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Global electronic structure of semiconductor alloys through direct large-scale
computations for III-V alloys GaxIn1−xP
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We critically examine two nominally equivalent approaches for treating a random alloy: (1) by using one very
large supercell as a direct simulation of the alloy and (2) by performing configuration averaging over many smaller
supercells; and the common practice using a virtual crystal as the reference for analyzing the alloy band structure
and discussing the electronic transport in the alloy. Specifically, (1) we show that, in practice, the size of the “very
large” supercell depends on the particular property of interest, and the ideal of configuration averaging is only
useful for certain properties. (2) We also examine the assumed equivalency by comparing the results of the two
approaches in band-gap energy, energy fluctuation, and intervalley and intravalley scattering, and conclude that
the two approaches often lead to nonequivalent physics. (3) We use a generalized moment method that is capable
of computing the global electronic structure of a sufficiently large supercell (e.g., ∼260 000 atoms) to obtain the
intrinsic broadening of a �-like electron state caused by the “inelastic” intravalley scattering in a direct-band-gap
semiconductor alloy. (4) We demonstrate an efficient way to construct the effective dispersion curves of the
alloy with high accuracy for calculating effective masses and examining anisotropy and nonparabolicity of the
dispersion curve. (5) Finally, we discuss the limitation of using the virtual-crystal approximation as the reference
for evaluating alloy scattering and studying transport properties.
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I. INTRODUCTION

Disordered alloys have been traditionally treated by ap-
proximate methods such as the virtual-crystal approximation
(VCA) or coherent-potential approximation (CPA).1,2 How-
ever, there could be serious omissions in such approximate
methods. In VCA, for an alloy AxB1−xC, the potentials of
the A and B substitutional atoms are averaged to yield a
simple periodic system over the primitive unit cell. In CPA, the
energy-dependent transfer matrix (t matrix) of atoms A and B
is averaged. Correspondingly, an energy-dependent coherent
potential is introduced in the Hamiltonian, which again makes
the potential periodic over the primitive unit cell, albeit the
resulting Hamiltonian is non-Hermitian. This periodic but non-
Hermitian Hamiltonian gives us a band structure with a finite
width for each band state. However, the multiple scatterings
between A and B have been ignored in such a treatment.

To include all the scattering effects in a straightforward
manner, another approach is to calculate directly a finite dis-
ordered system. One such method is the special quasirandom
structure (SQS) method,3 where a relatively small superlattice
system is constructed to have the atom-atom correlation
functions as close as possible to those in a true random system.
But the SQS method has a major limitation; namely, a SQS
has a well-defined symmetry that has undesirable physical
consequences (for instance, the splitting of the valence band
that is supposed to be degenerate for a random alloy). With
increasing computing power, it has become possible to use very
large supercells to represent a true random alloy. However, in
the past, the use of a very large supercell (on the order of one
million atoms), with the help of a folded-spectrum method,
typically allowed the calculation of only a few states near a
selected energy level, such as the conduction band minimum
or valance band maximum.4

As demonstrated in the current paper, with the help of a
more efficient computational technique, we can now use a
supercell containing a quarter-million atoms (or more) to study
the electronic structure of an alloy for practically any required
spectral range. This opens up a different avenue to investigate
the electronic structure of either totally random or partially
ordered alloys. In random systems, fluctuation and statistical
averaging become the essential theme. The fluctuation in a
finite-size system, which is only available in the supercell
approach, can in principle provide information that can be
compared directly with the result of optical spectroscopy. In
this paper, we will discuss the different statistical approaches
and the meanings of the differently averaged results. We will
also show how the supercell approach can yield the alloy band
structure and band width, and how they are related to the
CPA band structure and the roles of intervalley and intraband
scattering when using the VCA as a reference.

By definition, an alloy does not have translational
symmetry. In principle, we need to deal with a quantum
mechanical system with a large number of atoms in any
macroscopic device involving the alloy. For instance, a
100-nm cube contains >40 million atoms. If one is not
constrained by the computational power, what would be the
appropriate structure size to simulate the electronic structure
of an alloy? Intuitively, two approaches can be used to
solve the quantum mechanical problem of the alloy:1 (1)
constructing and solving one single sufficiently large structure
as representative for the alloy, or (2) constructing many
relatively small-size structures (but still containing many
atoms, much larger than any typical SQS), then solving them
individually followed by configuration averaging.

It is generally believed that these two approaches should
in principle lead to the same results if the “small” size
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system is sufficiently large, because a macroscopically large
crystal may be visualized as composed of many smaller
but different pieces.1 However, such equivalency has never
been rigorously examined. Even though the CPA theory is
generally formulated based on configuration averaging,1,2

because the single-site approximation is typically used in a
real calculation, the result becomes independent of the size and
detail of the configurations. The supercell approach makes it
feasible to directly test these two approaches. However, when
actually implementing either approach, one will encounter a
few practical issues. For instance, what structure size can be
considered as “sufficiently large” to be representative for the
alloy and what size is appropriate to be used as the “small
structure” for the purpose of configuration averaging? If the
size is too small, will the averaged result deviate from that
of the infinitely large supercell result? Does the fluctuation of
the finite-size results have any physical meaning? Perhaps the
two most basic pieces of knowledge regarding the electronic
structure of a semiconductor alloy are its fundamental band
gap and inhomogeneous broadening. Therefore, in this work,
we will examine the two approaches, focusing primarily on
these two basic physical properties. We find that greatly
different supercell sizes are required to address different alloy
problems. For instance, one supercell size that is capable of
yielding a satisfactory accuracy in the band gap might be totally
inadequate or result in misleading information regarding alloy
scattering. Thus, it is neither practical nor necessary to find
one supercell size that suits all purposes. We will therefore
discuss what the appropriate supercell size is for a particular
property of interest.

