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Poynting vector in negative-index metamaterials
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Metamaterials are characterized by counterintuitive phenomena, which have been debated since their first
practical realization. Due to their anomalous backward power flow, it has been recently discussed whether even
the classic definition of the Poynting vector, defining the power flux per unit surface, should be modified when
dealing with metamaterials with exotic properties. Here, we settle this issue and fully clarify the physics of
negative refraction, showing that the Poynting vector and other power relations in artificial materials may be
unambiguously defined consistently with classic formulas for homogeneous media.
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I. POWER FLUX IN MACROSCOPIC MEDIA

The Poynting vector represents one of the cornerstones of
the monument of Maxwell’s theory. It is usually introduced
starting from the calculation of the instantaneous time variation
of the electromagnetic energy stored within a certain volume,
which in vacuum is equal to the flux of s = e × b/μ0

through the boundary of the considered region1 (here e and b
represent the microscopic local fields and μ0 is the free-space
permeability). Although it is arguable whether s may be
considered a local electromagnetic power density vector,1,2

its flux through an arbitrary closed surface is well known
to represent the instantaneous rate of energy change in the
interior volume. When dealing with an idealized continuous
isotropic material other than vacuum, with local permittivity
and permeability ε, μ, it is well established that its definition
should be modified as s = e × b/μ.1 In practice, any natural
material is actually formed by a collection of finite-sized atoms
and molecules, and therefore proper care should be taken in
the definition of such a “continuum” and in how fields and
constitutive parameters are averaged over several of these
basic elements. This classic definition of the Poynting vector,
nevertheless, has been validated by over a century-long series
of experiments on electromagnetic wave propagation and it
is well consistent with the continuity of power flow across
a boundary between two materials with different constitutive
parameters.

A rigorous definition of the Poynting vector gets more
challenging when dealing with metamaterials, i.e., artificial
materials formed by arrays of subwavelength inclusions
with exotic electromagnetic properties. One of the goals of
metamaterial research consists of properly describing these
structures as bulk materials, with homogeneous constitutive
parameters and averaged fields, filtering out the irrelevant
unit-cell field fluctuations.3,4 Using rigorous homogenization
techniques, it has been shown theoretically and experimentally
how negative index metamaterials (NIMs), for which the
average power flow bends toward a negative angle at a planar
interface with a regular dielectric or vacuum, may be realized
in given frequency bands. As originally predicted in the
1960s,5 the average (effective) permittivity and permeability
of such materials have a negative real part, consistent with the
backward flow of s with respect to the phase velocity. Despite
the success of various experiments proving these anomalous

properties, the counterintuitive wave interaction of NIMs5 has
raised a series of concerns about the applicability of classic
electromagnetic theorems to such values of homogenized
parameters, and this debate has recently extended to the very
definition of the Poynting vector.6,7

In the case of metamaterials, it is evident that we should
first define a proper averaging procedure for the microscopic
fields that filters out their irrelevant higher-order fluctuations
around the inclusions.1 If we define with capital letters the
averaged source fields in the form E = 〈e〉 and B = 〈b〉, it
has been argued that the proper definition of the averaged
Poynting vector in metamaterials should be modified to neglect
the artificial magnetic effects on which negative refraction
is based, and the creative definition S = E × B/μ0 has been
put forward,7 independent of the actual value of the effective
permeability. Based on this definition of the Poynting vector,
the very notion of negative refraction has been put into
discussion.7,8

Since the Poynting vector is inherently based on a (nonlin-
ear) quadratic expression, the relation 〈e × b〉 = 〈e〉 × 〈b〉 is
generally incorrect and thus, in general, E × B/μ0 may not
have the same meaning as its microscopic counterpart (this is
evident if one considers the interface between such material
and a magnetic homogeneous material with μ �= μ0, for which
power conservation would not be satisfied if one associates to
this expression the meaning of power flux density, as discussed
ahead with more detail). In the following, we clarify these
issues and prove from first-principles considerations that it is
indeed possible to put forward a meaningful and self-consistent
definition of the averaged Poynting vector and other power
relations in metamaterials, consistent with those in natural
materials.

II. POYNTING IN A SELF-CONSISTENT DIRECTION

In this section, we consider fields with a time-harmonic
variation e−iωt , so that, in media with no magnetism (μ = μ0),
the (time-averaged) Poynting vector is sc = 1

2 Re{e × b∗/μ0}.
We base our discussion on the homogenization results of
Ref. 9, where it was proven that in low-loss periodic arrays
of dielectric inclusions the spatially averaged microscopic
Poynting vector,

S = 1

Vcell

∫
�

sc d3r, (1)
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associated with Bloch-periodic time-harmonic fields ei(k·r−ωt),
and real-valued wave vector k, may be exactly related to
the macroscopic effective permittivity of the homogenized
metamaterial by the following relation:

