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Multiband k · p theory is often implemented with the one electron Schrödinger equation without spin (single
group) as the unperturbed system. The effect of spin is taken into account by considering basis functions formed by
a direct product between single-group eigenstates and spinor states (which give rise to the adapted double-group
basis after a unitary transformation), with the spin-orbit interaction also treated as a perturbation. The k · p
perturbation between these states is calculated using the single-group basis functions. This approach leads to
a one-to-one link between occurrence of basis states in the single group with those under the double-group
classification, placing constraints on the adapted double-group basis. This paper considers energy eigenstates
which form the bases of irreducible representations (IRs) of the double group and derives the direct and remote
(Löwdin term) interaction matrices between the states using perturbation theory and symmetry properties of
crystal lattice. The use of general double-group basis functions removes the constraints placed on the adapted
double-group basis under the single-group formulation. Together with a change of paradigm in constructing
atomic site wave functions using hybridized orbitals (rather than atomic orbitals), it allows direct contributions
from d and higher orbitals to the valence band with additional interaction matrices permitted by symmetry. A full
description of interactions between states of �±

8 IRs require two linearly independent matrices and two scaling
constants rather than the single matrix and scaling constant under single-group consideration. This formulation
is developed from both perturbation theory and the method of invariant approach utilizing the Wigner-Eckart
theorem and other group theoretical techniques for calculation of matrix elements. Crystals with diamond lattice
are investigated first, with results for zincblende lattice obtained under the compatibility relation between the Oh

and the Td groups. We show that a unitary transformation of the �−
8 basis of the Oh group is required before they

can be used in �8 IR of the Td group. Consequently, existing data and optical transition selection rules shows
that the symmetry assignment of the zone-center conduction band edge state should be �−

6 (�7) in Ge (GaAs
and other semiconductors with zincblende lattice) with spin-orbit split-off band as origin. In addition to the new
interaction matrix between states of �±

8 (�8) IRs, the form of interband Löwdin term between �+
8 (�8) and �+

7 (�7)
in the Hamiltonian used in the literature is shown to be incorrect. A linear k term between the degenerate valence
band, different from those obtained previously, is shown to exist. It modifies the dispersion and density of state
in the vicinity of � point but does not lift the Krammer’s degeneracy. When quantum well, wires, and dots are
considered, operator ordering in the remote interaction emerges naturally by treating wave vector as an operator
acting on the envelope functions. This differs from previous schemes based on single-group formulation and a
new term, arising from interfacial symmetry breaking, is identified in the valence-band Hamiltonian coupling the
degenerate heavy-hole states.
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I. INTRODUCTION

The k · p method1–6 has been one of the most useful tools
in modeling band structure in semiconductors. The technique
has been applied to the study of band structures in bulk
semiconductors as well as that of heterostructures through
exact envelope function theory7 or effective mass theory.3 The
method is based on degenerate perturbation theory but has also
been formulated from the theory of invariants,6,8 which has
less stringent assumptions on the self-consistent one-electron
potential. One reason for the success of this method is the small
number of parameters, normally determined from experiment
such as cyclotron resonance, required for modeling the band
structure in the vicinity of the point of expansion. Apart from
original works in the scientific journals, the theory has been
well described in the textbooks (see, for example, Refs. 9
and 10).

In the original work of Dresselhaus, Kip, and Kittel,2

Luttinger and Kohn,3 and Kane,5 the k · p method has been
developed from a single-group consideration (Schrödinger
equation without spin-orbit interaction) and then adapted to

include spin as a degree of freedom. Consequently, spin-orbit
interaction is treated as a perturbation in parallel with the
k · p perturbation. Due to its heritage, the three independent
parameters (L, M , N in Refs. 2 and 5; σ , π , δ in Ref. 11)
in a four-band model refer to interactions between single-
group basis functions even though the basis for expansion of
Hamiltonian at finite k includes spin. Such parameters are
related to interactions between states in the near set under
consideration mediated by the remote states, which is known
as the Löwdin term.12 Using double-group representations of
the near states, the theory of invariants formulation6,8,13–15

also indicates that there are three independent parameters
(for the four-band partition where appropriate and in absence
of external magnetic field). Explicitly or implicitly, current
k · p work in the literature calculates interaction matrices
utilizing single-group bases, such as {yz,zx,xy} for valence
band, which are then cast into the adapted double-group
basis (direct product of single-group bases and spinor states
followed by a unitary transformation to block diagonalize
them into double-group bases). Alternatively, results from
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method of invariant are used. Adaptation of single-group
bases into the double-group irreducible representations (IRs)
of the symmetry group limits the adapted double-group bases
to a subset of vector space that may be represented by a
general double-group basis. Extension of earlier work by
inclusion of more states in the near set was first made under
single-group formulation with single-group basis by Cardona
and Pollak16 in a fifteen-band model. Generalization to the
adapted double-group basis followed with eight-band,14,15,17

fourteen-band,18–22 twenty-band,23 and thirty-band24 models.
In this publication, the basic formulation of the k · p

method from perturbation theory and the method of invariant
is reexamined, using a general double-group classification
of both the near and the remote sets of states. Under
this double-group formulation, basis functions for matrix
representation of the Hamiltonian are free from the constraints
of the single-group formulation. The form of Hamiltonian
obtained from perturbation theory is directly comparable to
results obtained from the method of invariants. The removal
of constraints associated with the single-group formulation
allows the double-group basis to fully represent zone-center
states which may contain mixed single-group characters. Such
mixed characters may arise from either spin-orbit interaction
or the use of hybridized orbitals (sp3 or spd constructed from
many electron configuration) as atomic site wave functions. It
is argued that orbital and total angular momentum quantum
numbers are not appropriate for labeling energy eigenstates
due to the delocalized nature of the valence electrons. These
energy eigenstates must have the correct transformation
properties according to the IRs of the symmetry group of the
crystal but may also contain information that adapted double-
group basis functions would fail to represent. The first-order
perturbation matrix and the Löwdin interaction are evaluated
by considering the symmetry properties of states in both
the near and remote set, using double-group representations
and group theoretical techniques.25 The perturbation matrix
between eigenstates of different IRs are separated into scaling
constants and linearly independent, constant matrices. The
fitting parameters are naturally based on the scaling constants
of the perturbation matrix between states of the relevant
IRs and are related to the Luttinger parameters derived
from the theory of invariants. In the case of crystals with
diamond lattice, all the scaling constants of the first-order k · π

perturbation matrices are real. The matrices are independent of
the choice of basis and are enumerated using Wigner-Eckart
theorem utilizing multiple sets of standard basis functions
which are eigenstates of J 2,L2, and S2 and expressed in
terms of linear combination of the SU(2) basis functions
|j,mj 〉. The standard basis also has a designated time-reversal
behavior which requires a definite phase between bases of
even and odd IRs. In developing the method of invariant
approach, the operators used for obtaining generator matrices
and irreducible components of the perturbation are identified
explicitly. Instead of using products between components of
angular momentum operators to enumerate generator matrices
from a single set of standard basis functions, as done in the
literature, the generator matrices are obtained using a multiple
set of standard basis functions from a single generating
operator which transform as the irreducible perturbations.
The mathematical approach is the same as in perturbation

theory. An eight-band Hamiltonian is constructed using both
methodologies and shown to be identical but differs in form
from those in the literature. The reason for this is identified as
the use of an incorrect basis for �+

7 IR of the Oh group and �7

and �8 IRs of the Td group.
The formulations are developed based on the diamond

lattice whose point group is Oh. Compatibility relations
between the Td and Oh groups are used to obtain the
Hamiltonian for crystals with a zincblende lattice from that of
the diamond lattice. This also requires a unitary transformation
to be performed on the �−

8 standard basis before they are
incorporated as standard basis of the �8 IR of the Td group.
Additional linear (direct interaction) and quadratic (Löwdin
interaction) k terms in the Hamiltonian are identified in com-
parison to crystals with diamond lattice. Inter- and intraband
linear k terms are shown to exist between states forbidden in
crystals with diamond lattice and they depend on the ionicity of
the chemical bond. The form of first-order interaction matrices
are different between crystals with diamond and zincblende
lattices while the Löwdin terms are similar. Time-reversal
symmetry requires a phase difference between spatially even
and odd parts of the energy eigenfunction in �6 and �7

IRs but not �8 IR. Thus, the scaling constants describing
first-order interactions are necessarily imaginary between the
�8 : �8 IRs, complex between �8 : �7 and �8 : �6 IRs and
real between �7 : �6 IRs. The form of the linear k term within
the valence bands is such that they do not lift the Kramer’s
degeneracy.

Comparison of double-group selection rules and exper-
imental results, indicates that the symmetry of the con-
duction band state at the � point corresponds to the �−

6
representation of the Oh group in Ge or the �7 represen-
tation of the Td group in GaAs. The origin of this zone
center-state is established as the spin-split-off state from the
antibonding orbitals. The double-group formulation is also
suitable for implementing operator ordering when dealing
with heterostructures. A coupling between the degenerate
heavy-hole bands due to interfacial symmetry breaking is
revealed.

The differences between the single-group and the
double-group formulations are examined by focusing on
the interaction matrices between states of the �±

8 (�8) IRs
for crystals with diamond (zincblende) lattice. First-order
interaction matrices referring to adapted double-group bases
are only available in the literature for states derived from �5

IRs of crystals with zincblende lattice (obtained from method
of invariant). All necessary first-order interaction matrices
between relevant single-group IRs are derived for adapted
double-group bases for crystals of both type of lattices.
Comparisons are then made with the general double-group
formulation of the present work. This indicates that the form
of first-order interaction matrices involving �±

3 (�3) derived
states in the �±

8 IR are different when compared with those
involving the �−

4 ,�+
5 (�5) derived �±

8 (�8) states. Thus, the
single-group formulation cannot describe material systems
where hybridized orbitals, with contributions from the p

(containing �+
5 character for VB) and d orbitals (containing

�+
3 character for VB), serve as atomic site wave functions.

Double-group formulation, with two linearly independent
matrices and two scaling constants, is able to describe these
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interactions involving complex hybridized orbitals. We restrict
ourselves to the case of unstrained crystals, but such effects
can be incorporated in the normal way if required.8

There has been much confusion in the literature over
the labeling of IRs of the Oh and Td groups, arising from
differences in the labeling of the �4 and �5 IRs in the
original work of Dresselhaus4 and that used by Koster et al.26

To avoid any confusion, character tables for the double
groups Oh and Td are included in Appendix A. The labeling
convention used in this publication follows that of Koster
et al.,26 which facilitates discussions of compatibility relations
between the two groups. The rest of the paper is divided into
11 sections. Sections II and III discuss general symmetry
issues, relations between energy eigenstates and standard
bases of IRs formed from angular momentum eigenstates,
and the need for multiple standard basis/group theoretical
method. Sections IV and V formulate the k · p method from
a perturbation approach and Secs. VI and VII develop the
method from the theory of invariant approach. The impact of
this work on envelope function theory and operator ordering
is discussed in Sec. VIII. Crystals with zincblende lattice are

studied in Sec. IX using compatibility relations between the
Oh and Td groups. Section X addresses the issue of symmetry
of zone-center conduction band states and experimental
evidence for a change of symmetry assignment according to
the formulation developed here. Section XI investigates the
relationship between the single- and the double-group-based
formulations and their applicability to physical systems and
clarifies the need for a double-group formulation. Section XII
summarizes the findings and discusses their implications on
various multiband k · p models depending on the number of
states included in the near set. Some necessary results of the
single-group formulation, not available in the literature, are
obtained in Appendix E and mistakes in the literature are
identified.

II. SYMMETRY OF ELECTRON ENERGY
EIGENFUNCTIONS IN A CRYSTAL

The time-independent one-electron Schrödinger equation
may be cast in the following form after application of the
Bloch’s theorem:

[
p2

2m0
+ V (r)︸ ︷︷ ︸

Hs
0

+ h̄

4m2
0c

2
[p × ∇V (r)] · σ︸ ︷︷ ︸

Hs
so1︸ ︷︷ ︸

H0

+ h̄

m0
k · p︸ ︷︷ ︸

Hs
k·p

+ h̄2

4m2
0c

2
k · [σ × ∇V (r)]

]
︸ ︷︷ ︸

Hs
so2︸ ︷︷ ︸

H1

un,k(r) =
(

En(k) − h̄2k2

2m0

)
un,k(r). (1)

Using the center of the Brillioun zone as the point of
expansion, the term

H1 = h̄

m0
k · π = h̄

m0
k ·
[

p + h̄

4m0c2
σ × ∇V (r)

]
is treated as a perturbation. The exact solutions of the
Schrödinger equation at the point of expansion, un,k=k0 (r)
(with Hamiltonian given by H0), are chosen as the basis
(referred to as double-group basis) to form the matrix rep-
resentation of this Hamiltonian at other k values away from
point of expansion. These energy eigenstates un,k=k0 (r) form
the bases of IRs of the little group (or group of k) at the point of
expansion under the framework of double-group classification.
The symmetry of these energy eigenstates differ, in general,
from those of the atomic orbitals. With the origin of reciprocal
space as the point of expansion, the group of k is the point
group of the crystal lattice. In the case of a diamond lattice,
this is the Oh group. Within the framework of double group,
these energy eigenstates form the bases of �±

6 ,�±
7 , and �±

8 IRs
of the Oh group.

The double-group formulation outlined above may be
compared with the single-group formulation. Solutions of the
unperturbed Schrödinger equation at the point of expansion
(with Hamiltonian given by Hs

0 ) are chosen as the single-group
basis for calculation of interaction matrices between states.
Then, direct products of the single-group basis with the spinor
states followed by unitary transformation, are used as the basis
(referred to as adapted double-group basis) to form the matrix
representation of this Hamiltonian at other k values away from

point of expansion. Under the single-group framework, the
k · p perturbation Hs

k·p and spin-orbit interaction Hs
so1 and

Hs
so2 are all treated as perturbations in parallel. Thus, the main

difference between the single-group formulation in the litera-
ture and double-group formulation of this work are the basis
functions of the Hamiltonian. The adapted double-group basis
under the single-group formulation is constrained to those
derived from single-group bases through direct product with
spinor state, and so no admixture is permitted. Conversely,
the presence of Hs

so1 in the unperturbed Hamiltonian H0

of the double-group formulation, allows some degree of
mixing of the adapted double-group basis in the formation
of a general double-group basis. Within the single-group
formulation, interactions between states belonging to any IR
can be described by a single matrix. In contrast, the use
of hybrid orbitals to describe atomic site wave functions
requires the removal of constraints on the double-group basis
enforced by the single-group formulation. As a consequence,
the interaction between states of �±

8 IRs can only be described
by two linearly independent matrices.

The action of an element in the point group transforms
the eigenstates un,k=0(r) within the primitive cell among the
degenerate energy eigenfuctions of a particular IR. Since there
may be more than one equivalent atomic site in the prim-
itive cell, such one-electron energy eigenfunctions can be
constructed from a linear combination of wave functions at the
atomic sites, and their symmetry properties can be discussed
in terms of equivalence representations.27 In a diamond lattice,
the two-dimensional equivalence representation is reduced to
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�+
1 ⊕ �−

2 . Symmetry properties of the cell periodic function
is given by the direct product between the equivalence
representation and the IRs of the contributing state at the
atomic site. The bonding un,k=0(r) states need to be symmetric
with respect to the inversion operation of the point group as this
interchanges the two equivalent atomic sites in the primitive
cell and guarantees that electron density is higher between the
two equivalent sites. Conversely, the antibonding states must
be antisymmetric with respect to the inversion operation.