First, the required supercell size depends on our conver-
gence goal. A reasonable convergence goal for the electronic
structure calculation of the semiconductor alloy is to achieve
the accuracy obtainable by optical spectroscopy that is usually
more accurate than other experimental techniques. For a
semiconductor alloy that is well prepared and characterized
(e.g., the composition is accurately known), the band gap Eg

can be determined by optical spectroscopy with an accuracy
of a few meV for a given composition x; for instance, for the
prototype system GaxIn1−xP to be examined in this work.5

A benchmark test has revealed that, for the alloy GaxIn1−xP,
the band gap converges to about 10 meV or about 1 meV
by configuration averaging over 432-atom supercells or 3456-
atom supercells, respectively, when comparing to the result of
one 27 648-atom supercell.6 In this work, by applying the more
efficient generalized moment method (GMM), we are able to
calculate an even larger supercell with 259 200 atoms and
further confirm the convergence of the configuration average
of the 3456-atom supercell for the band-gap energy.

Note that the use of the GMM does not affect the con-
vergence of a particular material property with respect to the
supercell size but does affect the efficiency to reach the desir-
able accuracy. Therefore, for the purpose of calculating the al-
loy band gap, we have established a guideline for the supercell
size for the two approaches: 3000–4000 atoms for doing the
configuration averaging or around 30 000 atoms for using one
representative configuration. Although this guideline is based
on GaxIn1−xP, it is likely valid for most conventional semicon-
ductor alloys. For a linear scaling method like the GMM or the
folded-spectrum method, the fact that the supercell size differs

by a factor less than 10 for the two approaches suggests that the
configuration-averaging approach does not necessarily require
less computational effort, considering the need to calculate
many configurations (typically 50–100 configurations) for a
small system to provide good statistics.

Second, the required supercell size depends on the specific
alloy property to be studied. For instance, to investigate the
intrinsic spectral broadening of a band-edge alloy state, the
approach of using one very large supercell is necessary,
although the statistical fluctuation of many smaller structures
might have its own physical significance.

In the supercell simulation of the alloy, a practical issue is
the selection of a boundary condition. There are three possible
boundary conditions that can be applied in the calculation: (1)
periodic repetition of the supercell, (2) an isolated supercell in
vacuum, and (3) periodic repetition but with barriers inserted
between the alloy structures. Unfortunately, none of these
are a perfect choice. Option (1) will lead to coupling among
supercell units, option (2) leads to coupling between surface
states, whereas option (3) leads to coupling between the alloy
and barrier material. Option (1) is the easiest to implement,
and one may hope that, with the use of a sufficiently large
supercell, the intersupercell coupling becomes negligible.
There is another potential advantage of choosing (1), that is,
the periodic system allows the use of k points (although in a
very small Brillouin zone for a large supercell). As we will see
later, the dispersion of the supercell can be connected with the
alloy band structure in a seamless fashion for a large supercell.

One can compute directly a number of electronic and
optical properties such as band gap, density of states, and
dielectric functions for a semiconductor alloy without having
to introduce a reference Hamiltonian. However, to understand
the spectral broadening due to the alloy fluctuation and closely
related transport properties, it is useful to introduce a reference
Hamiltonian, typically the VCA, to provide the reference states
free of alloy scatterings.1,2 A spectral function An(k,E) can be
defined as

An(k,E) =
∑

i

|〈ψi |φn,k〉|2δ(E − εi), (1)

where ψi is the alloy eigenstate with energy εi , and φnk

is the VCA wave function at a k point of the primary-cell
Brillouin zone (BZ) with a band index n. This spectral function
describes how a VCA state is decomposed into different alloy
states. In a way it is a k-resolved density of states of the
alloy. If the alloy fluctuation does not introduce any coupling
among the VCA states, the spectral function would be a
single δ function at energy E = E(k) for a given k. For a
disordered system, the finite width of A(k,E) can be related to
the quasiparticle life time. It is very similar to the finite-energy
width in the CPA theory, and also related to the scattering
rate based on the VCA treatment. The spectral width for a
general k point of the VCA band structure, high-symmetry
points of the BZ in particular, will be an important topic to be
discussed in this paper. Note that, in the direct supercell cal-
culation, the spectral width can include both elastic coupling
(among degenerate k points) and inelastic coupling (among
nondegenerate k points). In most CPA and VCA treatments,
only elastic coupling is considered, although second-order
perturbation theory involving nondegenerate states is used to
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explain the band-gap bowing effect based on the VCA. As
a result, the spectral width is simply proportional to ρ(E),
which is the density of states of the unperturbed reference
system (e.g., the VCA system). We will show that, in the full
supercell treatment, this is not generally true.

