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Transport properties and optical conductivity of the adiabatic Su-Schrieffer-Heeger model:
A showcase study for rubrene-based field effect transistors
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Transport properties, spectral function, and optical conductivity of the adiabatic one-dimensional Su-Schrieffer-
Heeger model are studied with particular emphasis on the model parameters suitable for rubrene single-crystal-
based field effect transistors. We show that the mobility, calculated by using the Kubo formula for conductivity
including vertex renormalization, vanishes unless we introduce an ad hoc broadening of the system energy levels.
Furthermore, the apparent contradiction between angle-resolved photoemission data and transport properties is
clarified by studying the behavior of the spectral function. Finally, a peak in the optical conductivity at very low
energy is obtained and discussed in connection with the available experimental data for rubrene-based devices.
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I. INTRODUCTION

The organic field effect transistors (OFETs) play an
important role in the field of the socalled “plastic electronics.”
Recently, OFETs, based on single crystals of oligoacene
molecules, have been developed.1 From the study of these
systems, it stems that charge mobility in oligoacene single
crystals can be one order of magnitude larger than those with
nonordered molecules. Among them, the more promising are
those based on rubrene crystals that exhibit a strong anisotropy
and the largest mobility measured in organic semiconductors.

In spite of the important technological impact of such de-
vices, the intrinsic transport mechanism acting in rubrene is not
fully understood. Actually, while the temperature dependence
of the mobility exhibits a power law (μe ∼ T −δ with δ � 2),2–4

reminding us of mobile charge carriers (band transport),
computational data indicate that the scattering length of the
charge carrier becomes too short to be compatible with
band transport.5 Furthermore, some spectroscopic evidence
supports the localization of the charge carrier within one
or a few molecules,6 and, on the other side, angle-resolved
photoemission spectroscopy (ARPES)7 seems to point again
toward a bandlike behavior of the charge carriers.

In this framework, a very interesting and simple one-
dimensional model has been recently introduced by Troisi
and Orlandi,8 where the charge carriers interact with the
intermolecular modes leading to a modulation of the charge-
carrier hopping. The proposed model is somehow very close
to the Su-Schrieffer-Heeger (SSH) model introduced in a
different context.9

The model has been studied within the adiabatic limit
(phonons obey a classical dynamics) in Ref. 8 by using an
approximated dynamical approach, and the results have been,
then, confirmed and extended by Ciuchi and Fratini,10 who
used, instead, a thermodynamic approach, where the vertex
renormalizations are neglected. The main results claimed by
those authors is that a power law for the mobility temperature
dependence can be recovered within the proposed model and
that the charge carriers involved in the transport undergo a
“dynamical localization.”

From this brief discussion, it is clear that a systematic
study, “numerically” exact, of the transport properties of

the SSH model in the adiabatic limit by using the Kubo
formula for the conductivity is quite important.11 We will show
that, at the thermodynamical equilibrium for both electrons
and lattice degrees of freedom and including all the vertex
renormalizations, the mobility is dominated, as expected,12 by
an ad hoc broadening of the energy levels. A proper choice
of this broadening energy, taking into account in a qualitative
way the missing energy scales in the adiabatic limit, is able
to recover the power law observed in the experiments. Then,
we discuss in some detail how the coupling strength among
charge carriers and phonons is able to modify temperature
dependence of the mobility and charge-carrier localization.
We also measure the temperature dependent participation
number, showing a very weak temperature dependence in
the experimental window and, on the contrary, a very strong
dependence on the coupling strength between charge carriers
and intermolecular phonons.

Furthermore, the analysis of the spectral function allows
us to reconcile the results provided by the ARPES data
(the apparent bandlike description) with the computational
observation that the scattering length of the charge carrier
becomes too short to be compatible with band transport.5,13

Finally, we focus on the optical conductivity of the model,
emphasizing the dependence on temperature and charge-
carrier density. This allows us to individuate a low-energy
peak, below any charge transfer excitation,14 that compares
well with recent experimental results.15,16

II. THE MODEL

The transport properties, the spectral function, and optical
conductivity of rubrene will be studied within the SSH model
introduced by Troisi and Orlandi.8 In this model, the charge
carriers move in a one-dimensional lattice hopping between
next neighboring sites with a probability amplitude controlled
by the relative position of the ions at the sites involved in
the hopping. It can be summarized in the following model
Hamiltonian

