
for h̄ω − Eig = 70, 100, and 1000 meV. The injection rates
increase with temperature for all photon energies, and their
slopes decrease with photon energy. When the temperature is
lower than 70 K, the injection rates are almost independent of
temperature, whereas they become nearly a linear function of
temperature at temperature higher than 200 K. Their slopes
depend on the photon energy with larger slopes at lower
photon energies. The slopes for the injection in the Z and
X valleys are found to differ at low photon energy, with the
difference tending to disappear at high photon energy. The
temperature dependence of phonon-resolved injection rates for
excess photon energy 100 meV are plotted in Fig. 11(b). The
temperature dependence of the phonon-resolved injection rates
are similar to the total but show different slopes for different
branches. In order to give a comprehensive understanding of

Exp.
300 K: Theo.

Exp.
77 K: Theo.

ω (eV)

α
(μ

m
−

1 )

2.62.42.221.81.61.41.2

2

1

0

FIG. 10. (Color online) The comparison of α between our theory
(thick curves) and experiments42 (thin colored curves) at 77 K (solid
curves) and 300 K (dash-dotted curves).
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FIG. 11. (Color online) (a) Temperature dependence of
ξ (T )/ξ (T = 0), ξ (X)(T )/ξ (X)(0), and ξ (Z)(T )/ξ (Z)(0) for excess
photon energy at 70, 100, and 1000 meV. (b) Temperature dependence
of phonon resolved ratio for excess photon energy at 100 meV. (Black
solid curves) The total injected carriers; (green dash-dotted curves)
values in the X valley; (red dashed curves) values in the Z valley.

these results, we use the simplified formula for the band-edge
injection in Eq. (11). At high temperature, the phonon number
Nk0

cλ
is approximately kBT /h̄�k0

cλ
, and Eq. (11) for absorption

near the band edge can be rewritten as

ξ
(I )
cvλ(T ,ω)

ξ
(I )
cvλ(0,ω)

= 1 + kBT

h̄�k0
cλ

[
1 +

(
h̄ω − Eig + h̄�k0

cλ

h̄ω − Eig − h̄�k0
cλ

)2 ]
.

(26)

The linear dependence at high temperature is obvious. The
slope is determined by the photon energy and decreases as
the photon energy increases. At photon energy displayed in
Fig. 11(b), however, the dependence of the slope on phonon en-
ergy is too complicated to be described by this simple formula.

B. Spin injection

1. Band-edge spin injection at 4 K

In Fig. 12(a) we show the spectra of the spin-injection rate
in the Z valley (dashed curve) and the X valley (dash-dotted
curve) as well as the total (solid curve) at 4 K. The spin-
injection rates increase with photon energy and show strong
valley anisotropy, as do in carrier injection. But the photon
energy dependence of the spin-injection rates does not follow
the quadratic JDOS but nearly a linear function. This indi-
cates the strong wave-vector dependence of ζ ab

ckcvkvλ
given in

Eq. (4). The injected spins in the X and Z valleys have opposite
polarization direction. Fine structures of spin injection can be
found from the DSP spectra given in Fig. 12(b). The total DSP
at the band edge (h̄ω2 − Eig = 19 meV, corresponding to the
TA phonon emission process) is about −25%, while the DSP in
the Z and X valleys approximates 0 and −32%. When the pho-
ton energy is higher than h̄ω2, the spectra can be divided into
three regions: (i) h̄ω ∈ [h̄ω2,h̄ω3] with h̄ω3 − Eig = 57 meV
(=�k0

c ,TO). Here the DSP and the DSP(X) decrease rapidly
with increasing energy to a minimum value of −1% and
−5%, respectively, while the DSP(Z) increases to a maximum
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FIG. 12. (Color online) (a) Spectra of spin-injection rates ζ (solid
curves), ζ (Z) (dashed curves), and ζ (X) (dash-dotted curves) at 4 K. (b)
The corresponding DSP spectra. The labeled energies are h̄ω2,3,4 −
Eig = 19,57,90 meV, respectively.