It is customary to consider atomic orbitals,9,28 with their
associated transformation properties, as the starting wave
function at the atomic site. Thus, the valence band originating
from the p orbital, transforming like the basis of �−

4 ,
has �−

2 ⊗ �−
4 = �+

5 symmetry, while the bonding s orbital,
transforming like the basis of �+

1 , has �+
1 ⊗ �+

1 = �+
1 sym-

metry. Similarly, the antibonding states formed from atomic
s and p orbitals have �−

2 ⊗ �+
1 = �−

2 and �+
1 ⊗ �−

4 = �−
4

symmetry, respectively. With spin-orbit interaction included,
the degeneracy of the bonding �+

5 and antibonding �−
4 is

lifted. Thus, the bonding s and p orbitals give rise to states
with �+

1 ⊗ �+
6 = �+

6 and �+
5 ⊗ �+

6 = �+
7 ⊕ �+

8 symmetries,
whereas their antibonding counterparts give rise to states with
�−

2 ⊗ �+
6 = �−

7 and �−
4 ⊗ �+

6 = �−
6 ⊕ �−

8 symmetries. The
formation of direct product between single-group IRs and �+

6
means the basis obtained in the double-group classification
can only be in the space spanned by a direct product of the
single-group bases and spinor states. Starting with these atomic
orbitals leaves the energy ordering of antibonding states quite
independent of atomic orbitals. The energy ordering is chosen
to support what is the current understanding of the symmetry
of conduction band state at � point, that is, �−

7 in Ge, �−
6

in Si, and �6 in most of the III-V compound semiconductors
with zincblende lattice. We contend that the ordering of s∗(�−

7 )
and p∗(�−

8 ⊕ �−
6 ) states in Ge and s∗(�6) and p∗(�8 ⊕ �7) in

GaAs and other III-V compound semiconductors are incorrect
based on selection rules obtained using correct standard basis
functions (Sec. X) and ample experimental evidence. The
current ordering of energy states in the literature originates
from unpublished work of Herman on Ge referred to in
Ref. 2. Additional states above the �−

8 in conduction band
were also given as �−

8 (�−
3 ,d∗), �+

6 (�+
1 ,f ), �+

8 ⊕ �+
7 (�+

5 ,d),
and �−

7 (�−
2 ,f ∗) derived from d,f and d∗,f ∗ orbitals in the

same work. More recent work reverses the order of d∗ and
f states.16,24 The appearance of an antibonding state d∗(�−

3 )
before a bonding state d(�+

5 ) is puzzling.
An alternative starting point for constructing the atomic site

wave function is the sp3 hybridized orbital. Hybridized or-
bitals, constructed from many electron configurations formed
under the influence of the crystal field, have lower energy
compared with sequentially filled individual atomic orbitals
and is therefore a better description of the covalent bonding
in the crystal. As a many-electron effect, the configuration
will have four states from each atomic site as this cor-
responds to the number of available valance electrons per
atom that are used to construct the many-electron config-
uration. Within this configuration of tetrahedral symmetry,
two distinct energy levels are permitted upon formation of
the covalent bond: the onefold degenerate state (singlet)
transforming according to �+

1 and the threefold degenerate
states (triplet) transforming according the �−

4 of the Oh

TABLE I. Atomic site orbitals, their representation under tetrahe-
dral crystal field, representation of associated un,k=0(r) under crystal
field splitting, representation of associated un,k=0(r) under spin-orbit
splitting, and parity of un,k=0(r). The states are ordered for Ge with
increasing energy toward the last row.

Atomic Crystal un,k=0 Spin orbit
Orbital field splitting symmetry splitting Parity

�+
1 �+

1 �+
6 Even

sp3 �+
7 (SO) Even

�−
4 �+

5 �+
8 (VB) Even

�−
6 (CB) Odd

(sp3)∗
�−

4 �−
4 �−

8 Odd

�+
1 �−

2 �−
7 Odd

group.29 While it may be tempting to ascribe the origin
of these energy levels to the atomic s and p orbitals, one
must remember that a many-electron configuration exists
between bonding atoms. The action of the crystal field and
delocalized nature of covalent bond means energy eigenstates
will have contributions from symmetry complying higher
spherical harmonics while maintaining the transformation
properties as basis of �+

1 and �−
4 IRs of the Oh group. In

forming the covalent bond between neighboring atoms, the
bonding singlet �+

1 state leads to the lowest energy due to
the charge distribution in the covalent bond. This lowering of
energy is primarily due to screening of Coloumbic interaction
between the “nucleus” (including inner shell electrons) by
the bonding valence electrons.30 The orthogonality between
the bonding and antibonding states means the electron dis-
tribution of the antibonding �−

2 state leaves the “nucleus”
most exposed, leading to the highest increase in energy.
Thus, the triplet bonding states would have higher energy
than the singlet bonding state but the triplet antibonding
states would have lower energy than the antibonding singlet
state. Going through the same symmetry arguments made
in the previous paragraph, we obtain �+

8 ,�+
7 , and �+

6 as
symmetries of the bonding states of un,k=0(r) for the valence,
spin-split-off, and lowest occupied band, as shown in Table I.

As sp3 hybridized orbitals are derived from many-electron
configuration, the freedom in assigning the order of the
antibonding states is lost. As shown in Table I, the lowest
antibonding state un,k=0(r) has the symmetry of �−

6 . It
originates from spin splitting of the antibonding triplet states
from single-group consideration outlined above and its relative
position is determined using arguments based on charge
distribution in the previous paragraph. It will be shown in
Sec. X that such a symmetry assignment is correct and in
agreement with the ample experimental evidence available.
Previous symmetry assignments are flawed due to use of
incorrect basis functions in the formulation of selection rules
for optical transitions.

A natural extension of sp3 hybridized orbitals as atomic
site wave functions is to include the effects of d and/or
f orbitals in an spd or higher hybridized orbital. As the number
of available states in the one-electron picture is fixed by the
number of electrons in the configuration, the bonding �+

8 states
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may contain symmetry characters derived from bonding �+
5

and �+
3 IRs.

In the discussions that follow, from both perturbation theory
and the method of invariant, one needs to evaluate matrix
elements of various quantum mechanical operators between
energy eigenstates which form the basis of any of the six
available IRs of the double group. Given that the starting
zone-center basis function contains multiple standard basis
functions, it is desirable to acquire as much information as
possible about such matrices from group theoretical methods.
The results are applicable to all allowed bases of IRs of the
symmetry group, including the energy eigenstates. This comes
in the form of a selection rule or theory of invariant,31 which
are a special case of a general theorem derived by Koster.25

The matrix representation of any operator, transforming as
a representation �γ of the symmetry group, between energy
eigenstates which form the bases of IRs αu and αv of the
symmetry group, can be described by a number of constant
linearly independent matrices and their associated scaling
constants. These matrices are independent of the choice of
basis, whereas the scaling constants are dependent on the op-
erator and the choice of bases or energy eigenstates. The num-
ber of linearly independent matrices is given by the number of
times �γ IR occurs in the decomposition of αu∗ ⊗ αv into
direct sums. The scaling constants are related to material
parameters (invariants) in the method of invariant. If the
symmetry group is the full rotation group SO(3), this theorem
is reduced to the Wigner-Eckart theorem.25,32 For intraband
interactions, time-reversal symmetry must also be considered
when the operator in question has well-defined behavior under
time reversal.31,33,34

III. ENERGY EIGENSTATES AND STANDARD BASIS
OF IRREDUCIBLE REPRESENTATIONS

In solving the one-electron Schrödinger equation using
a perturbation approach, a specific |j,mj 〉 basis repre-
sentation2,3,28 is frequently chosen and assumed to fulfill the
requirement of diagonalizing H0, which includes the spin-orbit
interaction Hs

so1. The last statement is subject to a number of
assumptions. First, the angular momentum quantum numbers
j and l are well defined “good quantum numbers.” Second,
the central field approximation can be made such that the
spin-orbit interaction at � point is proportional to L · S.

One can immediately see that the limited dimensions of the
IRs of the Oh group cannot contain all of the |j,mj 〉 basis
states for j > 3/2. There are two options for dealing with this
problem. The total angular momentum quantum number j may
be restricted to j � 3/2 in an ad hoc way, which will ensure
the dimensions of representations never exceed four. However,
many of the symmetry arguments concerning the matrix
elements were made utilizing single-group bases {yz,zx,xy},
formed from linear combinations of l = 2 angular momentum
states and containing components of j = 5/2 states. More
importantly, there are no basis functions with j � 3/2 which
transform according �±

7 IRs of the Oh group. An alternative
requirement of an energy eigenstate is that it is an eigenstate
of J2, L2, and S2, formed from a linear combination of |j,mj 〉
with a single pair of j and l quantum numbers, and transforms
according to the symmetry group representations, that is,

standard basis functions. The problem with this approach
is that available bases generally lead to spin-orbit split-off
states with larger angular momentum quantum numbers among
the two energy levels. The lowest �+

7 basis derived from
l = 2 states actually has j = 5/2, which yields an incorrect
energy ordering of the fourfold degenerate �+

8 (j = 3/2)
and twofold degenerate �+

7 (j = 5/2) states in the valence
bands.

The alternative is to accept that energy eigenstates un,k=0(r)
are constructed from linear combinations of standard basis
functions of a single angular momentum quantum number.
This means that j and mj quantum numbers are no longer
well defined and cannot serve as good quantum numbers to
label zone-center states. As a consequence, the central field
approximation must be abandoned. In this case, states derived
from �+

1 of the (sp3) or �−
2 of the (sp3)∗ may also experience

a shift in energy due to spin-orbit interaction. A more intuitive
argument is that valence electrons are delocalized and do
not have a well-defined angular momentum. In the case of
zincblende lattice, one can also argue on parity grounds that
the energy eigenstate must consist of at least two angular
momentum states of opposite parity. A zincblende lattice has
no center of inversion and hence the cell periodic function will
not have a well-defined parity. The standard basis functions,
on the other hand, have well-defined parity determined by
the orbital angular momentum quantum number. Thus, the
cell periodic function must be expressible as the sum of even
and odd functions or a sum of at least two different angular
momentum eigenstates.

In a crystal, the “good quantum numbers” that can be
used to label the “one-electron” states are the wave number
k corresponding to the translation symmetry subgroup and
band index n corresponding to the point group representations.
Thus, eigenstates at the � point can be specified by two
labels |α,i〉, where α distinguishes different IRs of the point
group and multiple occurrence of the same IR, and i an
index of eigenstate within the particular IR. In the formulation
developed here, it is only assumed that such solutions of the
one-electron Schrödinger equation exist, and they transform
according to the IRs of the symmetry group. These energy
eigenstates are expressible as a linear combination of standard
basis functions of the relevant IR, which, in turn, are express-
ible as linear combination of |j,mj 〉 states themselves. It is
therefore meaningless to discuss mj of the energy eigenstates.
Evaluation of any matrix elements then requires the group
theoretical method described at the end of Sec. II.

The general formulations based on the single group in the
literature and the double group here, do not require the basis
for expansion of Hamiltonian to have a well-defined angular
momentum quantum number, nor do they require one standard
basis. In both cases, the basis function for the Hamiltonian
should be expressible as linear combination of standard basis
functions. In the case of single-group formulation, additional
constraints are placed on the adapted double-group basis by
the operation of a direct product between single-group bases
and spinor states. Therefore, it assumes that the occurrence
of every double-group IR has one corresponding single-group
IR. This specifically rules out the possibility of states in the
�+

8 IR containing a mixture of characters from �+
3 , �+

5 , and
�−

4 IRs of the atomic site wave function; that is, the description
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of the valence band by single-group consideration will not be
able to incorporate the allowed d orbital.

The order of basis functions within an IR, including the
zone-center energy eigenfunctions, is arbitrary. However, once
the order for one set of bases is fixed by some convention, the
representation matrices and hence the order of other basis
functions of the same IR are completely fixed. The order of
the bases given by Onodera et al.35 follows the convention in
the community, though the basis functions of the �±

7 are not
well known.

Time-reversal properties of all the double-group IRs of the
Oh group are classified as type (c) by the Herring’s rule26 and
time-reversal symmetry places additional relations between
standard basis functions of an IR and zone-center energy
eigenfunctions. If the IR has dimension 2J + 1 and the index
of states in a basis set runs from Mj = −J, − J + 1, . . . ,J −
1,J (here J and Mj only serve as a measure of dimension and
index of the states and do not equal the angular momentum
quantum number j and mj in general), time-reversal symmetry
requires the standard basis functions or energy eigenstates to
satisfy the relation26

K̂|J,Mj 〉 = (−1)(J−Mj )|J, − Mj 〉, (2)

where K̂ is the time-reversal operator and may be defined as
K̂ = −iσyK̂0, where K̂0 is the conjugation operator.36 The
action of the time-reversal operator on a SU(2) basis function
(following the Condon-Shortley phase convention) gives

K̂|j,mj 〉 = (−1)l(−1)(j−mj )|j, − mj 〉, (3)

where l is the orbital angular momentum quantum number.
Thus, a factor of “i” is introduced in the basis functions of
positive-parity IRs given in Ref. 35 in order to satisfy Eq. (2).
The resulting bases, which are used in the rest of this paper, are
listed in Appendix B. Two sets of bases are required for the �±

8
IRs in order to provide an adequate description of interaction of
states belonging to these IRs. Thus, the convention on ordering
basis states is the requirement they satisfy [Eq. (2)]. The
requirement that zone-center energy eigenfunctions comply
with Eq. (2) means that the relative phase between even and
odd bases is important, particularly when they are mapped to
the basis of the Td group through compatibility relations (see
Sec. IX).