H = m

2

∑
i

(ẋi)
2 + k

2

∑
i

(xi)
2 + Hel, (1)
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where

Hel =
∑

i

[−t + α(xi+1 − xi)](c
†
i ci+1 + c

†
i+1ci). (2)

In Eqs. (1) and (2), t is the bare electron hopping, α is the
coupling constant that controls the link between the electron
hopping and ion displacement xi , and, finally, m and k are
the mass and the elastic constant of ions, respectively. We
emphasize that the electron obeys a fully quantum dynamics
(c†i being the charge-carrier creation operator), while the ion
dynamics is assumed classic. The latter approximation is
well justified from the typical values of phonon frequencies
ω0 and hopping constant t for rubrene. Following Ref. 17,
h̄ω0 � 6 meV and t � 140 meV, leading to an adiabatic ratio
γ = h̄ω0/t � 0.04. As we will discuss later, even if we are
in a strong adiabatic regime, the charge-carrier mobility can
be still affected by very small quantum effects due to the
one-dimensional nature of the model. On the other hand,
the finite frequency conductivity and other properties are not
affected significantly by quantum fluctuations in this regime.
In the following, we will use dimensionless units measuring
lengths in units of l0 = [h̄/(2mω0)]1/2 and energies in units
of t .

Taking advantage of the classic nature of the lattice
distortions, the partition function can be written as

Z =
(

2mπ

β

)L/2 ∑
{xi }

{
exp

[
−β

k

2

∑
i

(xi)
2

]
Zel[{xi}]

}
, (3)

where Zel[{xi}] is the quantum partition function of the
electron subsystem given a deformation configuration {xi},
L is lattice size, and β = 1/(KBT ).

Following Michielsen and de Raedt,18 it is possible to
estimate Z by using a Monte Carlo approach for the classical
degrees of freedom and exact diagonalization for the electron
quantum dynamics. The method provides an approximation-
free partition function of the model in the semiclassical
limit. The only limitation is due to the computational time
being controlled by the L × L matrix diagonalization. This
constrains our analysis up to L = 128. In order to reduce the
size effect, we use periodic boundary conditions.

Within the same framework, it is also possible to calculate
the spectral function and the optical conductivity, averaging the
electronic properties at a given ion displacement configuration
over the entire set of configurations weighted by Monte Carlo
dynamics.19 For instance, in the case of conductivity, for each
configuration, we calculate

Re[σ (ω; {xi})] = (ea)2

h̄

2π

V ω

∑
λ,λ′

(pλ − pλ′)|〈λ|J |λ′〉|2

× δ(Eλ − Eλ′ + ω), (4)

where

pλ = 1

exp[β(Eλ − μ)] + 1
. (5)

In Eq. (4), V = La is the system volume (a is the distance
between next neighboring sites), and in Eq. (5), μ is the
chemical potential, while Eλ are the eigenvalues.

The matrix element in Eq. (4) can be expressed in terms
of the eigenstates of Hel. By using the unitary matrix that
diagonalizes Hel, U (i,λ), we can write

〈λ|J |λ′〉 =
∑

i

ti
∑
μ,μ′

[U (i,μ)U (i + 1,μ′)〈λ|c†μcμ′ |λ′〉.

−U (i + 1,μ)U (i,μ′)〈λ|c†μcμ′ |λ′〉]
=

∑
i

ti[U (i,λ)U (i + 1,λ′) − U (i + 1,λ)U (i,λ′)],

(6)

where

ti = −t + α(xi+1 − xi).

Then, the mobility can be defined as

μe = 1

ρe
lim

ω→0+
Re[σ (ω)], (7)

where σ (ω) is obtained by averaging over the displacement
configurations σ (ω; {xi}) and the density, ρ = Ne/L (Ne being
the charge-carrier number), is

ρ = 2
∑

n

pn. (8)

In the following, we will focus our attention mainly on the
limiting case in which a single electron is present in the system.
Then pλ �→ exp(−βEλ)/Zel in Eq. (4), and the factor 2, due
to the spin degeneracy, drops out.