value of 5% when the photon energy is slightly smaller than
h̄ω3 and then decreases slightly to a local minimum at h̄ω3.
(ii) h̄ω ∈ [h̄ω3,h̄ω4] with h̄ω4 − Eig = 90 meV. Here the DSP
and the DSP(X) increase to a maximum value −4% and −10%,
and the DSP(Z) first slightly increases and then decreases.
(iii) h̄ω > h̄ω4. All DSP decrease monotonically to zero.
The special photon energy h̄ω3 is related to the TO phonon
energy given in Sec. IV, and the features here are formed by
the contributions from different phonon branches, which are
plotted in Fig. 13.

According to the phonon energies, the injection edge
energies of different phonon branches are ordered as TA <

LA < LO < TO, which is obviously shown in Figs. 13(b)
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FIG. 13. (Color online) Phonon-resolved spin-injection rates [(a)
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(d)] valleys.
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and 13(d). For the spin injection in the Z valley given in
Fig. 13(a), the contributions from all phonon branches are
almost of the same order of magnitude, even including the
LA phonon branch, which gives a negligible contribution to
carrier injection. Among these branches, the LO branch gives
the largest contribution. The corresponding DSP are shown
in Fig. 13(b). The DSP induced by TA branches starts from
zero, reaches a maximum at about 45 meV above the onset
of absorption, and then decreases, whereas the LA phonon
branch contributes a negative spin-injection rate. LO and TO
phonons take effect for h̄ω > h̄ω3. Therefore, for the total DSP
in the Z valley (in Fig. 12), the first increase to the maximum
is induced by TA phonons, the following dip is induced by
LA phonons, and the second peak is induced by LO phonons.
Figures 13(c) and 13(d) give the spin-injection rates and DSP
in the X valley. Here the contribution from the TO phonon
branch dominates the spin injection, and those from other
phonon branches give only minor contributions. As in the Z

valley, the spin injection in the X valley (in Fig. 12) starts from
the TA phonon branch; its DSP decreases with photon energy
from a nonzero band-edge value and gives the fast decrease
for photon energy in h̄ω ∈ [h̄ω2,h̄ω3]. At h̄ω3 the TO phonons
come into play, leading to injected electrons with a large spin
polarization. As the contribution to the total spin polarization
from these electrons begins to dominate, the DSP reaches a
maximum at h̄ω4 and decreases at high frequencies.

We now turn to resolving the spin-injection rates into con-
tributions from different valence bands. The results are similar
to the corresponding resolution of carrier injection rates. The
HH band gives the largest contribution due to its large density
of states, while the SO band gives the smallest. However, there
are subtleties in the DSP of injected spins from each valence
band. In Fig. 14 we give the valence band and phonon-resolved
spectra of the DSP. While the band-edge values of the DSP
are consistent with results in Table IV, the spin-polarization

ω − Eig (eV)

D
S
P

(%
)

(d) TO

60

40

20

0

-20

0.30.20.10
ω − Eig (eV)

D
S
P

(%
)

(c) LO

0.30.20.10

60

30

0

-30

-60

-90

D
S
P

(%
)

(b) LA

0.30.20.10

90

60

30

0

-30

-60

SO: Z
LH: Z
HH: Z

D
S
P

(%
)

(a) TA

0.30.20.10
60

40

20

0

-20

FIG. 14. (Color online) Phonon and valence band resolved DSP
in the Z valley (thick curves) and X valley (thin colored curves).
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FIG. 15. (Color online) Spectra of spin-injection rates and DSP
at 77 K and 300 K; h̄ω1 − Eig = −57 meV.

direction shows a complicated energy dependence based on
whether the band edge DSP is zero. For processes with nonzero
band-edge values, the DSP decrease from the nonzero values.
For processes with zero band-edge values, the DSP increase
to a maximum value and then decrease. Some of these DSP
change sign with increasing photon energy.