A number of semiconductor alloys have been previously
investigated for their spectral functions A(k,E). For III-V
alloys with relatively small lattice and chemistry mismatches,
such as AlxGa1−xAs and GaxIn1−xAs, A(k,E) is found to be
very sharp (practically a δ function) by using the CPA or
molecular-CPA theory7,8 in the direct-band-gap composition
region at k = 0 (the � point), because elastic intervalley
scattering is not possible and inelastic intravalley scattering is
very weak for the lowest conduction band state, which explains
why electronic transport in a direct-band-gap alloy usually
does not degrade drastically from a true crystalline structure.
For the indirect-band-gap alloy SixGe1−x , the spectral width of
A(�,E) was found to vary from 1 meV at x = 0.1 to 0.2 eV at x =
0.5. Because the alloy band gaps are indirect, the �-like state is
in resonance with other k points that are degenerate with the �

state, leading to significant intervalley coupling.9 We have re-
cently found that, by a direct calculation using the 27 648-atom
supercell for GaxIn1−xP with x = 0.8 in the indirect-band-gap
region the A(�,E) spectrum barely shows a peak to allow for
the identification of the �-like state in the alloy.10 However, for
x = 0.5 in the direct-band-gap region, the 27 648-atom
supercell is far from adequate to reveal the intrinsic A(�,E)
spectrum because alloy scattering to the � state is very weak.
Very recent extension of a similar analysis to the more strongly
mismatched alloys InxGa1−xN, using the supercell method
with a size up to about 4000 atoms11 has yielded qualitatively
the same observation as for other simpler alloys. By calculating
A(k,E) throughout the BZ, one can construct an effective
band structure for an alloy using a properly defined VCA
reference band structure, which has been done for numerous
semiconductor alloys such as Hg1−xCdxTe,12 SixGe1−x ,9

Ga0.5In0.5As, ZnSe0.5Te0.5,7 and the latest: InxGa1−xN.11 It
turns out that the most challenging task is to accurately
calculate A(�,E) for a direct-band-gap material, which has
never been explicitly calculated using a sufficiently large
supercell but is fundamentally important to understand the
alloying effect.

In this work, we first introduce in Sec. II the generalized
moment method that can evaluate the spectral function
A(k,E) far more efficiently than previously used approaches,
particularly for very large supercells. In Sec. III, we apply this
method to the prototype alloy system GaxIn1−xP to investigate
the intravalley scattering of the � point or the inhomogeneous
broadening of the single electron state (III-A) and to analyze
the inter- and intravalley scattering at the L and X points and
the alloy scattering-induced spectral broadening for the general
alloy states far away from the band edge. We also construct the
effective dispersion curves and calculate the effective masses
of the alloy bands (III-B) for x = 0.5 in the direct-band-
gap region and compare the spectral functions obtained by
configuration averaging with moderate size supercells and one
very large supercell for x = 0.8 in the indirect-band-gap region
(III-C). Furthermore, in Sec. IV, we discuss the limitations of
studying alloy scattering within the VCA framework. Finally,
a summary is given in Sec. V.

II. THEORETICAL METHODS

We use in this work an empirical pseudopotential method
(EPM),13 which has been successfully applied to the study
of the electronic structure of GaxIn1−xP alloys.6,10 The
(reciprocal-space) empirical pseudopotential takes the form
of v(q,ε) = v(q,0)[1 + asTr(ε)], where v(q,0) is the value
for the equilibrium lattice constant, and Tr(ε) is the trace
of the local strain (approximated by the relative change
of the tetrahedron volume).13 The extra term associated
with the strain parameter as offers a significant improvement
over the conventional EPM in the presence of strain and lattice
relaxation. Because the pseudopotentials for the common
P anion are fit separately for GaP and InP and are thus
nonidentical, the P pseudopotential is taken as a weighted
average in a combined system according to the number of
Ga and In atoms on the four nearest-neighbor cation sites to
account for the difference in the local chemical environment.13

The strain term is set to zero for the common anion P
pseudopotentials. The pseudopotentials were obtained by
fitting to experimentally determined or theoretically calculated
electronic properties at their equilibrium conditions. These
properties include energies, deformation potentials, effective
masses at different critical points, and valence-band offsets.
The pseudopotentials can reproduce very well not only the
binary band structures, but also the alloy band structure in the
whole composition range with varying degrees of order.6,14

A plane-wave basis is used to expand the electronic wave
function, with a kinetic-energy cutoff of 7 Ry.

In the supercell calculation, if all the alloy eigenstates {ψi}
need to be calculated to obtain the projection in Eq. (1), the
calculation will be extremely expensive. In that case, one is
either limited to analyze only a few special k points (�, X,
L) while using a large supercell (e.g., ∼30 000 atoms)10,15 or
forced to use smaller supercells (e.g., ∼4000 atoms or below)
to get the full dispersion curves.11 For instance, in our previous
effort studying the band structure of GaxIn1−xP with x = 0.8
using a 27 648-atom supercell, although the �-like state is
located merely ∼0.1 eV above the band edge, A(�,E) spreads
over a large spectral range. Thus, we had to calculate 200
states over a 230-meV spectral range for this large supercell.15

Even with the use of a very efficient computational technique
(i.e., the folded spectrum method16), which allowed us to
compute only the states close to a selected reference energy, the
computation effort was still a major undertaking. Furthermore,
we had to analyze the projections of all 200 computed states
to obtain the spectrum function A(�,E) in the spectral window
of interest, which is also time consuming.

Often, one cannot tell a priori where the peak of A(k,E)
should appear and how many states to calculate, if it is
practically feasible to calculate the required number of states.
In this work, we instead adopt the generalized moment
method to calculate the spectral density function A(k,E).
In this method, we first generate the VCA state φn(k,r)
within the primary cell, and then extend it over the whole
supercell. Note that this procedure works for any arbitrary
k point of the VCA BZ. If the k point is not folded to the
� point of the supercell, then a corresponding k′ point of
the supercell cell BZ needs to be used. Assuming that the
supercell Hamiltonian is H (which has been rescaled, so the
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minimum and maximum eigenenergies are within [−1,1]), we
can generate the following Chebyshev wave functions via a
recursion method:17

φ1 = Hφo, (2)