III. TEMPERATURE DEPENDENCE OF MOBILITY

As mentioned in the introduction, the mobility at the
thermodynamic equilibrium, calculated assuming that the ion
displacements are classical variables, is dominated by the
energy broadening that we have to include in Eq. (4). Indeed,
in order to use that expression for any finite lattice, we have to
replace the delta function with a Lorentzian

1

π
δ(Eλ − Eλ′ + ω) �→ η

(Eλ − Eλ′ + ω)2 + η2
. (9)

The correct expression is obtained, then, for L �→ ∞ and
η �→ 0. It can be easily shown that, as expected, this procedure
leads to a vanishing mobility. Indeed, in the adiabatic limit, our
calculation is equivalent to the classical problem of a particle
in the presence of an off-diagonal disorder that is characterized
by a vanishing mobility and localized eigenfunctions except
for that one corresponding to the zero energy eigenvalue.20,21

It is then clear that the system will exhibit a finite mobility only
if we include a broadening representing the small (relevant)
energy scale not included in the original model. In our opinion,
the most important missing energy scale is the quantum
phonon ground-state energy h̄ω0/2. The effect of this energy
scale is usually negligible in the adiabatic limit, but becomes
relevant in one-dimensional (1D) systems for the optical
conductivity at energies less than h̄ω0/2 and, then, it is crucial
for the mobility.

In Fig. 1, we show the temperature dependence of the
mobility for the model parameters suitable for rubrene:17

α/t = 0.09, ω0/t = 0.04. We restrict ourselves to the case
of a single charge carrier and plot the mobility for different
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FIG. 1. (Color online) Mobility vs temperature for different
values of η. Mobility is in units of cm2/(s · V), and the temperature
is in K. The system size is L = 64.

values of η. It comes out that at η = h̄ω0/2, a power-law
behavior μe ∼ T −δ with δ = 2.03 is recovered. On the other
hand, a smaller (larger) value of η provides a larger (smaller)
exponent. In our opinion, this is a strong indication that
quantum fluctuations are indeed important in this system. It
is also worth noticing that, at the thermodynamic equilibrium,
the mobility does not depend on the ion mass [see Eq. (3)].
Both the results, the need of an “external” energy scale and the
mass independence of mobility, are not recovered within the
dynamical approach proposed in Ref. 8, pointing out that
the dynamical and the equilibrium thermodynamic approaches
are not equivalent. We also note that the mobility values we
find are larger than those obtained in Ref. 8 and surprisingly
close to the experimental values.1 We also emphasize that the
exponent obtained, δ = 2.03, is larger that that obtained in
Ref. 10 in the experimental temperature window due to the
inclusion of vertex renormalization.

Summarizing, we have shown that the model of Eq. (1)
in the adiabatic limit and at the thermodynamic equilibrium
is able to recover the power law observed in the experiments
(see Fig. 1) only by introducing an ad hoc energy broadening
that we associate with the quantum lattice fluctuations. On the
other hand, our analysis allows us to give a simple explanation
of the physical mechanism responsible for the finite mobility.
Due to the one-dimensional nature of the model and the
assumption that the lattice oscillations are classical variables,
all of the charge-carrier wave functions are localized (see the
snapshot reported in Fig. 2). In particular, as already proven
in Ref. 10, a more detailed analysis shows that the wave
functions whose energies are closer to the band border are
even more localized than those well within the energy band.
The only exception to this description is given by the wave
function corresponding to vanishing energies that exhibits an
anomalous behavior.20,21 An example of the wave-function
localization is given in Figs. 2(b), 2(c), and 2(d), where we
show that both the position and extension of the wave function
depend on the energy in a very strong way. On the contrary,
we note that the average particle density at a fixed temperature
[Fig. 2(a)], collecting contributions from different energies
weighted by the Boltzmann factor, is rather distributed all
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FIG. 2. (Color online) Snapshot of the electron wave function
at the (typical) given deformation configuration at T = 347 K.
(a) Average density vs lattice sites. (b)–(d) Average density at a fixed
electron energy vs lattice sites. The system size is L = 128, and the
energy E is measured in units of t .

over the system (at room temperature) even if the analysis at
a fixed energy provides very localized wave functions.