2. Spin injection at high temperature

In Fig. 15 we plot the spectra of spin-injection rates at
77 K and 300 K. In contrast to the carrier injection rates,
which increase considerably from 77 K to 300 K, both the
total spin-injection rates and the rates in each valley change
little from 77 K [Fig. 15(a)] to 300 K [Fig. 15(c)]. In order
to show clearly the spin injection at the injection edge, the
DSP are plotted in Figs. 15(b) and 15(d), respectively. The
phonon absorption process becomes increasingly important
as the temperature rises and is shown by the left shifts of
the onset of DSP to h̄ω1, which is determined by the TO/LO
phonon absorption processes. In addition, the peak appearing
at h̄ω4 and 4 K in Fig. 12(b) becomes fairly obscure at high
temperature. These results can be better understood from the
phonon-resolved DSP spectra at 300 K, given in Fig. 16.

For the spin-injection rates in the Z valley, shown in
Fig. 16(a), the contribution from each phonon branch is still
of the same order of magnitude, but the TO phonon-assisted
process dominates the injection at high photon energy. For
the spin-injection rates in the X valley, shown in Fig. 16(c),
the contribution from the TO phonon branch dominates for all
photon energies. However, the DSP, plotted in Figs. 16(b)
and 16(d), show finer structure in the low photon energy
region than the DSP at 4 K. The fine structure is induced
by the combined effect of the phonon emission and phonon
absorption processes, which take effect at 300 K with consid-
erable equilibrium phonon numbers for all phonon branches.
According to the simplified Eq. (11), the injection rates for
phonon absorption/emission processes differ from the JDOS,
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FIG. 16. (Color online) Phonon-resolved spectra of spin-injection
rates and DSP at 300 K.

Jcvλ(h̄ω ∓ h̄�k0
cλ

), at low photon energy. Therefore, spectra of
DSP for these two processes have similar line shapes, except
for a phonon energy shift left or right. This conclusion is
confirmed by our numerical results, shown in Fig. 17. Here
the DSP from TO phonon absorption and emission processes
are plotted for spins in both Z and X valleys at 300 K,
and all the absorption curves are right shifted by 2�k0

c ,TO.
The overlap is obvious. Based on these results, we return to
Fig. 16.

We consider the DSP from the TO phonon-assisted process
in the X valley, shown as a solid curve in Fig. 16(d). The
spectrum in [h̄ω1,h̄ω3] is induced by the phonon absorption
processes and decreases with increasing photon energy. When
the photon energy is higher than h̄ω3, the TO phonon emission
process comes into play. However, the spin-injection rate for
phonon emission is approximately proportional to 1 + Nk0

c ,TO,
while that for phonon absorption is proportional to Nk0

c ,TO; thus
the former gives much larger injection rates than the latter.
This results in a peak in the total DSP for the TO phonon-
assisted process at energies where phonon emission becomes
important.
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FIG. 17. (Color online) Spectra of DSP for TO phonon absorption
and emission processes in the Z and X valleys at 300 K.
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DSP(X) (dashed curves), as well as the total DSP (solid curves) at
photon energies h̄ω1−4.

3. Temperature dependence of spin injection
Figure 18 shows the temperature dependence of the DSP

at the different photon energies h̄ω1−4. For photon energy
h̄ω1, all DSPs are temperature independent: The TO phonon
absorption process is the only process at this photon energy,
and the injection rates of carriers and spins are approximately
proportional to Nk0

c ,TO; the two rates therefore scale the same
with temperature, leading to a temperature-independent DSP.
We check the temperature dependence of the DSP for all
phonon branches at photon energy h̄ω − Eig = 100 eV in
Fig. 19. All these DSP are independent of temperature. This
conclusion is valid for all photon energies considered to
this point in this paper. However, the total DSP, shown in
Figs. 18(b)–18(d), are temperature dependent. At the indicated
photon energies, more than one phonon branch makes a
contribution. The injection rates for different phonon branches
have different temperature dependences due to the different
phonon energies. The ratio between the total injection rates
of carriers and spins, i.e., the DSP, thus becomes temperature
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FIG. 19. Temperature dependence of the DSP for TO and LO
phonon-emission-assisted processes.
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dependent. At high temperature, Nqλ ∝ T is approximately
valid for all phonon branches, so the injection coefficients
of ξ and ζ are approximately proportional to T and give
a constant DSP as saturation value. This is shown in
Fig. 18.