φj = 2Hφj−1 − φj−2 = Tj (H )φ0, (3)

where φ0 = φnk , and Tj (x) is the Chebyshev polynomial. Now,
we can construct the jth moment:

Ij = 〈φ0|φj 〉
= 〈φnk|Tj (H )|φnk〉 =

∑
i

〈φnk|ψi〉〈ψi |Tj (H )|φnk〉

=
∑

i

Tj (εi)|〈φnk|ψi〉|2. (4)

Using the definition of Eq. (1), we have

Ij =
∫ 1

−1
Tj (E)An(k,E)dE. (5)

This is the Chebyshev moment of the spectral function
An(k,E). With many such moments (up to mth order), we can
reconstruct the spectral function An(k,E) as follows:

An(k,E) = 2

π
(1 − E2)−1/2

∑
j=0,m

Tj (E)Ij (1 + δj,0). (6)

The size of m determines the energy resolution of An(k,E).
That m is a finite number leads to broadening of each of the
δ functions in An(k, E) in Eq. (1) at E = Ei into a Gaussian
function:

f (E′) = exp

[
− (E′ − Ei)2

γ 2

]
, (7)

where γ = 4m−1(Emax − Emin)√
1 − [(Emax − E′)/(Emax − Emin)]2, and Emax and Emin

are, respectively, the maximum and minimum energy of the
full spectrum that the alloy states span. In the language of
optical spectroscopy, the parameter γ determines the spectral
resolution with a full width at half maximum (FWHM)
given by 2γ

√
ln 2, and m determines the step size given by


 = (Emax − Emin)/m, typically about FWHM/6. To resolve
the alloy states of a large supercell, a large m is desirable.
For calculating A(k,E), we used m = 200 000 (FWHM ≈ 2.3
meV) for 27 000-atom supercells, and m = 300 000 (FWHM
≈ 1.5 meV) for the largest supercell of 259 200 atoms, in an
attempt to obtain A(�, E) for the conduction-band band-edge
state at x = 0.5. For large m, Eq. (6) can be carried out via a
fast Fourier transform.17 We note that, in this moment method,
the numerical error is not amplified through the recursive
application of the Hamiltonian, rather a simple accumulation
occurs of the numerical errors from individual iterations.
Even with the use of a large number of moments (e.g., m =
300 000 or larger), because of the use of double precision,
there is no problem with numerical stability and accuracy.

In the configuration-averaging approach, An(k,E) can be
obtained by averaging over many configurations:

Ān(k,E) = 〈An(k,E)〉config. (8)

In this work, we use Eq. (1) for supercell sizes >27 000
atoms and Eq. (8) for 3456-atom supercells by averaging

over 50 randomly generated configurations. In our previous
work,6,10,15 for convenience in studying the CuPt ordering, an
orthorhombic supercell was adopted with three cell vectors
a1, a2, and a3 along the x′ ∼ [112̄], y′ ∼ [1̄10], and z′ ∼
[111] direction of the zinc-blend (ZB) crystal, respectively.
The supercell containing 27 648 atoms has a1 = 12a

√
3/2,

a2 = 12a
√

2, and a3 = 8a
√

3, where a is the lattice constant
of the alloy that is assumed to follow Vegard’s rule with
aGaP = 5.447 Å and aInP = 5.8658 Å. Smaller supercells with
a factor 2 and 4 reduction along all directions are also used
with 3456 and 432 atoms, respectively. In this work, we also
use two cubic supercells—one with a1 = a2 = a3 = 15a or
27 000 atoms and one with a1 = 144a and a2 = a3 = 15a

or 259 200 atoms. A valence force-field method is applied
to relax all the atoms within the supercell to minimize the
strain energy.18 In the supercell, the total number of the cation
atoms is enforced to satisfy the composition x, and they
randomly occupy the corresponding sublattice. Virtual-crystal
calculations are also performed, with the pseudopotential given
by v(q,ε) = xvGaP(q,ε) + (1 − x)vInP(q,ε).

III. RESULTS AND DISCUSSION

A. Intrinsic broadening due to alloying

As pointed out in the introduction, for different purposes
and convergence expectations, different supercell sizes are
required. Figure 1 shows the histogram plots for the band
gaps of disordered Ga0.5In0.5P calculated using two supercell
sizes: Fig. 1(a) for the 432-atom supercell and Fig. 1(b) for
the 3456-atom supercell, each with 100 configurations. When
the size increases from 432 atoms to 3456 atoms, not only
does the energy fluctuation decrease, but the average band
gap increases from 1.971 to 1.980 eV. The latter is very
close to the result of one even larger supercell—27 648 atoms,
1.979 eV.6 Therefore, for the purpose of determining the band
gap, the configuration averaging using the 3456-atom supercell
is considered adequate. The FWHM for the histogram plot
of Fig. 1(b) is 
cf = 8.3 meV,19 which turns out to be
similar to the excitonic linewidth 
ex = 8 meV for this alloy
measured by the excitonic emission at low temperature.20 It is
reasonable to expect some connection between 
cf and 
ex,
but we will leave this aspect for future work. We only wish
to point out here that 
cf is rather different from the most
popularly considered mechanism for the excitonic linewidth
in a semiconductor alloy where the width is caused by the
energy variation as a result of composition fluctuation within
the “exciton volume” from one area to the other.21 In our
case, the average composition within the supercell is kept
the same and the band-gap fluctuation is purely due to the
arrangement of the atoms in the microscopic scale. In this
work, we instead focus on the difference between 
cf and the
width of A(�,E), the intrinsic broadening of the band-edge
alloy state, to be investigated below. To determine A(�,E), not
only the 3456-atom cell but even the 27 648-atom cell is far
from sufficient.