This scenario leads to a vanishing mobility unless we
assume an energy broadening that is able to provide the needed
eigenvalue overlap. The power law observed experimentally in
the temperature range 2h̄ω0 < KBT < 5h̄ω0 is, then, the result
of entirely incoherent processes that have nothing to do with
the band transport. It is worth noticing that this temperature
behavior is due to the very small phonon energy involved in the
scattering, and it corresponds, in simple metals, to that typical
of a very high-temperature regime.22,23 Finally, we emphasize
that only a full quantum analysis will clarify how this
scenario is modified at lower temperatures where the adiabatic
approximation breaks down and the quantum fluctuations enter
the problem in a more intrinsic way, giving rise also to a
Boltzmann-like contribution of the charge carriers that cannot
be recovered in the present adiabatic approximation.

For a better understanding of the physical origin of the
temperature dependence of the mobility, we note that, as
first observed by Troisi8 and discussed in more detail by
Fratini and Ciuchi,10 the wave-function localization increases
with temperature. In the equilibrium thermodynamic approach
used in this paper, the localization stems from the analogy
with the disorder problem: increasing the temperature is
equivalent to strengthening the disorder. On the other hand,
if we measure the thermal average of any physical quantity,
the temperature enters not only through the distribution of
ion displacements (as in the equivalent disorder problem), but
also in the thermal average of the physical quantity of interest
at any fixed lattice configuration. Actually, with increasing
temperature, the thermal average involves more and more wave
functions corresponding to larger and larger eigenvalues which
correspond to less localized wave functions. The competition
between the two effects can give nontrivial results. In order
to clarify this issue, we have calculated the temperature
dependent participation number that provides a measure of
the average effective localization:

P =
[

N∑
i=1

〈ni〉2

]−1

. (10)
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FIG. 3. (Color online) Participation number P as function of
temperature T for different values of the coupling constant α.
The temperature is measured in K, and the system size is L = 64.

P ranges from the number of the lattice sites (N ) for
delocalized states (translational invariance) to 1 for a state
fully localized on a single site.

In Fig. 3, we report the temperature behavior of P , showing
that, in the temperature regime of interest, P does not exhibit
a significant change. In this sense, we think that the mobility
decrease with the temperature is not strictly related to the
wave-function localization, but rather it is due to an increase
of the scattering rate among the electrons and the lattice
Ventra deformation.

On the other hand, it is interesting to emphasize the strong
dependence of the participation number P on the coupling
constant α. In particular for α = 0.15, P becomes equal to
few lattice sites. At this value of the coupling constant, the
nature of the ground state has changed: the electron forms a
bond polaron24–29 that is characterized by a very large effective
mass.

We end this section presenting the mobility for different
coupling constants (Fig. 4). We observe that the power-
law behavior is very robust and is recovered even in the
most localized case reinforcing the idea that it is a purely
incoherent mechanism. Finally, we emphasize that, while the
absolute value of the mobility decreases, the power δ becomes
smaller, signaling a rather complex link between mobility and
localization.
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FIG. 4. (Color online) Mobility μe as function of temperature T

for different values of the coupling constant α. Mobility is in units of
cm2/(s · V), and the temperature is in K. The system size is L = 64.

2.5 2.0 1.5 1.0 0.5 0.0 0.5
ka

1

2

3

4

5

6
A(ka, ω)

π
2

π
ka

2

1

1

2
E(ka)

FIG. 5. (Color online) Spectral function for different values of
the wave vector k. Measuring k in units of the inverse of the lattice
spacing a, we show from left to right the values ka = 0, π

8 , π

4 , 3π
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2 . In
the inset, we report the effective electron band (points) compared with
the bare electronic band (full line). The temperature KBT/t = 0.21,
and L = 64.

IV. SPECTRAL FUNCTION

In the previous section, we have shown that the equilibrium
mobility in our model is due to purely incoherent processes,
and it cannot be ascribed to a simple bandlike description.
On the other hand, as mentioned in the introduction, ARPES
measurements7 show that the effective electronic energy
dispersion extracted from the k-dependent spectral function
A(k,ω) is very close to a simple cos(ka) band. This finding
is usually considered as an indication in favor of a bandlike
scenario. In order to clarify this apparent contradiction and
with the aim to validate the model studied in the present paper,
we have calculated the spectral function for different k values
and extracted the effective electronic band (Fig. 5).