In all the matrix calculations and in construction of
Cartesian tensor operators from irreducible spherical tensor
operators, the Condon-Shortley phase convention is used. The
Cartesian tensor operator generated from standard irreducible
spherical tensor operator is always time-reversal even under
the Condon-Shortley phase. For a time-reversal odd Cartesian
tensor operator, the corresponding standard irreducible spher-
ical tensor operator is scaled by a factor of −i.

IV. PERTURBATION-THEORY-BASED APPROACH

According to Löwdin,12 the basis states required for the
matrix description of the Hamiltonian are divided into two
sets: the near set, which are of interest, and the remote set,
whose effect on the near set is included as a perturbation. The

effective Hamiltonian matrix element is then given by

Hij = 〈i|H0 + H1|j 〉 +
∑

β

〈i|H1|β〉〈β|H1|j 〉
E − Eβ

, (4)

where H0 and H1 are the unperturbed Hamiltonian and pertur-
bation, respectively, and the summation is over the remote
set of states |β〉. The k · π perturbation can be expressed
as products of the components of k and the components of
operator π . Let

Mμ

αu,αv ;ij = h̄

m0
〈αu,i|πμ|αv,j 〉 = h̄

m0

∑
n

ξn
αu,αv Aμ,n

αu,αv ;ij ,

(5)

where αu and αv are IRs with basis states |αu,i〉 and |αv,j 〉,
Aμ,n

αu,αv are linearly independent matrices defined by Koster,
and ξn

αu,αv are scaling constants which are the same for all
components πμ. If we separate the eigenstates into IRs with
corresponding transformation properties, then the Hamiltonian
can be expressed in block form according to IRs of the near
set as

Hαu,αv (k) = H0 +
∑

μ

kμMμ
αu,αv −

∑
μ

∑
ν

∑
αβ

kμ

× Mμ

αu,αβ Mν
αβ ,αv (2Eαβ − Eαu − Eαv )

2(Eαβ − Eαu )(Eαβ − Eαv )
kν, (6)

where αu and αv span the near set of states, αβ are all possible
remote state IRs, Mμ

αu,αv is a matrix as defined by Eq. (5), and
the energy scaling factor 1/(E − Eβ) in Eq. (4) is replaced
with the average of 1/(Eαu − Eαβ ) and 1/(Eαv − Eαβ ) in the
perturbation approximation. Hence, the explicit evaluation
of the Hamiltonian using perturbation theory is reduced to
finding the form of Mμ

αu,αv using symmetry considerations and
identifying the relevant IRs for un,k=0(r).

According to group theoretical methods described at the
end of Sec. II, Aμ,n

αu,αv matrices are independent of the choice
of basis and can be evaluated using any standard basis that
transforms according to the relevant IR. As the number of
such linearly independent matrices is limited, one can choose
symmetry compliant standard bases,35 which are eigenstates
of J2, L2, and S2, to enumerate them. In such a process,
the standard bases are expressible as linear combinations of
eigenstates of Jz, and the Aμ,n

αu,αv matrices can be evaluated
using Wigner-Eckart theorem, leading to a single matrix. When
multiple linearly independent Aμ,n

αu,αv matrices exist, they can
be enumerated by different set of standard basis functions.
Such standard basis functions belonging to representation αu

and index i may be expressed as

|αu,ju,i〉 =
ju∑

m=−ju

cu,i
m |ju,m〉,

where the coefficient cu,i
m can be found in Ref. 35. The k · π

perturbation can be expressed in terms of the rank 1 irreducible
spherical tensor components of T

qμ

1

k · π =
∑

μ

kμπμ =
∑

μ

kμ

∑
qμ

dμ
qμ

T
qμ

1 , (7)

where the μ is summed over {x,y,z} and qμ is summed
over {−1, 0, 1}. The coefficient d

μ
qμ

is dependent on μ and
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given by (−i/
√

2,0,i/
√

2), (1/
√

2,0,1/
√

2), and (0, − i,0),
respectively, for μ = x,y,z. For the standard basis,

Mμ

αu,αv ;ij = h̄

m0
〈αu,ju,i|πμ|αv,jv,j 〉

= h̄

m0

∑
qμ

dqμ
〈αu,ju,i|T qμ

1 |αv,jv,j 〉

= h̄

m0

∑
qμ

dqμ

ju∑
m=−ju

jv∑
n=−jv

cu,i
m

∗
cv,j
n 〈ju,m|T qμ

1 |jv,n〉

(8a)

= h̄

m0
〈αu,ju||T1||αv,jv〉

∑
qμ

dqμ

ju∑
m=−ju

jv∑
n=−jv

× (
cu,i
m

)∗
cv,j
n

〈jv1nqμ|jv1jum〉√
2ju + 1

, (8b)

Aμ

αu,αv ;ij =
∑
qμ

dqμ

ju∑
m=−ju

jv∑
n=−jv

cu,i
m

∗
cv,j
n

〈jv1nqμ|jv1jum〉√
2ju + 1

,

(8c)

where αu and αv are the IRs to which the standard bases
|αu,ju,i〉 and |αv,jv,j 〉 belong, ju and jv are the total angular
momentum quantum numbers associated with the standard
basis and IRs, 〈αu,ju||T1||αv,jv〉 is the reduced tensor
element of T1 independent of {i,j}, cu,i

m ,c
u,j
n are the expansion

coefficients of the standard basis function indexed by {i,j}, and
〈jv1nqμ|jv1jum〉 is the Clebsch Gordan (Wigner) coefficient.
While the reduced tensor element is an invariant in the case
of a central field, it is Jz quantization direction dependent in
a crystal.37 Once the linearly independent matrices are found,
they can be used for other bases, such as the cell periodic
functions in the crystal we employ in the perturbation theory.

V. EVALUATION OF HAMILTONIAN MATRIX

Zone-center eigenstates of crystals with diamond lattice
form bases of IRs, �±

6 , �±
7 , and �±

8 of the Oh group, as
discussed in Sec. II. Following the general group theoretical
method described at end of Sec. II, we can determine the num-
ber of linearly independent matrices that describe the inter-
action between states of IRs, αu and αv , from the decomposi-
tion of the direct product αu∗ ⊗ αv into direct sums. Table II
shows the decomposition of direct product of these IRs of the
Oh double group.

Given that the perturbation operator transforms according
to the �−

4 IR of the Oh group, one can see immediately that
the matrix between the �+

7 and �±
6 must be zero since �−

4 does
not occur in the decomposed direct sum. The parity selection
rule also ensures that interactions between states of represen-
tations of the same parity are forbidden, including intraband
interactions. The interaction of the valence band (�+

8 ) with the
states in the �−

6 or �−
7 representation can be described by one

parameter and one associated constant matrix. The interaction
between states in the �+

8 with states in the �−
8 representation

requires two parameters and two linearly independent constant
matrices. However, for a standard basis, direct evaluation
using Wigner-Eckart theorem yields a single matrix. This
implies that the two scaling constants are coupled, yielding

TABLE II. Product decomposition table of IRs of Oh group. The
products of two negative-parity IRs give the same as when both IRs
are positive. For each direct product, the two rows in the last 5 columns
refer to product of the same and opposite parity respectively.

Direct No. of No. of No. of No. of No. of
product Direct sum �−

4 �+
1 �+

3 �+
4 �+

5

�+
8 ⊗ �±

8

�±
1 ⊕ �±

2 ⊕ �±
3 0 1 1 2 2

⊕2�±
4 ⊕ 2�±

5 2 0 0 0 0

0 0 1 1 1
�+

8 ⊗ �±
7 �±

3 ⊕ �±
4 ⊕ �±

5 1 0 0 0 0

0 0 1 1 1
�+

8 ⊗ �±
6 �±

3 ⊕ �±
4 ⊕ �±

5 1 0 0 0 0
0 1 0 1 0

�+
7 ⊗ �±

7 �±
1 ⊕ �±

4 1 0 0 0 0
0 0 0 0 1

�+
7 ⊗ �±

6 �±
2 ⊕ �±

5 0 0 0 0 0
0 1 0 1 0

�+
6 ⊗ �±

6 �±
1 ⊕ �±

4 1 0 0 0 0

a single-basis-dependent matrix describing the angular part
of the interaction and one scaling constant. Generally, this
matrix can be used as one of the linearly independent matrices
while the complete set of linearly independent matrices can be
generated by using different sets of standard basis. The choice
of these two linearly independent matrices are, of course,
arbitrary. Using the j = 3/2 standard basis for the �+

8 and
j = 3/2 and j = 5/2 for the �−

8 as listed in Appendix B,
two sets of such linearly independent Aμ,n

�+
8 ,�−

8
matrices are

generated. Thus, for two general �±
8 IRs, the perturbation

matrix Mμ

�+
8 ,�−

8
can be written as

Mμ

�+
8 ,�−

8
= h̄

m0

[
ξ 1
�+

8 ,�−
8

Aμ,1
�+

8 ,�−
8

+ ξ 2
�+

8 ,�−
8

Aμ,2
�+

8 ,�−
8

]
. (9)

Using the method described in Sec. IV and Eq. (8c), A
matrices are evaluated and listed in Appendix C. The first-order
interaction matrices (K = ∑

μ kμMμ) are then given by

K�+
6 ,�−

6
(ξ ) = K�+

7 ,�−
7

(ξ ) = h̄

m0
ξ

(
kz k−
k+ −kz

)
, (10a)

K�−
6 ,�+

8
(ξ ) = h̄

m0
ξ

(−√
3k+ 2kz k− 0

0 −k+ 2kz

√
3k−

)
, (10b)

K�−
7 ,�+

8
(ξ ) = h̄

m0
ξ

(
k− 0

√
3k+ 2kz

2kz −√
3k− 0 −k+

)
, (10c)

K�+
8 ,�−

8
(ξ1,ξ2) = h̄

m0
ξ1

⎛
⎜⎜⎝

3kz

√
3k− 0 0√

3k+ kz 2k− 0
0 2k+ −kz

√
3k−

0 0
√

3k+ −3kz

⎞
⎟⎟⎠

+ h̄

m0
ξ2

⎛
⎜⎜⎝

−2kz

√
3k− 0 −5k+√

3k+ 6kz −3k− 0
0 −3k+ −6kz

√
3k−

−5k− 0
√

3k+ 2kz

⎞
⎟⎟⎠ .

(10d)
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Given the phase factor placed on the basis by time-reversal
symmetry as shown in Appendix B, ξ ’s are all real for
crystals with diamond lattice. Intraband first-order interaction
is forbidden by spatial symmetry, so there is no further need
to consider the impact of time-reversal symmetry. The form
of Eq. (10d) describing interaction between states of �±

8 IRs
is very different from those used in the literature,22 which
turns out to be the first term in Eq. (30a) for crystals with
zincblende lattice, as shown in Sec. IX. The fact there are two
linearly independent matrices in Eq. (10d) constitutes a major
difference from a single-group approach that gives only one
interaction matrix between states of �±

8 IRs [see Eq. (32) in
Sec. XI for the correct form of this matrix under single-group
consideration].

Having obtained the general form of all possible first-
order perturbation matrices Mμ

αu,αv , the Hamiltonian can be
constructed according to Eq. (6). The Löwdin term can also
be described by various strength parameters and k-dependent
matrices. For this purpose, we define the following strength
parameters for the near set IRs αu, αv and remote IR αβ .
If αβ 	= �±

8 , or if αβ = �±
8 and αu 	= �±

8 and αv 	= �±
8 ,

then

ζ αβ

αu,αv = ξαu,αβ ξαβ ,αv

(
2Eαβ − Eαu − Eαv)

m0
(
Eαu − Eαβ

)(
Eαv − Eαβ

) . (11)

If αβ = �−b
8 and αu = �+a

8 , but αv 	= �±
8 ,

ζ
�−b

8 ,1

�+a
8 ,αv =

ξ 1
�+a

8 ,�−b
8

ξ�−b
8 ,αv

(
2E�−b

8 − E�+a
8 − Eαv)

m0
(
E�+a

8 − E�−b
8
)(

Eαv − E�−b
8
) , (12a)

ζ
�−b

8 ,2

�+a
8 ,αv =

ξ 2
�+a

8 ,�−b
8

ξ�−b
8 ,αv

(
2E�−b

8 − E�+a
8 − Eαv)

m0
(
E�+a

8 − E�−b
8
)(

Eαv − E�−b
8
) . (12b)

If αβ = �−b
8 , αu = �+a

8 , and αv = �+c
8 (a and c distinguish

different �±
8 IRs in interband Löwdin terms),

ζ
�−b

8 ,1

�+a
8 ,�+c

8
=

ξ 1
�+a

8 ,�−b
8

ξ 1
�−b

8 ,�+c
8

(
2E�−b

8 − E�+a
8 − E�+c

8
)

m0
(
E�+a

8 − E�−b
8
)(

E�+c
8 − E�−b

8
) , (13a)

ζ
�−b

8 ,2

�+a
8 ,�+c

8
=

ξ 2
�+a

8 ,�−b
8

ξ 2
�−b

8 ,�+c
8

(
2E�−b

8 − E�+a
8 − E�+c

8
)

m0
(
E�+a

8 − E�−b
8
)(

E�+c
8 − E�−b

8
) , (13b)

ζ
�−b

8 ,3

�+a
8 ,�+c

8
=

ξ 1
�+a

8 ,�−b
8

ξ 2
�−b

8 ,�+c
8

(
2E�−b

8 − E�+a
8 − E�+c

8
)

m0
(
E�+a

8 − E�−b
8
)(

E�+c
8 − E�−b

8
) , (13c)

ζ
�−b

8 ,4

�+a
8 ,�+c

8
=

ξ 2
�+a

8 ,�−b
8

ξ 1
�−b

8 ,�+c
8

(
2E�−b

8 − E�+a
8 − E�+c

8
)

m0
(
E�+a

8 − E�−b
8
)
(E�+c

8 − E�−b
8 )

. (13d)

Then the Löwdin terms from the situations described in
Eqs. (11)–(13) are given by

Lαβ

αu,αv = − h̄2

2m0

∑
μ,ν

kμζ αβ

αu,αv Aμ
αu,αβ

Aν
αβ ,αv kν, (14)

L
�−b

8

�+a
8 ,αv = − h̄2

2m0

∑
μ,ν

kμ

[
ζ

�−b
8 ,1

�+a
8 ,αv Aμ,1

�+a
8 ,�−b

8
Aν

�−b
8 ,αv + ζ

�−b
8 ,2

�+a
8 ,αv Aμ,2

�+a
8 ,�−b

8
Aν

�−b
8 ,αv

]
kν, (15)