Figure 2(a) shows A(�,E) for the conduction band minimum
(CBM) calculated from one 3456-atom and one 27 648-atom
supercell, with A(�,CBM) = 0.867 and 0.864, respectively.
Although it appears the CBM has a large component of the
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(a)

(b)

FIG. 1. (Color online) Histogram plots of the energy distributions
of the band gap (Eg) for the Ga0.5In0.5P alloy calculated using two
super-cell sizes.

VCA � state, the results in fact represent the integrated VCA
� components for all the alloy states within a spectral range
of ∼20 or ∼145 meV, respectively, for the two supercell sizes.
The range is roughly given by the energy separation between

(b)

(a)

FIG. 2. (Color online) Spectral functions A(k = 0,E) near the
conduction band minimum for the Ga0.5In0.5P alloy (a) obtained by
projecting the alloy wave functions onto the VCA state at k = 0 and
(b) calculated by applying the generalized moment method with the
k = 0 VCA state as the reference.

the band-edge state and the nearest alloy state, as shown in
Fig. 2(a), depending on the size of the supercell.

To be able to investigate the intrinsic broadening of the
alloy CBM state in this direct-band-gap semiconductor, one
would need to use an even much larger supercell. If we would
like to examine the coupling of the CBM to other alloy states
lying within 1–2 meV of the CBM, the supercell dimension
needs to be increased by roughly a factor of 10, assuming
the effective mass is in the order of m∗ ∼ 0.1. Therefore, we
have tested two supercell sizes based on an 8-atom cubic cell
with size 15×15×15 and 144×15×15, using the much more
efficient GMM. The results are shown in Fig. 2(b). Note that,
in Fig. 2(b), each peak represents one alloy state that has a
nonzero projection onto the VCA CB � state and is broadened
by the lineshape function of Eq. (7). Again, the 27 000-atom
cell does not reveal any alloy state within the vicinity of
the CBM, but the 259 200-atom cell does give rise to four
peaks within 25 meV. These four peaks can be understood as
resulting from alloying-induced coupling among the folded
VCA states (intravalley coupling) with kx = (j/144)(2π/a)
and ky = kz = 0, where a is the lattice constant of the VCA
crystal and j = 0,1,2,3.

Because the coupling to states with higher j values di-
minishes quickly, we cannot obtain the dispersion curve of
alloy states far away from the CBM. Nevertheless, we can
estimate the �-valley effective mass of the alloy as m(�, x =
0.5) = 0.0994m0, where m0 is the free electron mass, which
is very close to the VCA effective mass mVCA(�,x = 0.5) =
0.103m0. Alternatively, one can use a smaller supercell—the
27 000-atom supercell, for instance—to obtain the dispersion
curve of the alloy by applying the GMM using VCA states at
different k points, which will be illustrated later for the effort
to explore the global electronic structure of the alloy.

The result of Fig. 2(b) allows us to estimate the intrinsic
broadening at the CBM due to intravalley scattering within
the � valley, which can be viewed as inelastic scattering
among the VCA states. The standard CPA theory for the alloy
predicts, in the weak-scattering limit, a Lorentzian lineshape
for all k states.1 However, because the coupling to the states
below the VCA (e.g., the valence band states) is very weak,
the A(�,E) spectrum is expected to be non-Lorentzian and
asymmetric. For E < 0, we can assume A(�,E) = 0 for
most practical purposes. For E � 0, a continuous spectrum of
A(�,E), equivalent to extrapolating to an infinite-size supercell,
can be obtained by finding the envelop of the j = 0 to 3 peaks
of Fig. 2(b). Because of the absence of the folded states along
the ky and kz directions, the intensities of j = 1 to 3 should
be approximately 3 times as strong as those of Fig. 2(b) if all
three directions are included. We find that the spectral function
can be described by a stretched exponential function:

A(�,E) = A0e
−αEβ

, (9)

with α = 1.162, β = 0.4842, and A0 = 0.5663 (meV)−1,
where E is in meV. The integrated intensity is 0.857 for the
range of 25 meV measured from the CBM. The FWHM,
which measures the alloying-induced intrinsic broadening of
the band-edge state, is 
CB−� = 0.34 meV as a result of the
intravalley coupling. Note that, in the standard VCA-based
scattering treatment, there would be no alloy scattering at the
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FIG. 3. Time decay of the �-like alloy state in the Ga0.5In0.5P alloy.

� point. However, in our case, the spectral width at the �

point is finite, although small, which will result in a finite
quasiparticle life time at the � point. Clearly 
CB−� is very
different from 
cf in origin. We note that 
CB−� corresponds
to an infinitely large alloy, whereas the energy fluctuation in
the length scale of other coexisting physical mechanisms, such
as excitonic effects or electron-phonon scattering, are more
relevant in reality to the excitonic linewidth or transport.