VII. CONCLUSION

In conclusion, we have performed a full band structure
calculation to investigate the indirect optical carrier and spin
injection in bulk silicon. The injection spectra for carriers,
spins, and DSP in each valley are studied in detail at different
temperatures. The indirect gap injection is dominated by the
transition from the HH band to the lowest conduction band due
to the large JDOS. When incident light is propagating along
one principal axis, the injection shows strong valley anisotropy.
The injection rates induced by each phonon-assisted process
increase with temperature. For carrier injection, we find that in
the Z valley the TO phonon-assisted process dominates up to
300 K; in the X valley, it only dominates at low temperature,
whereas the injection rates induced by the TA phonon-assisted
process increases to a comparable value at 300 K. The higher
the photon energy, the weaker the temperature dependence.
For spin injection, we find that injected spins in the Z and X

valleys have opposite polarization directions. In the Z valley,
the LO phonon-assisted process dominates around the band
edge, while the TO phonon-assisted process dominates at high
photon energy; in the X valley, the TO phonon-assisted process
dominates for all photon energies.

The calculated absorption coefficients are in good agree-
ment with experiments at high photon energy. Experience
from direct gap absorption might lead one to believe this
would not hold, since first-principle studies of direct opti-
cal absorption in Si and GaAs43–45 demonstrated that the
electron-hole interaction plays an important role even for high
photon energy. Full band structure calculations of indirect gap
absorption, including electron-hole interactions, have yet to
be done, and the effect of these interaction on the indirect
absorption coefficient at high photon energies have yet to
be established. In any event, since to first approximation the
nearly spin-independent electron-hole interaction will modify
spin and carrier injections in the same way, it is reasonable
to expect that the DSP of injected electrons in exciton
continuum states will be insensitive to this interaction, which
we neglect. Future work to confirm this is clearly in order,
but in the interim we feel our study constitutes a good first
investigation.

The DSP spectra excibit a rich variety of behaviors. At
4 K, the maximum DSP is about −25% for photon energy
Eig + �k0

c ,TA; absorption at this temperature and energy is
dominant by a TA phonon emission process. With increasing
temperature, the phonon absorption processes become impor-
tant, and the DSP for this photon energy decreases quickly.
At 300 K, the maximum DSP appears at the photon energy
Eig − �k0

c ,TO as a value −15%, which only comes from the
TO phonon absorption assisted process and is temperature-
independent. The DSP in the X valley can reach a maximum
value −32% at 4 K and −26% at 300 K; both are larger than
the total value and the value in the Z valley. Compared to bulk
silicon, it should therefore be more efficient to inject spin in a

confined silicon structure, where conduction band valleys are
split.
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APPENDIX: MODIFIED TETRAHEDRON SUMMATION

Both Eq. (6) and the JDOS in Eq. (12) are of the following
form

X(ω) =
∫

V ′
c

dkc

∫
V ′

v

dkvδ(εkc
− εkv

+ h̄�kc−kv
− h̄ω)

×X(kc,kv). (A1)

Here the integration spaces V ′
c and V ′

v are the irreducible
BZ wedges, which are confined by the �, X, L, U (K), and
W points of a fcc Brillouin zone. Our numerical scheme is
based on the improved LATM.24,35 We divide V ′

c (V ′
v) into

Nc (Nv) small tetrahedra as V ′
c = ∑Nc

i=1 V ′
c,i (V ′

v = ∑Nv

j=1 V ′
c,j )

with vertices kc,I ,I = 1, . . . ,Mc (kv,J ,J = 1, . . . ,Mv). By a
simple transformation, Eq. (A1) becomes