L
�−b

8

�+a
8 ,�+c

8
= − h̄2

2m0

∑
μ,ν

kμ

[
ζ

�−b
8 ,1

�+a
8 ,�+c

8
Aμ,1

�+a
8 ,�−b

8
Aν,1

�−b
8 ,�+c

8
+ ζ

�−b
8 ,2

�+a
8 ,�+c

8
Aμ,2

�+a
8 ,�−b

8
Aν,2

�−b
8 ,�+c

8

+ ζ
�−b

8 ,3

�+a
8 ,�+c

8
Aμ,1

�+a
8 ,�−b

8
Aν,2

�−b
8 ,�+c

8
+ ζ

�−b
8 ,4

�+a
8 ,�+c

8
Aμ,2

�+a
8 ,�−b

8
Aν,1

�−b
8 ,�+c

8

]
kν, (16)

respectively. Considering the fourfold degenerate states (valence band �+
8 ) resulting from the spin-orbit interaction on the �−

4
states of the bonding sp3 orbital, and the remote states as identified in Table I, the contribution from terms in Eq. (15) are absent

and terms from Eq. (16) are further simplified because ζ
�−b

8 ,3

�+v
8 ,�+v

8
= ζ

�−b
8 ,4

�+v
8 ,�+v

8
. Since the intraband matrix elements between the near

set states are forbidden by parity, the Löwdin term between �+v
8 and �+v

8 is given by

Hvv = − h̄2

2m0
ζ

�−
6

�+v
8 ,�+v

8

⎛
⎜⎜⎜⎝

3k2 − 3k2
z −2

√
3k−kz −√

3k2
− 0

−2
√

3k+kz k2 + 3k2
z 0 −√

3k2
−

−√
3k2

+ 0 k2 + 3k2
z 2

√
3k−kz

0 −√
3k2

+ 2
√

3k+kz 3k2 − 3k2
z )

⎞
⎟⎟⎟⎠

− h̄2

2m0
ζ

�−
7

�+v
8 ,�+v

8

⎛
⎜⎜⎜⎝

k2 + 3k2
z −2

√
3k−kz

√
3k2

+ 0
−2

√
3k+kz 3k2 − 3k2

z 0
√

3k2
+√

3k2
− 0 3k2 − 3k2

z 2
√

3k−kz

0
√

3k2
− 2

√
3k+kz k2 + 3k2

z

⎞
⎟⎟⎟⎠

− h̄2

2m0
ζ

�−
8 ,1

�+v
8 ,�+v

8

⎛
⎜⎜⎜⎝

3k2 + 6k2
z 4

√
3k−kz 2

√
3k2

− 0
4
√

3k+kz 7k2 − 6k2
z 0 2

√
3k2

−
2
√

3k2
+ 0 7k2 − 6k2

z −4
√

3k−kz

0 2
√

3k2
+ −4

√
3k+kz 3k2 + 6k2

z

⎞
⎟⎟⎟⎠
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− h̄2

2m0
ζ

�−
8 ,2

�+v
8 ,�+v

8

⎛
⎜⎜⎜⎜⎝

28k2 − 24k2
z 4

√
3k−kz −√

3(3k2
− + 5k2

+) 0
4
√

3k+kz 12k2 + 24k2
z 0 −√

3(3k2
− + 5k2

+)

−√
3(3k2

+ + 5k2
−) 0 12k2 + 24k2

z −4
√

3k−kz

0 −√
3(3k2

+ + 5k2
−) −4

√
3k+kz 28k2 − 24k2

z

⎞
⎟⎟⎟⎟⎠

− h̄2

2m0
ζ

�−
8 ,3

�+v
8 ,�+v

8

⎛
⎜⎜⎜⎜⎝

6k2 − 18k2
z 8

√
3k−kz −√

3(k2
− + 5k2

+) 0

8
√

3k+kz −6k2 + 18k2
z 0 −√

3(k2
− + 5k2

+)

−√
3(k2

+ + 5k2
−) 0 −6k2 + 18k2

z −8
√

3k−kz

0 −√
3(k2

+ + 5k2
−) −8

√
3k+kz 6k2 − 18k2

z

⎞
⎟⎟⎟⎟⎠ , (17)

where k± = kx ± iky and k2 = k2
x + k2

y + k2
z . Inspection of

Table I shows that ζ
�−

6

�+v
8 ,�+v

8
is the interaction strength parameter

between the valence band states and the two-fold degenerate
states (conduction band), resulting from spin-orbit perturba-

tion on the �−
4 of the antibonding (sp3)∗ orbital; ζ

�−
7

�+v
8 ,�+v

8
is the

strength parameter for interaction with the two-fold degenerate
states resulting from spin-orbit perturbation on the �+

1 state

of the antibonding (sp3)∗ orbital. The parameters ζ
�−

8 ,1−3

�+v
8 ,�+v

8

describe the interaction between valence band states and its
counterpart in the antibonding (sp3)∗ orbital.

These results appear to suggest that one needs five ζ param-
eters to specify the valence band Hamiltonian in contradiction
to the theory of invariants. It turns out that there are only
three linearly independent matrices among the five in Eq. (17),
and no new invariant is added beyond the three necessary
parameters. The Luttinger parameters are related to those
defined in Eqs. (11)–(13) by

γ1 = 2ζ
�−

6

�+v
8 ;�+v

8
+ 2ζ

�−
7

�+v
8 ;�+v

8
+ 5ζ

�−
8 ,1

�+v
8 ;�+v

8
+ 20ζ

�−
8 ,2

�+v
8 ;�+v

8
,

(18a)

γ2 = ζ
�−

6

�+v
8 ;�+v

8
− ζ

�−
7

�+v
8 ;�+v

8
− 2ζ

�−
8 ,1

�+v
8 ;�+v

8
+ 8ζ

�−
8 ,2

�+v
8 ;�+v

8
+ 6ζ

�−
8 ,3

�+v
8 ;�+v

8
,

(18b)

γ3 = ζ
�−

6

�+v
8 ;�+v

8
+ ζ

�−
7

�+v
8 ;�+v

8
− 2ζ

�−
8 ,1

�+v
8 ;�+v

8
− 2ζ

�−
8 ,2

�+v
8 ;�+v

8
− 4ζ

�−
8 ,3

�+v
8 ;�+v

8
,

(18c)

μ = (γ3 − γ2)/2 = ζ
�−

7

�+v
8 ;�+v

8
− 5ζ

�−
8 ,2

�+v
8 ;�+v

8
− 5ζ

�−
8 ,3

�+v
8 ;�+v

8
,

(18d)

γ = (γ3 + γ2)/2 = ζ
�−

6

�+v
8 ;�+v

8
− 2ζ

�−
8 ,1

�+v
8 ;�+v

8
+ 3ζ

�−
8 ,2

�+v
8 ;�+v

8
+ ζ

�−
8 ,3

�+v
8 ;�+v

8
.

(18e)

Given the linear dependence between the five matrices, the
relationship above cannot be inverted without additional
information. One, however, can draw some conclusions from
the relations in Eq. (18). The warping term in the form of
μ = (γ3 − γ2)/2 arises from the interaction of valence band
with antibonding states in the �−

8 and �−
7 IRs. Therefore, it has

its origin in all the antibonding (sp3)∗ orbital as opposed to the
s-like states38 with �−

7 symmetry alone. Single-group-based
perturbation theory in the literature would have just one matrix

in place of the last three in Eq. (17) due to restriction on
the �±

8 basis used in the matrix calculation. However, this is
equivalent to removal of independence of the three parameters

(ζ
�−

8 ,1−3

�+v
8 ,�+v

8
) in front of these matrices. Such result would still be

in agreement with those from the method of invariant.
Interband Löwdin terms (such as those between the valence

band �+
8 and the valence spin-orbit split-off band �+

7 ) can be
constructed in the same way as defined in Eq. (6). As an
example, the Löwdin term between �+v

8 and �+v
7 is given

below:

Hvs =− h̄2

2m0
ζ

�−
7

�+
8 ,�+

7

⎛
⎜⎜⎝

3k+kz

(
k2
x + k2

y − 2k2
z

)
−√

3k2
+

√
3k+kz√

3k−kz

√
3k2

−
−(k2

x + k2
y − 2k2

z

)
3k−kz

⎞
⎟⎟⎠

− h̄2

2m0
ζ

�
−,1
8

�+
8 ,�+

7

⎛
⎜⎜⎝

3k+kz −3
(
k2
x + k2

y − 2k2
z

)
√

3(k2
+ + 2k2

−)
√

3k+kz√
3k−kz −√

3(k2
− + 2k2

+)
3
(
k2
x + k2

y − 2k2
z

)
3k−kz

⎞
⎟⎟⎠

− h̄2

2m0
ζ

�
−,2
8

�+
8 ,�+

7

⎛
⎜⎜⎝

−12k+kz 2
(
k2
x + k2

y − 2k2
z

)
−√

3(3k2
− − k2

+) −4
√

3k+kz

−4
√

3k−kz

√
3(3k2

+ − k2
−)

−2
(
k2
x + k2

y − 2k2
z

) −12k−kz

⎞
⎟⎟⎠ .

(19)

This interband Löwdin term appears to be inconsistent with
those given in the literature obtained from perturbation
theory3,17 or theory of invariant.13–15 An incorrectly ordered
odd basis for �8 (see Sec. IX for detail) was used to derive
the interband Löwdin term for crystals with zincblende lattice
from perturbation theory. The generator matrices (Cartesian
matrices Ti,Ui and Tij ,Uij , where i,j ∈ {x,y,z} in Ref. 15)
were actually obtained from basis of the �+

8 ,(j = 3/2) and
�+

6 ,(j = 1/2) instead of that of the �+
7 . Therefore, they are

inappropriate for the generation of the Löwdin term between
the �+

8 and �+
7 IRs. Thus, Eq. (19) should be compared with

Hvs = − h̄2

2m0

⎛
⎜⎜⎜⎜⎜⎜⎝

√
3
2S∗ √

2Q
√

2R∗
√

1
2S∗√

1
2S −√

2R

−√
2Q

√
3
2S

⎞
⎟⎟⎟⎟⎟⎟⎠ , (20)
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where Q = γ ′
2(k2

‖ − 2k2
z ), S = 2

√
3γ ′

3k−kz, and R =√
3(−γ ′k2

− + μ′k2
+). This expression is obtained from method

of invariant (see Sec. VII and Appendix D) using correct basis.
There are only two linearly independent matrices among the
three in Eq. (19), which is in agreement with Eq. (20), leading
to two invariants (γ ′

2 and γ ′
3). The Luttinger invariants for this

interband block are given in terms of ζ parameters by

γ ′
2 = 1√

2

[
ζ

�−
7

�+
8 ,�+

7
− 3ζ

�−
8 ,1

�+
8 ,�+

7
+ 2ζ

�−
8 ,2

�+
8 ,�+

7

]
, (21a)

γ ′
3 = 1√

2

[
4ζ

�−
8 ,2

�+
8 ,�+

7
− ζ

�−
8 ,1

�+
8 ,�+

7
− ζ

�−
7

�+
8 ,�+

7

]
. (21b)

Despite the fact that the valence band and spin-split-off band
originate from the same atomic site wave function, the invari-
ants are quite different compared with corresponding terms
in Eq. (18). Apart from the obvious difference when scaling
interaction parameters by terms containing eigenenergies,
both the forbidden �+

7 : �−
6 direct interaction and mixture of

characters derived from different single-group IRs contribute.
This may be compared with the outcome of single-group work
where the invariants would be the same across the valence
band/spin-split-off band block.39

The effect of this change in the interband block Hamiltonian
on the dispersion can be seen in Fig. 1, where a six-band model
is applied to Ge. The Luttinger parameters are chosen to be
the same in all the blocks, as in a single-group formulation39

with γ1 = 13.35, γ2 = 4.25, and γ3 = 5.69 (Ref. 40). Along
the 〈100〉 direction, it is clear that the coupling between the
heavy-hole and light-hole states are enhanced, whereas the
coupling between the light-hole and spin-split-off band is
reduced in the double-group formulation compared with six-
band model in the literature.22 Along the 〈111〉 direction,
there is a similar reduction of coupling between the light-hole
and spin-split-off states but the heavy-hole band essentially
remains the same. The use of double-group formulation
indicates that the Luttinger parameters are different for each

FIG. 1. Comparison of sixband models applied to Ge: present
work (solid line), literature (broken line).

block (interaction matrix) and there is a modification of
dispersion away from zone center.

With the use of hybridized orbital as atomic site wave
functions, the effect of higher atomic orbitals, such as the
d or f orbital, are accounted for through configurations. Thus,
a 16-band model is all that is permitted under this scheme.
Higher unoccupied states, beyond the bonding and antibond-
ing configuration, may lead to states belonging to multiple
occurrences of �±

6 ,�±
7 and/or �±

8 IRs. These will simply add
to the ζ parameter describing the remote interactions with
states of the given symmetry. Moving states in the remote
set into the near set will have the reverse effect. This has been
demonstrated by Pidgeon and Brown,17 but modification of the
Luttinger parameters derived from single-group considerations
is rather complicated. As the linearly independent matrices
Aμ,n

αu,αv are basis independent, the effect on Eq. (17) is simply
an addition or subtraction of ζ parameters in front of the
appropriate matrices. In terms of near set interaction in
multiband implementation, the matrix elements can be readily
calculated using the Aμ,n

αu,αv matrices and appropriate scaling
constants. Any additional Löwdin term can be constructed
the same way using Eq. (6). The form of Hamiltonian for
an eight-band model, as well as other building blocks for
multiband k · p theory, is given in Appendix D.

VI. METHOD OF INVARIANT

The k · p theory has also been formulated from method
of invariant with limited assumptions on the existence of
one-electron Schrödinger equation and its solutions. In this
approach, the Hamiltonian described by some perturbation
variable K should be invariant under the action of an element
g of its symmetry group G; that is,

Dαu

(g)Hαuαv (g−1K )Dαv

(g−1) = Hαuαv (K ), (22)

where Dαu

(g) and Dαv

(g−1) are representation matrices of the
IRs whose bases are used to define the Hamiltonian. Allowing
αu and αv to be different permits investigation of the interband
terms as well as intraband terms. The theory of invariants,
as described by Bir and Pikus,8 considers the Hamiltonian as
products of appropriate generator matrices X

γ,n

I of dimension
lαu × lαv and irreducible components of perturbation K m,γ

I ,
which are formed from products of Cartesian components of
K m

I of a particular type (e.g., quadratic in components of k,
strain, etc.) indexed by m; that is,

Hαuαv (K ) =
∑

γ

∑
I

{∑
n

∑
m

am,n
γ X

γ,n

I K m,γ

I

}
, (23)

where am,n
γ are the invariant parameters for generator indexed

by n and irreducible perturbation indexed by m, �γ is the IR
to which X

γ,n

I and K m,γ

I forms a basis, I is the index of the
basis (component) within the �γ IR, and n is the index of
linearly independent generators which transform according to
�γ . The Hamiltonian defined in Eq. (23) satisfies the invariant
condition defined in Eq. (22). (In a very crude way, we are
forming a “scalar” product between irreducible components
of generators and a perturbation with a result that is invariant
under rotation.) This expression differs from those in the
literature and allows explicitly for more than one linearly
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TABLE III. Generating operators and corresponding perturbation for diamond lattice.