We may use the formalism derived from single-site scatter-
ing theory to approximately describe the decay of the �-like
state:1

I (k,t) =
∣∣∣∣
∫ ∞

0
dEe−iEt/.̄hA(k,E)

∣∣∣∣
2

. (10)

Contrary to the ideal case,1 the time dependence is
nonexponential, as shown in Fig. 3, but the 1/e decay time,
which may be considered as the scattering time τs(k), is found
to be 0.21 ps for the � point. One could take this decay time
as the lifetime of a VCA state that is viewed as a wave packet
constructed by the alloy eigenstates within a small energy
spread. After an average under electron thermal distribution
(at different k points near �), τs is often used to estimate the
electron mobility μe, which is simply eτs/m∗ in the Drude
model.2 Note that this scattering time, which is also known
as the “quasiparticle lifetime,”1 is quite different from the
real-carrier lifetime due to either radiative recombination with
a hole or relaxation to defect or impurity states below the CB
band edge. Here, the electron is scattered into a different state
(e.g., in the Boltzmann equation), whereas for the real-carrier
lifetime, the carrier is eliminated. In fact, the real-carrier
lifetime is much longer in a high-quality alloy sample. For
instance, the electron lifetime measured by radiative decay of
the photoluminescence at low temperature (e.g., 1.5 K) is on
the order of 200 ps for the Ga0.5In0.5P alloy.22

B. Alloy states far from the band edge

Next, we apply the GMM to calculate the electronic
“dispersion” relations along the two high-symmetry lines �-X
and �-L of the BZ. Figure 4 shows the alloy “dispersion”
curves for Ga0.5In0.5P, comparing with the results of VCA

(a)

(b)

FIG. 4. (Color online) Effective dispersion curves of the
Ga0.5In0.5P alloy along the �-X and �-L directions, calculated
using the generalized moment method (calculated discrete points
interpolated by solid lines). The dashed and dotted curves are,
respectively, the results of VCA without and with the inclusion of
the strain term in the atomic pseudopotentials.

with and without the strain effect (i.e., the strain parameter
as 
= 0 or as = 0 in the atomic pseudopotential). The three
curves appear to have a similar shape, but the difference
between the alloy and VCA can be more than 0.5 eV and
is nonconstant throughout the BZ. The energy state on the
alloy curve for a given k is determined from the peak
position of the spectral function A(k,E), using the 27 000-atom
supercell.

The spectral function A(k,E) at the band edge of a direct-
band-gap alloy has been shown to be very sharp, as illustrated
in Fig. 2(b). Figure 5 shows how A(k,E) evolves along the �-X
and �-L lines, computed using the 27 000-atom supercell and
m = 200 000. For those k points very close to the � point, for
instance, k = 0.05kL, the spectra show a single peak and its
linewidth is dictated by the “spectral resolution” related to γ

in Eq. (7). The peak position correctly gives the energy level
on the dispersion curve, although the peak height is affected
by the inadequate supercell size. For those k points slightly
further away from the � point, for instance k = 0.10kL, the
coupling to the adjacent k points are apparent, even in the
linear plot, indicating enhancement in “intravalley scattering.”
In general, the further away from the band edge is a VCA
state, the broader the distribution of the VCA state is in the
alloy energy spectrum. For the k points close to the highest-
energy point of the dispersion curve, for instance k = 0.40kL,
the k VCA state is found to disperse into alloy states in a
spectral range more than 0.5 eV. The peak height has reduced
from A0 ∼ 566 eV−1 at � to A0 < 5 eV−1 at k = 0.4kL,
which means that the alloy state with the largest k component
contains less than 1% of the k component. In a spectroscopy
measurement, such an alloy effect will reflect in the reduction
in the signal intensity and linewidth broadening. The detail
depends on the type of measurement, which is beyond the
scope of this work.
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FIG. 5. (Color online) Spectral functions at various k points in the VCA Brillouin zone calculated for the Ga0.5In0.5P alloy (a) for the (111)
direction and (b) for the (100) direction. The energy reference is the conduction band minimum. A 27 000-atom supercell is used.

It is of particular interest to examine A(k,E) at a critical
point, because it provides a clearer picture for the intervalley
and intravalley scattering than at a general k point. Figure 6
shows the spectral functions for the X and L point, calculated

for all the VCA states belonging to different degenerate valleys
X1-X3 and L1-L4. For the L-like alloy state and approximately
0.22 eV above the band edge, as shown in Fig. 6(a), the alloying
effect is dominated by intervalley scattering, as indicated by
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(a)

(b)

FIG. 6. (Color online) Spectral functions for the Ga0.5In0.5P alloy
calculated using the generalized moment method and corresponding
to (a) four VCA L1 states, showing the coupling due to the intervalley
scatterings, and (b) three VCA X1 states, showing more extensive
decompositions of the VCA X1 states among the alloy states centered
around −3.66 eV. The positions of the X1-like alloy states are
estimated by performing weighted averaging over the alloy states.
A 27 000-atom supercell is used.

the four separate peaks spread out in a range of ∼10 meV
and derived from the four L valleys. For the X-like state
approximatley 0.37 eV above the band edge, as shown in
Fig. 6(b), there are apparently more alloy states involved,
spreading out in a range greater than 40 meV, and one could
not unambiguously identify three X-like peaks. The larger
number of peaks for the X-like state, in contrast to the L-like
state, could be understood as due to more significant intravalley
scattering because, on the one hand, the X-like state is further
away from the band edge and, on the other hand, in VCA,
as shown in Fig. 4(a), the X point is not the local minimum
along the �-X line, which leads to large number of states that
are energetically degenerate with the X point and that have k
vectors close to that of the X point.

From the alloy dispersion curves shown in Fig. 4, we can
calculate the effective masses near the � point along both the
�-X and �-L lines and even examine the possible anisotropy
and nonparabolicity of the dispersion, which was not possible
before. For reference, we find the VCA effective masses to
be 0.103 and 0.106, respectively, for the [0,0,1] and [1,1,1]
directions, and the nonparabolicity starts near 5% kX or kL.
The masses for the alloy are practically the same as the VCA
results: 0.103 ± 0.001 and 0.106 ± 0.001 for the [0,0,1] and
[1,1,1] directions, respectively, which means that the alloy
band dispersion near the BZ center is very close to that of
the VCA and is nearly isotropic, but with a rigid shift in
energy from the VCA dispersion curves. Note also that the
[0,0,1] effective mass agrees well with that estimated from the
spectral function of the � point. We expect that the proper
supercell size for computing the effective mass should be
the similar to that for the band gap, because the states at
different k points experience the same alloy configuration,
so the energy difference between nearby k points is not as
sensitive to the alloy configuration fluctuation as the band
gap itself. In general, the higher-lying states tend to require
larger supercells for achieving the same convergence as the
band-edge state. However, one might not need to achieve the
same convergence in practice because the higher-lying alloy
states tend to suffer more alloy broadening, as is supported by
evidence from optical spectroscopy measurements.