X(ω) =
∑
ij

∫
dεXij (ω,ε),

with

Xij (ω,ε) =
∫

V ′
c,i

dkcδ(εkc
− ε)Yj (kc,h̄ω − h̄�̄ij − ε) (A2)

and

Yj (kc,ε) =
∫

V ′
v,j

dkvδ(εkv
− ε)X(kc,kv). (A3)

In obtaining the equations above, we approximate the phonon
energy to be a fixed value h̄�̄ij between the two small
tetrahedra V ′

c,i and V ′
v,j . Now the Eqs. (A2) and (A3) have

the same shape, so we only discuss Eq. (A3) in the following.
Though the tetrahedron method can be applied to Eq. (A3)
directly, we avoid doing this because the transition matrix
elements are obtained within the scheme of the EPM, which are
very time-consuming in calculation for each (kc,I ,kv,J ) pair.
However, the direct tetrahedron method needs more k points
for convergence than is computationally feasible. Instead,
since the dependence of the transition matrix elements on kc

and kv is weak, we linearly interpolate X(kc,kv) in tetrahedron
V ′

v,j as

X(kc,kv) =
4∑

m=1

X
(
kc,km

v,j

)
Fm

v,j (kv),

with km
v,j being the position of four vertices of this tetrahedron

and Fm
v,j (kv) being the linear interpolation function related to
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the mth vertex. Then Eq. (A3) becomes

Yj (kc,ε) =
4∑

m=1

wm
v,j (ε)X

(
kc,km

v,j

)
,

(A4)
wm

v,j (ε) =
∫

V ′
v,j

dkvδ(εvkv
− ε)Fm

v,j (kv).

In the same way, we get wn
c,i(ε) for Eq. (A2). Then we find

Xij (ω,ε) =
4∑

nm=1

wn
c,i(ε)wm

v,j (h̄ω − h̄�kn
c,i−km

v,j
− ε)

×X
(
kn

c,i ,k
m
v,j

)
and

X(ω) =
∫

dε
∑
IJ

Wc,I (ε)Wv,J (h̄ω − h̄�kc,I −kv,J
− ε)

×X(kc,I ,kv,J ), (A5)

with
Wc,I (ε) =

∑
in,kn

c,i=kc,I

wn
c,i(ε),

(A6)
Wv,J (ε) =

∑
jm,kn

v,j =kv,J

wn
v,j (ε).

In the above equations, we replace h̄�kn
c,i−km

v,j
by h̄�̄ij .

In indirect absorption, the excited holes are located
around the top of the valence band, while the electrons
are around the band edge of the conduction band. So we
use a different division for kc and kv . With the division
points kc,I and kv,J , we use the Delaunay triangulation
method from the CGAL package46 to set up the tetrahe-
dra. In these tetrahedra, the weights wm

v,j and wn
c,i can

be calculated. However, the integration includes a δ func-
tion, which is a fast-varying function in k space, and the
present tetrahedron is too rough to obtain the weights with
required precision. We refine this tetrahedron into smaller
ones.

In our calculation, the division depends on the band
structure. For conduction bands and the heavy hole band,
kc,I or kv,J are generated with their distance not larger than
0.05 × 2π

a
, while for light hole and spin split-off bands, the

distances become 0.04 × 2π
a

and 0.02 × 2π
a

, respectively. For
the heavy hole grid, the accurate weights can be obtained by
refining each tetrahedron as 83 smaller ones (each edge is
refined into eight parts).

The convergence of the results is examined for the injection
from heavy hole band to conduction band by changing
the division points distance to 0.025 × 2π

a
. The difference

between the injection rates from these two divisions is less
than 5%.
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35P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223

(1994).
36P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics

and Materials Properties (Springer, Berlin, 2005).
37P. Lautenschlager, P. B. Allen, and M. Cardona, Phys. Rev. B 31,

2163 (1985).
38G. D. Mahan, J. Appl. Phys. 51, 2634 (1980).
39W. Bludau, A. Onton, and W. Heinke, J. Appl. Phys. 45, 1846

(1974).