Irreducible perturbation Spatial Time reversal
component (KI ) parity parity Irrep (γ ) Invariant Generating operators

1,k2 Even Even �+
1 γ1 T 0

0{√
3(k2

z − k2/3)

k2
x − k2

y
Even Even �+

3 γ2

{
T 0

2

(T 2
2 + T −2

2 )/
√

2⎧⎪⎨
⎪⎩

kykz

kzkx

kxky

Even Even �+
5 γ3,γ

′
3

⎧⎪⎨
⎪⎩

i(T 1
2 + T −1

2 )/
√

2

−(T 1
2 − T −1

2 )/
√

2

i(T −2
2 − T 2

2 )/
√

2⎧⎪⎨
⎪⎩

kx

ky

kz

Odd Odd �−
4 ξ1,ξ2

⎧⎪⎨
⎪⎩

i(T 1
1 − T −1

1 )/
√

2

(T 1
1 + T −1

1 )/
√

2

−iT 0
1

independent generator which transforms according to �γ IR
and multiple types of perturbation indexed by m. For the case
under consideration here, the types of perturbation K m are the
linear and quadratic k terms. Other types of perturbation, such
as strain, can be be incorporated in the same way as described
by Bir and Pikus.8

The linear components of wave-vector transform according
to �−

4 in the same way as an irreducible spherical tensor
of rank 1 (T q

1 ). Thus, the generator for this perturbation
is naturally a linear combination of the index (angular)-
dependent part of the matrix representation of T

q

1 with
respect to the energy eigenstates in representations αu and
αv . These generators are equilvalent to Aμ matrices we
calculated in Sec. V and tabulated in Appendix C. The products
of components of wave vector kμkν,μ,ν ∈ {x,y,z} form a
Cartesian tensor of rank 2. It can be expressed as a linear
combination of components with different transformation
properties:

kμ · kν = k · k
3

δμν︸ ︷︷ ︸
scalar

+ [kμ,kν]

2︸ ︷︷ ︸
axial vector

+
( {kμ,kν}

2
− k · k

3
δμν

)
︸ ︷︷ ︸

T
q

2

,

(24)

where [kμ,kν] and {kμ,kν} are the commutator and anticom-
mutator, respectively. The scalar transforms according to an
irreducible spherical tensor of rank 0 (T 0

0 ), the axial vector
transforms like angular momentum J , and the third term is a
traceless symmetric Cartesian tensor which transforms like
an irreducible spherical tensor of rank 2 (T q

2 ) [irreducible
under SO(3)]. Under the Oh point group, they transform
according to �+

1 ,�+
4 , and �+

3 ⊕ �+
5 IRs, respectively. The

decomposition of the second-rank “irreducible” spherical
tensor follows the way in which the degeneracy of the l = 2, d

orbital is lifted under the action of the crystal field. To block
diagonalize the rank 2 spherical tensor under the �+

3 ⊕ �+
5

representations, a linear transformation of the components are
made:

�+
3

⎧⎨
⎩ k0

2 ∼ 1
4

√
15
π

√
3
(
k2
z − k2/3

)
,(

k2
2 + k−2

2

)/√
2 ∼ 1

4

√
15
π

(
k2
x − k2

y

)
,

(25)

�+
5

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i
(
k1

2 + k−1
2

)/√
2 ∼ 1

2

√
15
π

{ky,kz}/2,(
k−1

2 − k1
2

)/√
2 ∼ 1

2

√
15
π

{kz,kx}/2,

i
(
k−2

2 − k2
2

)/√
2 ∼ 1

2

√
15
π

{kx,ky}/2.

(26)

The generator matrices are then naturally obtained from
the index (angular)-dependent part of the matrices from
the operators T 0

0 and T
q

2 between states which form the
bases of representations αu and αv . This second-rank tensor
operator is reducible under the Oh group and appropriate linear
combinations of the T

q

2 matrices are used to ensure block
diagonal form. The operators for evaluating generators and
irreducible perturbation components are listed in Table III.

It is important to recognize that these generators are
dependent on representation, not on specific basis. Hence,
they can be obtained for a specific known basis and would
be generally applicable to all bases of the relevant IR.

The effects of external magnetic field on the Hamiltonian
are also frequently treated under method of invariant utilizing
the antisymmetric products of wave-vector components.15 The
relation between magnetic field and antisymmetric products of
wave-vector components is established through the commuta-
tor of wave-vector components as operators on the envelope
function.3 However, the vector potential necessary for the
description of external magnetic field breaks the translational
symmetry. The treatment of such perturbation requires the
envelope function theory.41 In any case, the time-reversal
properties of quadratic k terms is different from that of the
magnetic field. The treatment of the Zeeman interaction term
using the antisymmetric products of wave-vector component
and under the k · p framework may be inappropriate.

VII. GENERATORS IN METHOD OF INVARIANT

The number of linearly independent matrices, or generators
in the present context, can be obtained using the same
group theoretical techniques described at the end of Sec. II.
For an irreducible perturbation component K γ to make a
contribution, some elements of the matrix representation of the
generating operator must be nonzero. The contribution would
be permitted by symmetry if the IR of the generating operator,
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which is the same as the IR of the irreducible perturbation
components �γ , occurs in the decomposition of αu∗ ⊗ αv .
The number of independent generators is given by the number
of times �γ occurs in the decomposition. The perturbation
consists of wave-vector components that are linear, transform-
ing according to �−

4 , or quadratic, transforming according to
�−

4 ⊗ �−
4 = �+

1 ⊕ �+
3 ⊕ �+

4 ⊕ �+
5 of the Oh group. Table II

shows the decomposition of a direct product between all
possible IRs of the energy eigenstates. It is clear that linear
k terms can only exist between states with IRs of opposite
parity, whereas the quadratic term can only exist between
states with IRs of the same parity. In addition, linear k terms
are forbidden between states of �±

7 and �∓
6 IRs. There are

two linearly independent generators for linear and quadratic k

terms transforming according to �−
4 and �+

5 between bases of
�±

8 and �∓
8 .

Generators42 applicable to all allowed double group bases
of IRs, are obtained using an irreducible spherical tensor
operator constructed from standard single group basis. A
single irreducible spherical tensor operator is used for each
IR of the perturbation, independent of the double group bases
associated with the zone center energy eigenfunctions. When
multiple linearly independent generators exist, as is the case
when dealing with �±

8 , multiple sets of standard double basis
functions are required. The methodology for this calculation
is exactly the same as for the A matrices or Cartesian
components derived from T

q

1 . The second linearly independent
generator for �γ = �+

5 between �+
8 : �+

8 IRs, is ruled out on
time-reversal symmetry grounds,6 so the associated invariant
γ ′

3 = 0. Thus, the Hamiltonian between states of any IRs can
be constructed using Eq. (23). The generators required for
construction of an eight-band model are listed in Table IV.
For linear k terms, the generators are the Aμ matrices listed
in Appendix C. The generators for the �+

7 : �+
7 block are

identical to those of the �−
6 : �−

6 block. Only those generator
matrices allowed by symmetry are listed. The Hamiltonian for
the eight-band case is shown in Appendix D and has exactly
the same form as the Hamiltonian obtained from perturbation
theory in Sec. V.

The Löwdin term between �+
8 : �+

6 IRs is also shown in
Appendix D, even though it does not occur within the eight-
band model. However, it has the same form as those used in
the literature in place of the �+

8 : �+
7 interband block. It is

easy to see that using the incorrect basis of �+
7 to evaluate the

generators has led to the error in the literature.13 In addition,
the odd basis used3,15 for �8 IR of the Td group does not
strictly transform according to �8 (see Sec. IX). This error
lead to incorrect interband Löwdin term but it does not effect
the intraband Löwdin terms in the four-band model.

The approach adopted here to obtain generators differs from
those in the literature where the enumeration of generators
is based on a single set of standard bases and multiple
forms of generating operators. These generating operators,
transforming like the irreducible perturbation, were obtained
from components of orbital, spin, total angular momentum,
and their products.3,8,13 They all have even spatial parity and
would not be appropriate for first-order interactions where the
perturbation operator π has odd spatial parity.

The results from the theory of invariants may be directly
compared with double-group perturbation theory developed

here, as there is no restriction on the basis of the �±
8 IRs.

Comparison with single-group formulation must be subjected
to the single-group assumption which restricts the basis of �±

8
IRs. In particular, there are two linearly independent matrices
describing interaction between �±

8 IRs [generators for the �−
4

irreducible perturbation, or Aμ matrices, or Eq. (10d)], but only
one in the single-group formulation [Eq. (32)]. The single-
group result may, however, be obtained from the method of
invariant by removing the independence of the two scaling
parameters or through use of specific basis as shown in Sec. XI.

VIII. OPERATOR ORDERING IN ENVELOPE
FUNCTION THEORY

Effective mass theory3 and exact envelope function theory7

have played a vital role in the studies of impurity states in
semiconductors and semiconductor heterostructures such as
quantum wells and dots. In a practical implementation of
the exact envelope function theory, the nonlocal terms are
generally ignored and the validity of such approximation has
been discussed by Burt.43 The boundary conditions between
different semiconductors breaks translational symmetry and
has been shown to cause mixing of the light-hole states in the
valance band due to the “C” term and operator ordering in the
“S” term.7,11,44,45 In deriving such interfacial and ordered terms
in the Hamiltonian, the wave-vector components are treated as
operators on the envelope function and do not commute with
material parameters in the Löwdin term45 at the interface.
Previous work has been based on single-group formulation of
the k · p theory.

The double-group formulation and methodology developed
here also requires similar consideration when applied to the
studies of heterojunctions. The formulation can easily be
extended in the same way, by considering kμ and kν in Eq. (6)
and Eqs. (14)–(16) as operators on envelope functions.11,44,45

As operators, k̂μ and k̂ν in Eq. (6) do not commute with the
material-dependent terms at interfaces. An ordered version of
the Hamiltonian is given below for a four-band model with
ζ parameters becoming spatially dependent (subscripts are
dropped for brevity):

H = − h̄2

2m0

⎛
⎜⎜⎜⎜⎝

P + Q −S R Z

−S† P − Q C R

R† C† P ∗ − Q∗ (S†)∗

Z† R† S∗ P ∗ + Q∗

⎞
⎟⎟⎟⎟⎠ ,

where

P = k̂−[2ζ�−
6 + 3.5ζ�−

8 ,1 + 6ζ�−
8 ,2]k̂+

+k̂+[2ζ�−
7 + 1.5ζ�−

8 ,1 + 14ζ�−
8 ,2]k̂− + k̂zγ1k̂z,

Q = k̂−[ζ�−
6 − 0.5ζ�−

8 ,1 − 3ζ�−
8 ,2 + 6ζ�−

8 ,3]k̂+
+ k̂+[−ζ�−

7 − 1.5ζ�−
8 ,1 + 11ζ�−

8 ,2]k̂− + k̂z(2γ2)k̂z,

S = k̂−
√

3(2ζ�−
6 − ζ�−

8 ,1 − 6ζ�−
8 ,2 − 7ζ�−

8 ,3)k̂z

+ k̂z

√
3(2ζ�−

7 − 3ζ�−
8 ,1 + 2ζ�−

8 ,2 − ζ�−
8 ,3)k̂−,

R = −
√

3k̂−γ k̂− +
√

3k̂+μk̂+,

C = k̂−(−2ζ�−
6 − 2ζ�−

8 ,1 + 18ζ�−
8 ,2 − 9ζ�−

8 ,3)k̂z

+ k̂z(2ζ�−
6 + 2ζ�−

8 ,1 − 18ζ�−
8 ,2 + 9ζ�−

8 ,3)k̂−,
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TABLE IV. Generator matrices for �+
8 : �+

8 , �+
8 : �+

7 , and �−
6 : �−

6 block. σx,y,z are Pauli matrices.

α,β γ Generating operator Generators (XI ): scaled within each occurrence of IR γ

�+
1 T 0

0 1

�+
3

⎧⎨
⎩ T 0

2

(T 2
2 + T −2

2 )/
√

2

√
3

⎛
⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎠ √

3

⎛
⎜⎜⎝

0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0

⎞
⎟⎟⎠

�+
8 : �+

8 2
√

3i

⎛
⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

⎞
⎟⎟⎠ 2

√
3

⎛
⎜⎜⎝

0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎠ 2

√
3i

⎛
⎜⎜⎝

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎞
⎟⎟⎠

�+
5

⎧⎪⎨
⎪⎩

i(T 1
2 + T −1

2 )/
√

2

−(T 1
2 − T −1

2 )/
√

2

i(T −2
2 − T 2

2 )/
√

2

2
√

3i

⎛
⎜⎜⎝

0 1 0 5
√

3

9 0 −5
√

3 0

0 −5
√

3 0 9

5
√

3 0 1 0

⎞
⎟⎟⎠ 2

√
3

⎛
⎜⎜⎝

0 −1 0 5
√

3

9 0 5
√

3 0

0 −5
√

3 0 −9

−5
√

3 0 1 0

⎞
⎟⎟⎠ 2

√
3i

⎛
⎜⎜⎝

0 0 −14 0

0 0 0 6

−6 0 0 0

0 14 0 0

⎞
⎟⎟⎠

�+
8 : �+

7

�+
3

{
(T 2

2 + T −2
2 )/

√
2

T 0
2

√
3

⎛
⎜⎜⎝

0 0

−1 0

0 1

0 0

⎞
⎟⎟⎠ √

3

⎛
⎜⎜⎝

0 −1

0 0

0 0

1 0

⎞
⎟⎟⎠

�+
5

⎧⎨
⎩

i(T 1
2 + T −1

2 )/
√

2

−(T 1
2 − T −1

2 )/
√

2

i(T −2
2 − T 2

2 )/
√

2

2
√

3i

⎛
⎜⎜⎜⎝

−
√

3
2 0

0 − 1
2

1
2 0

0
√

3
2

⎞
⎟⎟⎟⎠ 2

√
3

⎛
⎜⎜⎜⎝

−
√

3
2 0

0 − 1
2

− 1
2 0

0 −
√

3
2

⎞
⎟⎟⎟⎠ 2

√
3i

⎛
⎜⎜⎝

0 0

1 0

0 1

0 0

⎞
⎟⎟⎠

�−
6 : �−

6

�+
1 T 0

0 1
�+

4 Jx,Jy,Jz σx,σy,σz

Z = k̂+(2ζ�−
7 − 10ζ�−

8 ,2 + 15ζ�−
8 ,3)k̂z

+ k̂z(−2ζ�−
7 + 10ζ�−

8 ,2 − 15ζ�−
8 ,3)k̂+,

where the †’s indicate conjugation and reversal of the operator
ordering. The interfacial coupling of the heavy-hole states
via the Z term was not identified when operator ordering
was first established using single-group formulation.7,11,44