C. Indirect-band-gap alloy

Above we have discussed intra- and intervalley scattering
when the conduction band X- and L-like states are far from
the lowest band edge. We now investigate the alloying effects
for the composition region that resembles an indirect band gap
semiconductor using xGa = 0.8 as an example and focusing on
the conduction band. The band structures have been calculated
in three ways: (1) averaging over 50 configurations of the 3456-
atom supercell, (2) average of two 27 648-atom supercells, and
(3) one 27 000-atom supercell. The lowest CB state energies
are found to differ by less than 4 meV (−3.7225, −3.7187,
−3.7205 eV) among the three results, which suggests that
they are adequately converged.

The first three CB states are found all having A(kX,Ei) ∼
0.9 (summing over the three X valleys). Thus, they can be
understood as split X1-like states due to intervalley scattering.
However, the splittings are significantly larger for the 3456-
atom supercell than for the larger supercells; for instance, 7.1
vs. 1.7 meV between the first two states, as shown in Fig. 7.
This is another example showing the nonequivalency of the
two approaches. One can envision that the intervalley splitting
will diminish if the supercell size is increased further, which
would indicate that a macroscopic alloy should have the zinc-
blend symmetry on average. However, the observed supercell-
size dependence of the intervalley splitting suggests that the
impact of alloy scattering depends on the spatial extension of
a physical property that is used for probing. For instance, an
excitonic state in a semiconductor alloy could be viewed as a
probe of the alloy fluctuation with an approximate probe size
of the Bohr radius of the exciton that is about the size of the
27 000 atom supercell;21 whereas a defect or an isoelectronic
impurity state could be sensitive to the alloy fluctuation on
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FIG. 7. (Color online) The effect of inter- and intravalley scatter-
ings in the Ga0.8In0.2P alloy. Left axis (discrete data points) gives
the total X components of the three X1-like alloy states for 50
random configurations of the 3456-atom supercell. The solid vertical
lines indicate their average energies, and the splittings are caused
by intervalley scattering. Right axis (continuous curves) gives the
spectral functions for the three VCA X1 states calculated using
the generalized moment method and the 27 000-atom supercell. The
dashed vertical lines indicate the positions of the three X1-like alloy
states in the alloy with the splitting caused by intervalley scattering.
Additional peaks on the higher energy side are produced by intravalley
scattering.

a substantially smaller scale. For instance, an N impurity in
GaxIn1−xP can sense the Ga and In coordination change in its
first nearest neighbors.23

The additional peaks (calculated by GMM) shown in Fig. 7
on the higher energy side of the X1-like alloy states are alloy
states corresponding to the VCA states with k vectors such as
(±14/15,0,0) that couple with the X1 states through intravalley
scattering. There are a total of six of them in this group
(although not all are resolved in this plot), spanning an interval
of about 9 meV. In contrast to Fig. 6(b) where the X1-like states
are far from the band edge in the direct-composition region,
the present indirect-composition region exhibits significantly
weaker scattering (i.e., only k points that are close in energy are
involved) for alloys states near the CBM in the alloy. However,
the A(kX,E) spectra shown in Fig. 7 indicate that intravalley
scattering is in fact comparable with intervalley scattering.

IV. DISCUSSION

A. Alloy scattering theories within the VCA framework

For an alloy AxB1−xC, the perturbation potential is 
V =
V − V0, where V and V0 are the total alloy and VCA potential,
respectively. Assuming no lattice relaxation, the perturbation
matrix element is often given as

|〈k′|
V |k〉|2 ≈ Nx(1 − x)|δVAB(k′,k)|2, (11)

where δVAB = VA − VB (VA and VB are atomic potentials
for atom A and B) and the matrix element δVAB(k′,k) =
〈k′|δVAB |k〉. Note that Eq. (11) is valid only for k′ 
= k,
under the assumption that the two-body terms involving
two atoms on different sites (A-A, B-B, and A-B) are all

negligible.24 The diagonal matrix element 〈k|
V |k〉 = 0
(although 〈k|δVAB |k〉 
= 0) because 〈k|
V |k〉 is simply the
average of the potential fluctuation with respect to V0, which
perhaps provides the base for the common use of elastic
scattering theory.