As it can be seen in the inset, the energy dispersion obtained
following the main maxima of the spectral function is very
close to the bare band in agreement with the ARPES. However,
a more careful analysis shows that the peaks exhibited by the
spectral function are very broad,30 making the quasiparticle
description not well founded. Actually, for k = π/4 is evident
a double peak structure that persists for lower k values even
if in a less evident way. Finally, as expected, the spectral
function presents an anomalous behavior at E = 0, where
the associated wave function is not localized.20,21 In our
opinion, the present analysis provided a simple explanation
of the apparent contradiction between ARPES and transport
measurements: the absence of well defined quasiparticles
makes the bandlike description not applicable but, at the same
time, the main peak of the spectral function inherits the bare
band dispersion. Finally, we would mention that the effect-
ive energy dispersion depends very little on temperature in the
range analyzed in this paper, showing a very small increase of
the bandwidth. In this sense the system is not characterized by
any quasiparticle with heavy effective mass.

V. OPTICAL CONDUCTIVITY

As mentioned in the introduction, measurements of the
optical conductivity (OC) are an important tool to investigate

165203-4



TRANSPORT PROPERTIES AND OPTICAL CONDUCTIVITY . . . PHYSICAL REVIEW B 83, 165203 (2011)

0 1 2 3 4 5
ω

0

1

2

3

4

T 248K

T 281K

T 314K

T 347K

FIG. 6. (Color online) Dimensional optical conductivity � =
σ (ω)h̄V /[2π (ea)2] as a function of the dimensionless photon energy
ω = h̄/t for different temperatures (measured in K). The lattice
size is L = 64.

the properties of OFET devices.15,16 For this reason, we have
calculated OC within the studied model. In Fig. 6, we show the
OC for the parameter values relevant.17 The OC exhibits a clear
peak at low energies h̄ω � 0.2t , whose intensity decreases
with the temperature moving slightly toward high energies. It
is worth noticing that, unlike the mobility, the peak position
does not depend on the broadening energy that we still choose
equal to h̄ω0/2. The result is of some interest since there
is experimental evidence15,16 that, indeed, a peak is present
at energies about 62 meV (500 cm−1) lower than any charge
transfer process.14 Assuming t � 140 meV, our estimate is a
factor of 2 lower than the measured value. Our estimation
has to be considered quite reasonable for the very simple
one-dimensional model we adopted. Actually, as we will
show in the following, our estimate can be even improved by
modifying slightly the phenomenological parameters of the
model.

We observe that the OC of the model exhibits also smaller
structure at higher energies. However, for energies very much
larger than the bare charge carrier hopping t , the model cannot
be trusted in the framework of the rubrene OFET since at
higher energies, many charge transfer processes are observed14

that are not taken into account in the model presented
here. Nevertheless, these higher-energy structures are still of
interest for the model itself that has been proposed in many
contexts.

As in the case of the mobility, it is interesting to study how
the OC changes with the strength of the coupling constant
α, which, as discussed in the previous section, makes the
system more and more “localized.” As shown in Fig. 7,
when α increases, all the spectral weight moves toward
higher energies. In particular, at α = 0.12 [Fig. 7(a)], the
low-energy peak moves to ω � 0.5t , becomes broader, and
looses intensity. This analysis suggests that a larger value of
the low-energy peak can be obtained by tuning the value of the
charge-lattice coupling, providing a better agreement with the
experimental data. A further increase of α drives the system
toward a localized state associated with a very large increase
of the effective mass, and a clear optical gap opens up at
low energies signaling the bond polaron formation (α = 0.15)
(Fig. 7(b)).
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FIG. 7. (Color online) Dimensionless optical conductivity � =
σ (ω)h̄V /[2π (ea)2] as a function of the dimensionless photon energy
ω = h̄/t for different temperatures (measured in K). The lattice
size is L = 64. (a) α = 0.12. (b) α = 0.15.