Ordering under double-group formulation differs from the
literature, based on single-group formulation. Apart from
the definition of material parameters, the forms of both
the interband Hamiltonian between the valence band and
spin-split-off band (see Sec. V) and the symmetry of the
conduction band minimum state at zone center are different
(see Sec. X). The latter modifies the weighting of different
interactions in each part of the ordered term. A similar
ordering term would exist in the conduction and spin-orbit
bands if they were brought into the near set in an eight-band
model. The interfacial orientation dependence of operator
ordering comes from the Jz quantization direction dependence
of the ζ parameters through that of the reduced tensor
elements.46

IX. ZINCBLENDE LATTICE

The difference between a zincblende lattice (Td group) and a
diamond lattice (Oh group) is the lack of inversion symmetry.
In a zincblende crystal, there are no equivalent atomic sites
within the primitive cell and hence the equivalence representa-

tion is simply �1. The starting bonding and antibonding states
must again be constructed from the spd hybridized orbitals
at the two inequivalent atomic sites within the Wigner-Seitz
cell of the face centered cubic lattice. If one follows the same
arguments made in Sec. II, the symmetries of the valence
band and its spin-split-off band at the � point are �8 and �7,
respectively, while the antibonding counterparts are �8 and �7.
States derived from the �1 of the bonding and antibonding spd

orbitals both have �6 symmetry. As argued in the case of Ge,
the lowest conduction band zone center state is derived from
the spin-split-off from the antibonding (spd) orbitals, and has
�7 symmetry in crystals with a zincblende lattice.

The energy eigenfunctions at the zone center form basis of
the �6, �7, and �8 IRs. The standard basis functions for these
IRs of the Td group may be derived from that of the Oh group
provided appropriate compatibility relations between the Td

and Oh groups are used. The compatibility relations between
the representations of the Td and Oh groups are given by Koster
et al.26 and summarized in Table V.

With the exception of the �−
8 and �−

3 IRs of the Oh group,
the representation matrices between compatible IRs of the
Oh and Td groups are identical for common elements of the
groups. Thus, basis functions of Oh group IRs can be used
directly in compatible IRs of Td group. While compatible,
the representation matrices of the �−

8 (Oh) and �8 (Td ) group
differ in sign for the improper rotational elements common to
the Oh and Td groups.36 Thus, they must be equivalent and
linked by a unitary transformation. Hence, the basis functions
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TABLE V. Compatibility relations between representations of the Oh and Td group.

Oh group �+
1 , �−

2 �+
2 , �−

1 �+
3 , �−

3 �+
4 , �−

5 �+
5 , �−

4 �+
6 , �−

7 �+
7 , �−

6 �+
8 , �−

8

Td group �1 �2 �3 �4 �5 �6 �7 �8

of the �−
8 must undergo a unitary transformation before being

used as basis functions of �8 for calculation of matrix elements
in crystals with zincblende lattice.47

This transformation48 for the basis functions is defined by
the matrix

T�8 =

⎛
⎜⎜⎜⎝

0 0 i 0

0 0 0 −i

−i 0 0 0

0 i 0 0

⎞
⎟⎟⎟⎠ . (27)

A similar transformation is required for the basis of the
�−

3 IR, which is not relevant in the present context but
given in Appendix E. While the unitary transformation is a
requirement of spatial symmetry, the presence of phase factor
“i” in both the even and the odd bases of �8 is necessary to
ensure compliance with time-reversal symmetry [Eq. (2)]. It
is also noted that while the zincblende crystal lacks inversion
symmetry, the standard basis functions derived from the Oh

group representations all have well-defined parity. Thus, parity
selection rules still exist in discussions concerning a specific
set of standard basis belonging to relevant IRs in Td group.

When we consider interaction matrices, the same symmetry
arguments made in Sec. V can be applied. Components of the
perturbation operator π transform according to the �5 IR and
decomposition of the direct product between �6, �7, and �8

IRs are indicated in Table VI. One can see that the direct
interactions between �6 : �6 and �7 : �7 are now forbidden
by symmetry, whereas interactions between �7 : �6 are now
allowed. The interband interaction between states belonging
to the �8 IRs requires two linearly independent matrices, as in
the case of diamond lattice.

The Aμ matrices describing interactions between �8 : �6

and �8 : �7 IRs are given by Aμ

�+
8 ,�−

7
and Aμ

�+
8 ,�−

6
, respectively.

Those Aμ matrices between the �±
8 IRs of the Oh group

should be multiplied by the T�8 matrix to give four possible
matrices Aμ,n

�+
8 ,�−

8
T T

�8
and T ∗

�8
Aμ,n

�−
8 ,�+

8
for n = 1,2 in crystals with

zincblende lattice. These four matrices are linearly dependent

TABLE VI. Product decomposition table of IRs of Td group.
The suffix [·]A and {·}S refer to anti-symmetrized and symmetrized
products, respectively.

Direct product Direct sum No. of �5

�8 ⊗ �8 [�1 ⊕ �3 ⊕ �5]A ⊕ {�2 ⊕ 2�4 ⊕ �5}S 2
�8 ⊗ �7 �3 ⊕ �4 ⊕ �5 1
�8 ⊗ �6 �3 ⊕ �4 ⊕ �5 1
�7 ⊗ �7 [�1]A ⊕ {�4}S 0
�7 ⊗ �6 �2 ⊕ �5 1
�6 ⊗ �6 [�1]A ⊕ {�4}S 0

on each other and the following can be chosen as the two linear
independent matrices:

Aμ,1
�8,�8

= Aμ,1
�+

8 ,�−
8
T T

�8
+ T ∗

�8
Aμ,1

�−
8 ,�+

8
, (28)

Aμ,2
�8,�8

= Aμ,1
�+

8 ,�−
8
T T

�8
− T ∗

�8
Aμ,1

�−
8 ,�+

8
. (29)

Thus the k · π perturbation matrix between states in the �8

IRs is given by

K�8,�8 (ξ1,ξ2) = h̄

m0

∑
μ

kμ

(
ξ1Aμ,1

�8,�8
+ ξ2Aμ,2

�8,�8

)

= h̄

m0
ξ1

⎛
⎜⎜⎜⎝

0 k+ kz 0

−k− 0 0 kz

−kz 0 0 −k+
0 −kz k− 0

⎞
⎟⎟⎟⎠

+ h̄

m0
ξ2

⎛
⎜⎜⎝

0 k+ −2kz

√
3k−

k− 0 −√
3k+ 2kz

−2kz −√
3k− 0 k+√

3k+ 2kz k− 0

⎞
⎟⎟⎠ ,

(30a)

where a factor “i” from the unitary transformation matrix
T�8 is absorbed in the coefficient ξ1,2 making them purely
imaginary. It can be shown that the first matrix is associated
with symmetric products of the basis states in �8, whereas
the second is associated with the antisymmetric products.
Similarly, the interactions between states of other IRs are
derived from Eqs. (10a), (10b), and (10c) and given by

K�6:�7 = K�+
6 :�−

6
, (30b)

K�6:�8 = K�−
7 :�+

8
, (30c)

K�7:�8 = K�−
6 :�+

8
. (30d)

Given the time-reversal requirement on the basis functions,
the scaling constants ξ for the k · π interactions are purely
imaginary between states of �8 IRs, purely real between states
of �6 : �7, and complex between states of �8 : �7 and �8 :
�6. With the exceptions of �6 : �6 and �7 : �7, these direct
interaction terms are permitted by symmetry between states of
any IRs, including those which would be forbidden in crystals
with diamond lattice (e.g., between �8 and �7 in valence band).
However, in places where it was forbidden in crystals with
diamond lattice, such interaction would be controlled by the
ionicity of the bond.

Intraband first-order interactions are subject to
time-reversal symmetry constraints in addition to spatial
symmetry.31,33 Since the perturbation operator π is
time-reversal odd, such interaction is described by one linearly
independent matrix as there is one �5 in the decomposition of
symmetrized products of �8 ⊗ �8. Time-reversal symmetry
requires the intraband perturbation interaction matrix (K intra

�8:�8
)

to be Hermitian. In the literature, the second matrix in
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Eq. (30a) is chosen from theory of invariants8 or perturbation
theory4,28 and assumed to fulfill this requirement. However,
the imaginary nature of the scaling constants make this choice
incorrect. The first matrix in Eq. (30a) is, in fact, Hermitian
when the imaginary scaling constant is taken into account and
it is associated with symmetric products of the basis states.
Therefore,

K intra
�8:�8

= h̄

m0
ξ1

⎛
⎜⎜⎝

0 k+ kz 0
−k− 0 0 kz

−kz 0 0 −k+
0 −kz k− 0

⎞
⎟⎟⎠ , (31)

where the scaling constant ξ1 is imaginary. This correct choice
is also reflected from the derivation of single-group result
shown in Appendix E. This term does not lift the Kramer’s
degeneracy as one may expect. The dispersion from this
linear term will yield an isotropic contribution to the energy
of both light- and heavy-hole states which is proportional
to k. This has a corresponding impact on the density of
states and position of valence band maximum. Dresselhaus
effect4, previously attributed to the linear k term, must have
its origin in higher-order perturbations49 involving the third
power of components of wave vector k, where constituent
interband interactions are not subject to time-reversal
constraints.50

Generators can be obtained through the theory of invariants
in the same way as for a diamond lattice, provided the correct
compatibility relations are followed and an appropriate unitary
transformation is made to the odd basis of �−

8 IR of the Oh

group for use in the �8 IR of the Td group. While the IRs
in the Td group do not have defined spatial parity, the
generating operator employed here and the standard basis
function derived from the Oh group all have well-defined
parity. Therefore, parity selection rules must be applied in
matrix calculations. In addition, the admission of a linear
combination of even and odd bases must be considered and the
parity of the generating operator and irreducible perturbation
must be the same. The selection rules derived from the direct
product decomposition in Table VI shows that Löwdin terms
can now exist between any IRs, while the linear k terms are
now present between any IRs except �6 : �6 and �7 : �7. The
generators for linear k terms are those Aμ matrices obtained
in the previous paragraphs while observing the time-reversal
symmetry requirement in the intraband block. The generator
for quadratic k terms are obtained from basis of the same
parity as determined by the parity of generating operators.
This leaves the form of the Löwdin terms exactly the same as
those in the diamond lattice (i.e., ignore the parity, for example,
L�8,�7 = L�+

8 ,�+
7

= L�−
8 ,�−

7
).

X. SYMMETRY OF CONDUCTION BAND STATE
AT THE � POINT

In Sec. II, new zone-center symmetry assignments of �−
6

and �7 were proposed for the conduction band states of Ge and
GaAs. This stems from the use of a one-electron wave function
of hybridized sp3 or spd orbitals as atomic site wave functions
rather than the use of atomic s and p orbitals. This differs
from the current accepted view in the literature established

in the late 1950s and early 1960s.2,4,51–53 The currently
accepted view can be traced to energy assignments made using
single-group states in the unpublished work of Herman cited in
Ref. 2. The determinations of conduction band state symmetry
were made from ample experimental data on the polarization
dependence of optical transitions between states at the zone
center. The extraction of symmetry properties of states from
optical data relies on selection rules formulated for the relevant
states.

In deriving the selection rules, momentum matrix elements
between the valence band and conduction band states are
evaluated. The polarization dependence of the transitions
involving the heavy holes, obtained from Fermi’s Golden Rule,
exhibits different behavior from those transitions involving the
light holes. The angular dependence of these matrix elements
are just the Aμ

�+
8 ,�−

6
and Aμ

�+
8 ,�−

7
matrices depending on the

symmetry of the conduction band state. As the basis used in the
literature to establish selection rules have j � 3/2, they cannot
transform according to �−

7 , and any conclusion drawn must be
flawed. Closer examination of the two matrices Az

�+
8 ,�−

6
and

Az

�+
8 ,�−

7
indicates that when an electric field is polarized in the

z direction, transitions from the heavy hole to �−
7 IR are

allowed, whereas these transitions to �−
6 IR are forbidden.

As the latter reflects experimental evidence based on absorp-
tion measurements in quantum wells54 and electroreflectance
measurement from Ge under uniaxial stress,55 it is clear
that the conduction band state at the � point in Ge has the
�−

6 symmetry originating from spin-split-off band from the
antibonding (sp3)∗ orbital.

The symmetry of conduction band state in compound
semiconductors was also identified incorrectly in the literature.
Provided the odd basis of �8 is obtained correctly through a
unitary transformation of the basis from �−

8 in the Oh group,
the A matrices are as described in Sec. IX. Again, experimental
measurements56 indicate that transistions involving heavy
holes are forbidden when the electric field is polarized in the
z direction, meaning the conduction band state must have �7

symmetry originating from the spin-split-off band from the
antibonding (sp3)∗ orbital.

The change in symmetry assignment of the lowest zone-
center conduction band states should have a major impact on
topics ranging from interpretation of data on the nonparabol-
icity of the conduction band,18 to calculation of scattering rate
or relaxation time, which are dependent on the nature of the
spatial part of the wave function.57

XI. COMPARISON OF SINGLE- AND DOUBLE-GROUP
FORMULATION

Group theoretical methods indicate that interactions be-
tween states of different IRs can always be described by
linearly independent matrices and corresponding scaling
constants. This is true for both single-group and double-
group formulations. In single-group formulation applied to
single-group basis, interactions between states of any pair of
IRs can always be described by one single matrix and its
corresponding scaling constant. In application of single-group
formulation to the adapted double-group basis, the incor-
poration of spin as an extra degree of freedom does not
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alter the interaction between the single-group basis states.
Thus, there should be only one matrix and one scaling
constant describing interactions between states of the adapted
double-group basis. This is achieved by restricting the adapted
double-group basis to one single-group parent. In contrast,
group theoretical methods show that the interaction between
states of �±

8 (�8) IRs in crystals of diamond (zincblende)
lattice, require two linearly independence matrices and two
scaling constants under the more general double-group for-
mulation of the present work. It reflects the fact that basis of
�±

8 (�8) IR may be constructed from direct product of spinor
states with a linear combination of single-group bases from
�+

5 ,�−
4 (�5); �+

4 ,�−
5 (�4) or �±

3 (�3) IRs. This constitutes the
main difference between the two formulations from a group
theoretical perspective. Furthermore, this differentiates the
two formulations in terms of their applicability to physical
systems, which is discussed below after a brief outline of
results of the single-group formulation not available in the
literature.