165211-14

http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1016/j.physrep.2010.04.002
http://dx.doi.org/10.1103/PhysRev.111.1245
http://dx.doi.org/10.1002/pip.4670030303
http://dx.doi.org/10.1002/pip.4670030303
http://dx.doi.org/10.1103/PhysRevLett.70.3659
http://dx.doi.org/10.1103/PhysRevLett.70.3659
http://dx.doi.org/10.1063/1.2994669
http://dx.doi.org/10.1063/1.338360
http://dx.doi.org/10.1063/1.326135
http://dx.doi.org/10.1103/PhysRev.108.1384
http://dx.doi.org/10.1103/PhysRevB.4.4424
http://dx.doi.org/10.1103/PhysRevB.4.4424
http://dx.doi.org/10.1103/PhysRevLett.26.499
http://dx.doi.org/10.1103/PhysRevLett.26.499
http://dx.doi.org/10.1070/PU1981v024n10ABEH004805
http://dx.doi.org/10.1070/PU1981v024n10ABEH004805
http://dx.doi.org/10.1103/PhysRev.127.765
http://dx.doi.org/10.1103/PhysRev.166.822
http://dx.doi.org/10.1103/PhysRev.185.1056
http://dx.doi.org/10.1103/PhysRev.185.1062
http://dx.doi.org/10.1103/PhysRevLett.48.413
http://dx.doi.org/10.1103/PhysRevLett.48.1296
http://dx.doi.org/10.1103/PhysRevB.42.5714
http://dx.doi.org/10.1103/PhysRevB.42.5714
http://dx.doi.org/10.1103/PhysRevB.25.1193
http://dx.doi.org/10.1002/andp.19925040106
http://dx.doi.org/10.1103/PhysRevB.76.205113
http://dx.doi.org/10.1103/PhysRevLett.20.491
http://dx.doi.org/10.1103/PhysRevLett.105.037204
http://dx.doi.org/10.1103/PhysRevB.10.5095
http://dx.doi.org/10.1103/PhysRevB.14.556
http://dx.doi.org/10.1103/PhysRev.149.504
http://dx.doi.org/10.1103/PhysRevB.15.4789
http://dx.doi.org/10.1103/PhysRevB.81.155215
http://dx.doi.org/10.1103/PhysRevLett.104.016601
http://dx.doi.org/10.1103/PhysRevLett.104.016601
http://dx.doi.org/10.1103/PhysRevB.49.16223
http://dx.doi.org/10.1103/PhysRevB.49.16223
http://dx.doi.org/10.1103/PhysRevB.31.2163
http://dx.doi.org/10.1103/PhysRevB.31.2163
http://dx.doi.org/10.1063/1.327994
http://dx.doi.org/10.1063/1.1663501
http://dx.doi.org/10.1063/1.1663501


THEORY OF OPTICAL SPIN ORIENTATION IN SILICON PHYSICAL REVIEW B 83, 165211 (2011)

40V. Alex, S. Finkbeiner, and J. Weber, J. Appl. Phys. 79, 6943
(1996).

41M. M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993).
42S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons,

New York, 1981).
43M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 (2000).

44G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601
(2002).

45R. Leitsmann, W. G. Schmidt, P. H. Hahn, and F. Bechstedt, Phys.
Rev. B 71, 195209 (2005).

46CGAL, Computational Geometry Algorithms Library
[http://www.cgal.org].

165211-15

http://dx.doi.org/10.1063/1.362447
http://dx.doi.org/10.1063/1.362447
http://dx.doi.org/10.1103/PhysRevB.48.14276
http://dx.doi.org/10.1103/PhysRevB.62.4927
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/PhysRevB.71.195209
http://dx.doi.org/10.1103/PhysRevB.71.195209
http://www.cgal.org