We first consider the theory for no lattice relaxation.
In the context of the elastic scattering theory (within the
first Born approximation), the square of the matrix element
given by Eq. (11) is often related to the alloy scattering rate
1/τ or the scattering-induced spectral broadening 
.8 Using
this approach, because of the constraint imposed on elastic
scattering, the linewidth 
 is zero for the nondegenerate
� valley, and only intervalley scattering among degenerate
valleys can yield nonzero 
.8

Apparently, in this approach, the effect of inelastic intraval-
ley scattering is not present. However, it has been shown
in Sec. III C that inelastic intravalley scattering is actually
quite significant for an indirect-band-gap alloy (Fig. 7), and
in a direct-band-gap alloy it is the intravalley scattering that
generates the finite linewidth 
CB−� for the � point (Fig. 2).
Note that, in the literature dealing with the weak potential
fluctuation, the spectral width of an alloy state is also given
as 
k = πx(1 − x)|〈k|δVAB |k〉|2ρ(E) from Green’s function
theory, where ρ(E) is the density of states.2,8 Because ρ(E)
approaches zero for the � point, 
(�) approaches zero, too,2

although one could obtain a nonzero 
(�) by introducing an
imaginary part into E (termed “band tailing”).8

Note that 
CB−� and 
(�) are very different in nature.
The former is the result of inelastic scattering whereas the
latter is the result of elastic scattering. Also note that, in the
alloy scattering discussion, “elastic” and “inelastic” scattering
are not actually associated with the energy change of an alloy
state, but rather with the coupling among the VCA states, either
degenerate or nondegenerate, that is induced by the potential
fluctuation.

With lattice relaxation, the diagonal term 〈k|
V |k〉 be-
comes nonzero—typically a few hundred meV.15 For the
indirect-band-gap case considered above with x = 0.8, we
have found that the diagonal and off-diagonal matrix elements
among the X1 states in fact have the same order of magnitude,
〈k′|
V |k〉 ∼ 0.1– 0.2 eV. These results indicate that the
conventional approach inappropriately neglects the inelastic
scattering that is present even for alloys without lattice
relaxation, and the treatment becomes more problematic when
lattice relaxation is present.

B. An alloy transport theory not relying
on a reference system?

Until now, we have followed the common practice in the
literature to discuss alloy scattering in the framework of the
VCA. We next point out a more fundamental issue of electronic
transport theory within the framework of the VCA. Because
of the use of the virtual-crystal structure as the reference, any
deviation from the VCA will lead to nonzero scattering among
the VCA states, which implies a reduction in carrier mobility.
Obviously, an extreme example of a nonrandom distribution
would be a structure with long-range order; for instance, a
semiconductor superlattice.25 For this case, it is not really
meaningful to discuss “alloy scattering.”
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A more subtle situation is the well-studied partial long-
range ordering that has often been observed in III-V semi-
conductor alloys, and in GaxIn1−xP in particular.26 To some
extent, it is still useful to use VCA states to characterize
alloy states in a partially ordered structure.15 However, it
would be a nontrivial task to separate the effects of long-range
ordering and alloy fluctuation if one attempts to calculate the
scattering rate and the carrier mobility using the scattering
matrix element based on the VCA. For a superlattice structure
with imperfections such as atom interdiffusion, it would be
more natural to use the ideal superlattice as the reference
rather than the VCA. There is apparently some arbitrariness
and nonuniqueness using either reference for evaluating the
transport property. Furthermore, there is a disparity between
electronic transport and electromagnetic wave propagation.
For the latter, energy propagation can be calculated without
relying on any reference system whether or not the medium is
ordered or disordered. Therefore, a need exists to develop
a theory that is independent of any reference system for
electronic transport in a nonperiodic structure. The large-
supercell direct calculation performed in the present work can
play an important role in this regard.

V. SUMMARY

We compare two supposedly equivalent approaches to
describe (semiconductor) alloys: (1) We used configuration
averaging over many “appropriately sized” supercells versus
using one “very large sized” representative supercell. We found
that the specific size for either “appropriate size” or “very
large size” depends on the problem of interest. For certain
properties, such as the band gap, the two approaches are indeed
capable of giving equivalent results. However, for others, such
as properties related to alloy statistics, they are not at all
equivalent.

We applied two techniques to analyze the global electronic
structure of a semiconductor alloy system GaxIn1−xP. A
generalized moment method (GMM) is used to directly
calculate the spectral function A(k,E) of the alloy over
the whole spectral range without having to explicitly calculate
any alloy state, and this technique can deal with a very large
system with >100 000 atoms (up to a few million atoms). The
results can yield the band gap, dispersion curves (by projecting

alloy states onto VCA states), and intrinsic alloy broadening
that naturally includes both elastic and inelastic scatterings.

For a representative composition of x = 0.5 in the direct-
band-gap region, we find that the intrinsic broadening for
the �-like alloy state [i.e., the width of the spectral function
A(�,E)] is non-Lorentzian and asymmetric with an estimated
width 
CB−� = 0.34 meV and a corresponding “quasiparti-
cle” lifetime τs = 0.21 ps. However, the width of the spectral
function in the middle point of the BZ could be more than
0.5 eV. The alloy dispersion curve near the � point is nearly
a rigidly shifted curve of the VCA with m∗ = 0.10m0. The
intrinsic alloy broadening 
CB−� is fundamentally different
from the energy fluctuation 
cf obtained by computing many
“appropriately sized” alloy configurations and values for 
(�)
discussed in the literature. For a representative composition
x = 0.8 in the indirect-band-gap region, we find that “inelastic”
intravalley scattering, typically neglected in conventional alloy
transport theory, is in fact of the same order of magnitude as
“elastic” intervalley scattering; and the intervalley splittings
obtained from configuration averaging over the “appropriately
sized” supercells (∼3500 atoms) is substantially larger than
those from individual large supercells (∼27 000 atoms).

It is satisfying to know that modern computation techniques
like the one demonstrated here can directly calculate a system
with size comparable to the extent of a physical interaction
of interest (e.g., an exciton). This capability can open the
way for detailed comparisons between theory and experiment
regarding the experimentally observed statistical fluctuations
in an alloy system.

We further discuss the need to develop an alloy transport
theory that does not rely on the use of a reference system;
for instance, the popular virtual crystal. We argue that the
large-scale-supercell calculation can play an important role in
such development.
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