It is informative to see the form of these interaction
matrices obtained under single-group formulation applied to
the adapted double-group basis and to make comparisons
with the results of the double-group formulation shown in
Eqs. (10d) and (30a) for both types of crystals. Historically,
such interaction matrices have been given in terms of bases of
real spherical harmonics16 or of the direct product between
these real spherical harmonics and spinor states.10,58 The
adapted double-group basis can be generated from these real
spherical harmonics using method of Cracknell,59 though
care should be taken to ensure the order of the basis is in
agreement with the representation matrices. In the case of Td

group for crystals with zincblende lattice, appropriate unitary
transformation such as those described by Eq. (27) must be
applied to the bases of �−

8 and �−
3 of the Oh group before

they can be used as bases of �8 and �3. In the literature, the
form of these matrices referring to time-reversal compliant
adapted double-group basis are only available for interactions
between states of �8 IR originating from basis �5 single-group
IR.18,20,21 We obtain all the matrices between states of �±

8
(�8) derived from �−

4 ,�+
5 ,(�5),�−

3 ,�+
3 ,(�3) for crystals with

diamond (zincblende) lattice in Appendix E. For crystals with
diamond lattice, these are

K�−
8 (�−

4 ),�+
8 (�+

5 ) = h̄

m0
ξ

⎛
⎜⎜⎝

kz 0 0 k+
0 −kz k− 0
0 k+ kz 0
k− 0 0 −kz

⎞
⎟⎟⎠ , (32)

K�−
8 (�−

4 ),�+
8 (�+

3 ) = h̄

m0
ξ

⎛
⎜⎜⎜⎝

0
√

3k− 0 −3k+√
3k+ 4kz −k− 0

0 −k+ −4kz

√
3k−

−3k− 0
√

3k+ 0

⎞
⎟⎟⎟⎠ ,

(33)

where the scaling constants are all real. It is not clear that
the difference between these for crystal with diamond lattice
and the ones below for crystals with zincblende lattice is

appreciated in previous works. For crystals with zincblende
lattice, the form of interaction matrices are

K�8(�5),�8(�5) = h̄

m0
ξ

⎛
⎜⎜⎜⎝

0 k+ kz 0

−k− 0 0 kz

−kz 0 0 −k+
0 −kz k− 0

⎞
⎟⎟⎟⎠ , (34)

K�8(�5),�8(�3) = h̄

m0
ξ

⎛
⎜⎜⎜⎜⎝

0 −k+ −4kz

√
3k−

3k− 0 −√
3k+ 0

0 −√
3k− 0 3k+√

3k+ 4kz −k− 0

⎞
⎟⎟⎟⎟⎠ ,

(35)

where the scaling constants are all purely imaginary.
It is now appropriate to comment on the difference between

the single-group formulation applied to adapted double-group
basis and the general double formulation of the present work.
The interaction matrices shown in Eqs. (32) and (33) can
all be obtained by removing the independence of the two
scaling constants in Eq. (10d). Conversely, the two matrices
in Eqs. (32) and (33) can serve equally as the two linearly
independent matrices in the general double-group formulation
replacing the two in Eq. (10d). The restriction to a single
interaction matrix under the single-group formulation, applied
to adapted double-group basis, is brought about by restriction
of the double-group basis to those that can be derived from its
sole single-group parent. Thus, the single-group formulation
is not capable of describing interaction between a general
double-group basis, which may be derived from a mixture
of �+

5 and �+
3 basis.

The question to be asked is whether the zone-center
�±

8 basis states contain a mixture of characters of �+
5 ,�+

3
and �−

4 ,�−
3 parents or p and d characters. Clearly, such

a situation is ruled out by default if one chooses to use
atomic orbitals to represent the atomic site wave function.
Therefore, the single-group formulation applied to adapted
double-group basis is naturally associated with the use of
atomic orbitals to describe atomic site wave functions. Under
general double-group formulation, while retaining the atomic
orbital description of atomic site wave functions, some degree
of mixing of zone-center states by the spin-orbit interaction
Hs

so1 is present. However, the energy separation between
states of the antibonding �−

3 and bonding �+
5 is large, and

any mixing would be small. Thus, the only way d character
can be introduced to the energy eigenstate away from the
zone center is when a d state is included in the near set
and mixing is provided by the k · p perturbation. This is
not an effective way of taking into account the effect of
d orbitals, particularly in the valence band near the zone
center.

For covalent bonding in tetrahedral geometry, it is natural
to think of many electron configuration or hybridized orbitals.
The spd hybridized orbitals are both feasible60 and suggested
by tight-binding calculations.61 Within the k · p method,
this will introduce the effect of d character directly in the
one-electron zone-center states in the valence band. This
mechanism of mixing of states is a many-electron effect
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and differs from those that may have arisen from spin-orbit
interaction based on one-electron theory. Thus, the zone-center
states in the �±

8 IR may generally be derived from a mixture
of �+

5 ,�+
3 for bonding states and �−

4 ,�−
3 for antibonding

states. Single-group formulation would not be able to provide
adequate description of interactions between these states. The
general double-group formulation of the present work becomes
essential.

The perturbation-theory-based double-group formulation
(see Secs. IV and V) is free from the constraint placed on
its double-group basis by the single-group formulation and
therefore may be compared generally with the results of
method of invariant. The single-group formulation applied to
adapted double-group basis may only be compared with the
results of method of invariants if the restriction on the basis is
taken into account.

XII. SUMMARY

This paper develops the k · p theory from the double-group
perspective and considers a change of paradigm in dealing with
atomic site wave functions. The atomic site wave functions
are better described by the sp3 or spd hybridized orbitals
derived from many-electron configuration, compared with the
atomic orbitals, s, p, and d. The double-group representation
of hybridized orbitals requires the general approach of double-
group formulation. In particular, the effect of d and/or f

orbitals may be easily incorporated in the valence band
by the double-group formulation. In contrast, single-group
formulation with its zone-center energy eigenfunction in �±

8
IR derived from the basis of single-group IR cannot adequately
represent the zone-center energy eigenfunctions in a real
crystal where contribution from d or higher orbitals in the
atomic site wave function cannot be neglected. A consequence
of adopting hybridized atomic orbitals is a change of symmetry
and origin of the lowest conduction band zone-center states.
With correct use of basis functions for the �−

7 IRs, the selection
rules obtained are in agreement with polarization dependence
of optical absorption data confirming that such states have
�−

6 symmetry in crystals with diamond lattice originating
from the spin-split-off from the anti-bonding triplet states.
Previous interpretations of the same data and symmetry as-
signment were based on selection rules obtained from incorrect
bases.

The double-group formulation developed from perturbation
theory is shown to be in full agreement with method of
invariants. The approach we have adopted in method of
invariant differs from those in the literature in the way
in which the generator matrices are obtained. Irreducible
spherical tensor operators, with the correct transformation
properties as the irreducible perturbations, are identified.
Then linearly independent generator matrices are obtained
using standard basis functions instead of using products
of components of the angular momentum operator. Where
more than one linearly independent generator is required,
as deemed necessary by symmetry, multiple sets of standard
basis functions are used to enumerate the required generator
matrices. Departure from the spatially even angular momen-
tum operator enables first-order interaction matrices to be
produced directly. The results of the method of invariants can

be compared with perturbation theory under the double-group
consideration. Comparison with single-group formulation can
be made if the restriction of basis of �±

8 (�8) is taken into
account.

The development of the double-group formulation for
crystals with zincblende lattice is a natural extension of the
results for crystals with diamond lattice under the compatibility
relation between the Td and Oh groups. A unitary transforma-
tion of the odd basis of �−

8 of the Oh group is shown to be
required before they can be used in the corresponding �8 IR
of the Td group under the compatibility relation. This unitary
transformation, together with use of correct basis functions,
lead to similar change in the symmetry of the conduction
band zone-center states. In this case, it has �7 symmetry
originating from the spin-split-off from the antibonding triplet
states.

The time-reversal requirement, as detailed at end of Sec. IV,
places specific phase relationships between spatially even and
odd standard basis functions. This leads to fixed type (real,
imaginary, or complex) of scaling constants for first-order
k · p interactions depending on the type of crystal lattice
and relevant IRs. Thus, the intraband first-order interaction
involving the k · [σ × ∇V (r)] and k · p between states in the
same �8 IR both pickup the same first matrix in Eq. (30a), in
contrast to findings in the literature. This contribution does not
lift the Kramer’s degeneracy.

Operator ordering in envelope function theory under the
double-group formulation introduces additional coupling be-
tween the heavy-hole states due to symmetry breaking at
interfaces. In addition, the change in the form of interband
Hamiltonian and symmetry of conduction band zone-center
states are also expected to lead to differences compared with
single-group formulation in correctly operator ordered form
or symmetrized form.

The formulation developed in the present work has no
practical impact on the four-band model describing degenerate
valence band states in crystals with diamond lattice, as
shown in Sec. V. The main distinction between single- and
double-group formulation, the interaction between states in
the �±

8 IRs, is treated under Löwdin interaction. While the
double-group formulation gives a different component form
of the Hamiltonian [the five matrices in Eq. (17)] compared
to that seen with single-group, each individual term and the
sum of all terms remain compliant with results of method
of invariant. Since these invariants, as fitting parameters, are
obtained from experiment, there is no practical difference
between the two approaches. In crystals with zincblende
lattice, additional intraband linear k terms are allowed and they
have a form different from those identified by Dressulhaus4 or
Kane.28 However, they do not lift the Kramer’s degeneracy. In
a six-band model including the valence band and spin-split-off
bands, the formulation gives different results than those in the
literature. This is primarily due to use of an incorrect basis
for the �+

7 IR in the calculation of the interaction matrix in
the literature, which led to an incorrect form of the interband
block, but the invariants γ ′

2 and γ ′
3 in this block are also

different from the valence band block due to different form of
material parameter and selection rules. For the same reason, the
invariant parameter γ ′

1 (effective mass) of the spin-orbit band is
also different. These differences in the form of interband block
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are not dependent on single- or double-group approaches.
In an eight-band model with the addition of the conduction
band, there is no further “practical” difference beyond what
already existed in the six-band model though direct interaction
between the lowest conduction band state [�−

6 (�7)] and spin-
split-off band in the valence band [�+

7 (�7)] is now forbidden.
However, the symmetry assignment of the conduction band
states is now different. The form of interaction matrix between
conduction band and valence band states in the literature
was “accidentally” correct because the erroneous symmetry
assignment of conduction band states is coupled with the use
of an incorrect basis of �−

7 (diamond) or �8 (zincblende)
when calculating interaction matrix. The scaling constant for
first-order interaction between valence band and conduction
band is complex in the case of crystals with zincblende lattice.
Again, these is not dependent on the single- or double-group
approach. In fourteen-band models and beyond, where states
belonging to �−

8 (�8) and �−
6 (�7) are all included in the near

set, the interaction between �±
8 (�8) may have been treated

incorrectly using adaption of single-group formulation in the
literature due to the use of incorrect interaction matrices and
the lack of ability to treat the effect of d orbitals in the
valence band under single-group consideration. A fundamental
change in these multiband models, as detailed earlier in this
publication, is required. With very few exceptions, the form
of the Hamiltonian in fourteen-band models and beyond may
have been assumed to be the same for crystals with diamond
and zincblende lattice. It is clear from earlier sections that
this is not true for single- or double-group formulations, both
in terms of the form of direct interaction matrices and the
complex nature in the scaling constants in the case of crystals
with zincblende lattice.

While the change of atomic orbitals to hybridized orbitals
as atomic site wave function is the most significant difference
in underlying physics, the impact of the present work is largely
restricted to multiband models where states from more than
one �±

8 (�8) IRs are included in the near set. The correction
to current formulation in the literature due to use of incorrect
basis will have the most practical implication on most
implementations currently used. The change in the symmetry
in conduction band edge state means any calculation which
makes use of the �−

7 (�6) symmetry of the spatial part of
the wave function in diamond (zincblende) crystal will need
re-evaluation. These are numerous and include scattering rate/
relaxation time calculations for both bulk materials and
heterostructures and dispersion of valence band away from
zone center.
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APPENDIX A: CHARACTER TABLE OF THE DOUBLE
GROUPS Oh AND Td

APPENDIX B: SOME STANDARD BASIS FUNCTIONS FOR
IRS OF THE Oh GROUP

TABLE VII. Character table of the double Oh group arranged as Td ⊗ i. The number of elements in each class is listed in the second row.
Classes labeled with ∗ contain the glide operation. The rows of the table have been arranged to reflect the compatibility relations between
the Oh and the Td groups. The character table of the Td group is just the top left quadrant of the table if one ignores the parity labels of the
representations.