VI. TRANSPORT PROPERTIES AND OPTICAL
CONDUCTIVITY AT FINITE DENSITY

Up to now, we have focused our attention on the case of
a single particle interacting with the lattice fluctuations, but
the experiments, of course, are performed at a finite (even if
small) particle density. Can we expect significant differences?
The approach used in this paper has the advantage that it
can deal very naturally with a finite number of particles
and, then, we can address this point. In Fig. 8, we show
the mobility as a function of the charge-carrier density ρ
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ρ
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15
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μ e

T 182K
T 215K
T 248K
T 281K
T 314K
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FIG. 8. (Color online) Mobility vs charge-carrier density ρ for
different temperatures (T = 348 K, full red line; T = 314 K, dashed
blue line; T = 281 K, dotted green line; T = 248 K, dashed-dotted
brown line; T = 215 K, long-dashed yellow line; and T = 182 K,

long-long-dashed black line). The lattice size is L = 64.
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FIG. 9. (Color online) Optical conductivity � = σ (ω)h̄V /

[2π (ea)2] vs dimensionless photon energy ω = h̄/t for different
charge-carrier densities ρ (ρ = 0.014, full red line; ρ = 0.037,

dashed blue line; ρ = 0.060, dotted green line; and ρ = 0.093,

dashed-dotted brown line). The temperature is T = 348 K. Energy
is measured in units of the bare hopping t .

for low densities (ρ < 0.12) and different temperatures. We
restrict our analysis to small densities because OFETs are
characterized by extremely low densities, and also since we
completely neglect charge-charge interaction in the model
studied. It is clear that the mobility is significantly affected by
the carrier density, reducing its value when ρ increases. The
single-particle case studied in the previous sections provides,
then, the maximum value for the mobility in this model.
The nonuniform behavior with temperature also signals that
the temperature exponent of the mobility changes with the
density. From our analysis stems out that, although the density
increase provides an obvious increase of the conductivity (it
is proportional to ρ), the mobility decrease compensates for
such increase and can even cancel it. Therefore, we expect
a less linear increase of the conductivity with density. We
interpret this result as the effect of the charge-charge effective
interaction (mediated by the lattice fluctuations) that represents
a further scattering mechanism for the charge carriers. The
sensitivity of the mobility to the effective interaction suggests
that the inclusion of direct Coulomb interaction among the
charges could be important even at low densities.

We end this section presenting the OC at different densities
for the model parameters appropriate for rubrene. We still get
a low-energy peak as in the case of a single particle, but the
peak position moves toward higher energies and the intensity
decreases (Fig. 8), increasing the density ρ. This behavior,
as it has been shown in Fig. 9, is accompanied by a decrease
of the mobility. We note that the observed behavior at finite
density reminds us of that obtained by increasing the coupling
α (Fig. 7).

VII. CONCLUSIONS

In this paper, we have studied the thermodynamic equilib-
rium properties of the SSH model in 1D, assuming the ion
displacements as classical variables. We focused our attention
on mobility, spectral function, and optical conductivity in
the adiabatic regime (γ = 0.04). Actually, this regime is
particularly interesting for its connection with the low-energy
physics of OFETs based on a rubrene single crystal as
proposed in Refs. 8 and 17. We find that, as expected at
the thermodynamic equilibrium, the model mobility vanishes
unless an ad hoc energy broadening is introduced in the model.
Interestingly, if we choose this energy broadening of the order
of h̄ω0/2, we are able to recover the temperature dependence
observed in the experiments. This result suggests that the
lattice quantum fluctuations not considered in our approach
are crucial for the mobility even in a strong adiabatic regime. It
is worth noticing that the present approach shows a significant
difference with the approximated dynamical approach,8,17

where a finite mobility is obtained without invoking an ad
hoc energy broadening. In our opinion, the difference stems
from the fact that the dynamics adopted does not bring the
system to the full thermodynamic equilibrium.

We also showed that the single-particle spectral function,
A(k,ω) exhibits very broad peaks that cannot be described
as a simple quasiparticle. However, the position of the main
peak inherits the bare electron energy dispersion. This result
could explain the apparent contradiction between ARPES and
the power-law temperature of the mobility observed in the
transport measurement of rubrene OFETs.

Finally, the analysis of the OC of the model suggests the
existence of a low-energy peak in the energy range 0.2t <

ω < 0.6t depending on the charge-lattice coupling α and the
charge-carrier density. As discussed in the previous sections,
this result is of some interest since there is experimental
evidence on single-crystal rubrene OFETs15,16 showing that,
indeed, a peak is present at energies about 62 meV lower than
any charge transfer process.14 Assuming in our model a bare
charge hopping t � 140 meV, our estimate is in a reasonable
agreement with the measured value. More experimental data,
in particular, on temperature dependence of the peak, and more
realistic models will be needed for a full characterization of
this low-energy OC peak.
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