{E} { C2

C2
} {S4} { σd

σd
} {C3} {E} {S4} {C3} {i∗} { σ ∗

h

σ ∗
h

} {C∗
4} { C ′∗

2

C ′∗
2

} {S∗
6} {i∗} {C∗

4} {S∗
6}

Koster BSW Mulliken 1 3/3 6 6/6 8 1 6 8 1 3/3 6 6/6 8 1 6 8

�+
1 �1 A

g

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
�+

2 �2 A
g

2 1 1 −1 −1 1 1 −1 1 1 1 −1 −1 1 1 −1 1
�+

3 �12 Eg 2 2 0 0 −1 2 0 −1 2 2 0 0 −1 2 0 −1
�+

4 �15′ T
g

1 3 −1 1 −1 0 3 1 0 3 −1 1 −1 0 3 1 0
�+

5 �25′ T
g

2 3 −1 −1 1 0 3 −1 0 3 −1 −1 1 0 3 −1 0

�+
6 �6 E′g 2 0

√
2 0 1 −2 −√

2 −1 2 0
√

2 0 1 −2 −√
2 −1

�+
7 �7 E′′g 2 0 −√

2 0 1 −2
√

2 −1 2 0 −√
2 0 1 −2

√
2 −1

�+
8 �8 Gg 4 0 0 0 −1 −4 0 1 4 0 0 0 −1 −4 0 1

�−
2 �2′ Au

2 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
�−

1 �1′ Au
1 1 1 −1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1 −1

�−
3 �12′ Eu 2 2 0 0 −1 2 0 −1 −2 −2 0 0 1 −2 0 1

�−
5 �25 T u

2 3 −1 1 −1 0 3 1 0 −3 1 −1 1 0 −3 −1 0
�−

4 �15 T u
1 3 −1 −1 1 0 3 −1 0 −3 1 1 −1 0 −3 1 0

�−
7 �7′ E′′u 2 0

√
2 0 1 −2 −√

2 −1 −2 0 −√
2 0 −1 2

√
2 1

�−
6 �6′ E′g 2 0 −√

2 0 1 −2
√

2 −1 −2 0
√

2 0 −1 2 −√
2 1

�−
8 �8′ Gu 4 0 0 0 −1 −4 0 1 −4 0 0 0 1 4 0 −1
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APPENDIX C: Aμ

αu,αv MATRICES FOR REPRESENTATIONS IN THE DOUBLE GROUP Oh

The angular parts of the components of the p matrix between states of each of the IRs are basis independent and are calculated
using the method described in Sec. II and Eq. (8c). They are listed below:
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APPENDIX D: EIGHT-BAND HAMILTONIAN

The eight-band Hamiltonian is given below in Table IX. The
Löwdin terms (L) are given in terms of Luttinger parameters
and linear k terms (K) are given explicitly. The Luttinger
parameters for each block are different in general. The same
results are obtained from both perturbation theory and method
of invariant. While the Löwdin term between �+

6 and �+
8 does

not occur in the eight-band model, it is given for comparison, as
it is the one used incorrectly in place of L�+

7 ,�+
8

in the literature.
Entries in the Hamiltonian for the zincblende crystal are given
inside a bracket. When there is no corresponding entry in
the diamond lattice (L or K), the term for the zincblende
lattice is weak and dependent on the ionicity of the chemical
bond.

Example of odd basis (j = 3/2,l = 1) and even basis
(j = 3/2,l = 2) of the �8 IR in the Td group (after unitary
transformation from basis of Oh group) given in the |j,mj 〉
basis. The superscript O and E indicate that the |j,mj 〉 are
derived from odd and even orbital angular momentum state.
They, or a linear combination of them, satisfy the time-reversal
requirement of Eq. (2):

odd
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(D1)

TABLE IX. Eight band Hamiltonian in block form indexed by IRs of the relevant states. Entries for crystals with zincblende lattice are
given in parenthesis.

CB �−
6 (�7) VB �+

8 (�8) SO �+
7 (�7)

CB �−
6 (�7) −L�−

6 ,�−
6

+ Eg · 1 (−L�7,�7 + Eg · 1) K�−
6 ,�+

8
(L�7,�8 + K�7,�8 ) 0 (L�7,�7 )

VB �+
8 (�8) K�+

8 ,�−
6

(L�8,�7 + K�8,�7 ) L�+
8 ,�+

8
(L�8,�8 + K�8,�8 ) L�+

8 ,�+
7

(L�8,�7 + K�8,�7 )
SO �+

7 (�7) 0 (L�7,�7 ) L�+
7 ,�+

8
(L�7,�8 + K�7,�8 ) L�+

7 ,�+
7

+ � · 1 (L�7,�7 + � · 1)
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Direct interactions (K terms) can be found in Eqs. (10a),
(10b), (10c), and (10d) for crystals with diamond lattice and

Eqs. (30b), (30c), (30d), and (30a) for crystals with zincblende
lattice. Löwdin interactions are given below:

L�−
6 ,�−

6
(γ1) = L�+

7 ,�+
7

(γ1) = L�7,�7 (γ1) = − h̄2

2m0

(
P 0

0 P

)
, (D2)

L�+
6 ,�+

7
(γ3) = L�−

6 ,�−
7

(γ3) = L�6,�7 (γ3) = − h̄2

2m0

(
−2

√
3iγ3kxky −S∗

−S 2
√

3iγ3kxky

)
, (D3)

L�+
7 ,�+

8
(γ2,γ3) = L�7,�8 (γ2,γ3) = − h̄2

2m0

⎛
⎝
√

3
2S

√
2R 1√

2
S∗ −√

2Q
√

2Q 1√
2
S −√

2R∗
√

3
2S∗

⎞
⎠ , (D4)

L�+
6 ,�+

8
(γ2,γ3) = L�6,�8 (γ2,γ3) = − h̄2

2m0

⎛
⎝− 1√

2
S∗ −√

2Q

√
3
2S −√

2R
√

2R∗
√

3
2S∗ √

2Q − 1√
2
S

⎞
⎠ , (D5)

LIntra
�+

8 ,�+
8

(γ1,γ2,γ3) = LIntra
�8,�8

(γ1,γ2,γ3) = − h̄2

2m0

⎛
⎜⎜⎜⎝

P + Q −S R 0

−S∗ P − Q 0 R

R∗ 0 P − Q S

0 R∗ S∗ P + Q

⎞
⎟⎟⎟⎠ , (D6)

LInter
�8,�8

(γ1,γ2,γ3,γ
′
3) = LIntra

�8,�8
(γ1,γ2,γ3) − h̄2

2m0
γ ′

3

⎛
⎜⎜⎜⎝

0 0 −3ikxky 6k+kz

4
√

3k+kz 0 6k−kz ikxky

−ikxky −6k+kz 0 −4
√

3k−kz

−6k−kz 3ikxky 0 0

⎞
⎟⎟⎟⎠ , (D7)

where k± = kx ± iky, k2
‖ = k2

x + k2
y, k2 = k2

x + k2
y + k2

z ,

P = γ1k
2, Q = γ2(k2

‖ − 2k2
z ), S = 2

√
3γ3k−kz, and R =

−√
3γ k2

− + √
3μk2

+. A linear combination of �+
5 generators

in Table IV was used to obtain the last matrix of Eq. (D7).

APPENDIX E: FIRST-ORDER k · p INTERACTIONS IN
SINGLE-GROUP FORMULATION FOR SINGLE-GROUP

REAL HARMONIC BASIS AND ADAPTED
DOUBLE-GROUP BASIS

Group theoretical methods show that the first-order k · p
interaction between basis states of any IRs under single-group
formulation, can be described by one matrix and one scaling
constant. Therefore, the matrix can be obtained from a given
set of bases belonging to the relevant IRs. First, we consider
the real spherical harmonic basis of the Oh group, which is
generally available in the literature.62–64,65 Referring to the real
spherical harmonic basis of {1}(�+

1 ), {xyz}(�−
2 ), {x,y,z}(�−

4 ),
{yz,zx,xy}(�+

5 ), {yz(6x2 − y2 − z2), zx(6y2 − z2 − x2),
xy(6z2 − x2 − y2)}(�+

5 ), {(2z2 − x2 − y2)/
√

3, x2 − y2}(�+
3 ),

and {xyz(x2 − y2), xyz(x2 + y2 − 2z2)/
√

3}(�−
3 ), the first-

order k · p interaction matrix can be evaluated using the
Wigner-Eckart theorem and most have been given in the
literature:9,10,58

KR
�+

5 :�−
2

= KR
�−

4 :�+
1

= h̄

m0
ξ

⎛
⎝ kx

ky

kz

⎞
⎠, (E1a)

KR
�−

4 :�+
5

= KR
�+

5 :�−
4

= h̄

m0
ξ

⎛
⎜⎝

0 kz ky

kz 0 kx

ky kx 0

⎞
⎟⎠, (E1b)

KR
�−

4 :�+
3

= h̄

m0
ξ

⎛
⎜⎝

−kx

√
3kx

−ky −√
3ky

2kz 0

⎞
⎟⎠, (E1c)

KR
�+

5 :�−
3

= h̄

m0
ξ

⎛
⎜⎝

√
3kx kx

−√
3ky ky

0 −2kz

⎞
⎟⎠, (E1d)

where the superscript R indicates the use of real spherical
harmonic basis. In crystals with zincblende lattice, one has
to consider the possibility of zone-center basis functions
containing both even and odd parts. All of the single-group
bases of the Oh group can be mapped across to the compatible
IRs of the Td group (see Table V), with the exception of
the basis of �−

3 IR. A unitary transformation is required
(see Sec. IX for details) on the basis of �−

3 to ensure the
representation matrices are the same for all elements common
to the Oh and Td groups.66 Therefore, even and odd bases of
�5 and an even basis of �3 are obtained from �+

5 , �−
4 and �+

3 ,
respectively, whereas the odd basis of �3 is given by the basis
of �−

3 transformed by

T�3 =
(

0 −1
1 0

)
. (E2)
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The interaction matrix between �5 : �5 and �5 : �3 IRs is
given by

KR
�5,�5

(ξ ) = K�−
4 ,�+

5
(ξ1) + K�+

5 ,�−
4

(ξ2), (E3a)

KR
�5,�3

(ξ ) = K�−
4 ,�+

3
(ξ1) + K�+

5 ,�−
3

(ξ2) · T T
�3

. (E3b)

Since the matrices KR
�−

4 ,�+
5

and KR
�+

5 ,�−
4

, and KR
�−

4 ,�+
3

and

KR
�+

5 ,�−
3

· T T
�3

have the same form, both sets can be combined to

give single matrix and scaling constants as required by group
theory:

KR
�5,�5

(ξ ) = KR
�−

4 ,�+
5

(ξ ), ξ = ξ1 + ξ2, (E4a)

KR
�5,�3

(ξ ) = KR
�−

4 ,�+
3

(ξ ), ξ = ξ1 + ξ2. (E4b)

All of the scaling constants in Eqs. (E1), (E3), and (E4) remain
purely imaginary. Performing a direct product between single-
group and spinor states, the interaction matrices are in block
diagonal form with the single-group result occurring twice
along the main diagonal.

Several comments can now be made on differences between
interaction matrices derived in single-group formulation using
the single-group basis here and those derived in the literature.
The difference between KR

�+
5 :�−

3
and KR

�−
4 :�+

3
is not due to con-

vention but governed by the relevant representation matrices. It
is also necessary to ensure the interaction between the �5 and
the �3 under the Td group is described by a single matrix
as required by group theory under compatibility relations.
This may not have been realized in previous work,10,16,58

where KR
�−

4 :�+
3

is used in place of KR
�+

5 :�−
3

(use of basis for

�+
3 in place of �−

3 ). With regard to selection rules of the
first-order interaction matrices, the presence of kz indicates
a nonzero z component momentum matrix (pz) element
between the relevant states. Therefore, pz can only couple basis
states between xy[�+

5 (�5)] and xyz[�−
2 (�1)] or z[�−

4 (�5)]
and 1[�+

1 (�1)] for interactions between �+
5 : �−

2 (�5 : �1) or
�−

4 : �+
1 (�5 : �1). As the xy (z and xy) basis only occurs in

the heavy-hole states of the adapted double-group basis of
crystals with diamond (zincblende) lattice, light polarized in
the z direction can only couple heavy hole to the �−

2 (�1)
conduction band state, contrary to experimental evidence for
transition to the lowest conduction band state at zone center.
Therefore, the symmetry of the lowest conduction band state
is the �−

4 (�5) in crystals with diamond (zincblende) lattice.
The same conclusion was obtained using selection rules based
on general double-group formulation in Sec. X. The adapted
double-group basis can be obtained from the real spherical
harmonic basis of the single group by following the method
of Cracknell,59 or more simply through inspection of the last
column of the standard group basis of �±

8 listed in Appendix B.
After appropriate normalization, we have

φi

�−
8

(x,y,z : �−
4 ) = φi

�−
8

(j = 3/2), (E5)

φi

�+
8

(yz,zx,xy : �+
5 )

=
√

3

5
φi

�+
8

(j = 3/2) +
√

2

5
φi

�+
8

(j = 5/2), (E6)

φi

�+
8

({x2 − y2, (2z2 − x2 − y2)/
√

3} : �+
3 )

=
√

2

5
φi

�+
8

(j = 3/2) −
√

3

5
φi

�+
8

(j = 5/2). (E7)

Once the adapted double-group basis functions are known in
terms of real spherical harmonics, or standard basis functions
as above, the interaction matrices can either be obtained by a
transformation from known single-group results or calculated
using the Winger-Eckart theorem described in Sec. V. An
additional factor of 3 weighting for interaction between j =
3/2 : j = 5/2 compared to j = 3/2 : j = 3/2 interaction is
required to account for the difference in reduced tensor
elements 〈3/2‖p‖3/2〉 and 〈3/2‖p‖5/2〉. The k · p interaction
matrix between states of �±

8 IRs derived from single-group
bases (single-group IRs are indicated within brackets) are
given by

K�−
8 (�−

4 ),�+
8 (�+

5 ) = h̄

m0
ξ1

⎛
⎜⎝

kz 0 0 k+
0 −kz k− 0
0 k+ kz 0
k− 0 0 −kz

⎞
⎟⎠ , (E8)

K�−
8 (�−

4 ),�+
8 (�+

3 ) = h̄

m0
ξ1

⎛
⎜⎜⎝

0
√

3k− 0 −3k+√
3k+ 4kz −k− 0
0 −k+ −4kz

√
3k−

−3k− 0
√

3k+ 0

⎞
⎟⎟⎠ .

(E9)

In the case of zincblende crystals, one has to consider that
zone-center states may contain both even and odd parts of the
basis. The even part of the �8 basis is just given by the basis
of �+

8 , whereas the odd part of the basis is given by the basis
of �−

8 transformed by the matrix T �8 given by Eq. (27). The
interaction matrix is generally given by

K�8(�5),�8(�5)(ξ ) = T ∗
�8

· K�−
8 (�−

4 ),�+
8 (�+

5 )(ξ1)

+K�+
8 (�+

5 ),�−
8 (�−

4 )(ξ2) · T T
�8

= h̄

m0
ξ

⎛
⎜⎝

0 k+ kz 0
−k− 0 0 kz

−kz 0 0 −k+
0 −kz k− 0

⎞
⎟⎠ ,

(E10)

K�8(�5),�8(�3)(ξ ) = T ∗
�8

K�−
8 (�−

4 ),�+
8 (�+

3 )(ξ
′
1)

+K�+
8 (�+

5 ),�−
8 (�−

3 )(ξ
′
2)T T

�8

= h̄

m0
ξ

⎛
⎜⎜⎝

0 −k+ −4kz

√
3k−

3k− 0 −√
3k+ 0

0 −√
3k− 0 3k+√

3k+ 4kz −k− 0

⎞
⎟⎟⎠ .

(E11)

When using these interaction matrices derived from a single-
group formulation of multiband k · p theory, one must pay
particular attention to the order of the adapted double-group
basis, the single-group parent IR from which the relevant states
originate, the type of crystal, and the possibility of complex
scaling constants when dealing with crystals with a zincblende
lattice.
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