S · l̂ = 1

2
Re

{(
E × B∗

μ0

)
· l̂

}
− 1

4
ωE∗ · ∂εeff

∂kl

(ω,k) · E,

l = x,y,z, (2)

where E = 〈e〉, B = 〈b〉, the effect of the spatial averaging
operator 〈〉 is an ideal low-pass filter such that E = Eave

ik·r
with Eav = 1

Vcell

∫
�

e(r)e−ik·r d3r (Refs. 4 and 9) and kl is
the lth component of k. The nonlocal permittivity tensor
εeff(ω,k) includes the complete description of the metamaterial
macroscopic response, with arbitrary spatial dispersion effects
in its dependence on k, including artificial magnetism. It is
defined consistently with optical crystal theory,10 and can be
numerically calculated as explained in Refs. 4 and 9. For
macroscopic fields with the time-space variation ei(k·r−ωt),
the nonlocal permittivity tensor relates the macroscopic po-
larization vector P = 〈(ε − ε0)e〉 [ε = ε(r) is the permittivity
of the inclusions] and the macroscopic electric field as P =
(εeff(ω,k) − ε0I) · E.

Equation (2) shows that the proper expression for S needs
to be corrected to include the spatial dispersion in εeff , and it
is written in perfect analogy to the definition of power flux in
natural optical crystals with spatially dispersive properties.10

This is not necessarily surprising as this homogenization
procedure may apply also to natural materials. Indeed, even
though Ref. 9 considered only the case of metamaterials,
we show in the Appendices that the validity of (2) extends
even to the case of crystalline natural materials, such that the
interaction of atoms and molecules with the local field can
be described by an electric polarizability tensor αe = αe(ω)
(electric dipole approximation).

Specifically, within such a classical framework the spatially
averaged microscopic Poynting vector is linked to the macro-
scopic response of the material as in Eq. (2). The relation is
mathematically exact as long as the Sipe-Kranendonk lossless

condition Im{α−1
e } = − 1

6π
(ω

c
)3I holds,11,12 i.e., provided the

power extracted by the dipoles from the local field is equal to
the radiated power. This ensures that there is neither absorption
nor generation of energy by the system. The proof of these
results is presented in Appendices A and B. Obviously, for
the case of natural dielectrics the nonlocal effects are typically
quite insignificant, and thus Eq. (2) establishes that in such
circumstances 〈 1

2 Re{e × b∗/μ0}〉 ≈ 1
2 Re{E × B∗/μ0}.

These considerations clearly demonstrate that for low-
loss and time-harmonic fields it is possible to define the
macroscopic Poynting vector in either natural media or
metamaterials self-consistently with the standard definition of
the Poynting vector in vacuum, s = e × b/μ0, i.e., in such
a way that the macroscopic Poynting vector S, calculated
within the framework of an effective-medium theory, is exactly
coincident with the spatially and time-averaged microscopic
Poynting vector in vacuum.

Even though Ref. 9 considered only the case of Bloch
natural modes, these theoretical results remain valid even
when a macroscopic source (described by an arbitrary external

current je) is embedded in the composite material. Particularly,
as demonstrated in Appendix A, Eq. (2) still holds in the
limit of vanishing loss, even when the material is excited
by a distributed current je = Je,ave

ik·r, with Je,av an arbitrary
complex vector (the microscopic fields excited by such an
external current also have Bloch properties, but are not the
natural modes of the array). It is interesting to highlight that
a more general, arbitrarily localized source can always be
written as a superposition of currents of the form je = Je,ave

ik·r
(associated with different wave vectors and amplitudes), and
consequently the fields created by such a localized source
may be Fourier expanded in terms of the fields excited by the
elementary excitations je = Je,ave

ik·r, due to the linearity of
the problem.

After having established that the result (2) may be applied
to arbitrarily excited metamaterials with a general form of
spatial dispersion, let us apply it specifically to the case
wherein the macroscopic description of the metamaterial
may be characterized by effective local relative permittivity
εeff (ω) and permeability μeff (ω) (for simplicity, we restrict
our discussion to the case of isotropic media and assume
no magnetoelectric coupling), as in NIMs. As discussed in
Refs. 4, 9, 13, and 14, the generalized permittivity tensor under
these assumptions has the form

εeff

ε0
(ω,k) = εeffI + (

μ−1
eff − 1

) c2

ω2
k × I × k, (3)

where I is the identity dyadic. Substituting the above formula
into (2), we readily recuperate the classic textbook formula for
a time-averaged Poynting vector in magnetodielectric media:9

S = 1
2 Re{E × H∗}, (4)

where H ≡ μ−1
0 μ−1

eff B, ensuring that the only meaningful
definition of power flux vector density in metamaterials
coincides with the well-established one for natural materials.
Formula (4) remains valid even if the metamaterial has a
bianisotropic reciprocal response, as shown in Ref. 9 (the
definition of H must however be modified to take into
account the magnetoelectric coupling). This shows that proper
spatial averaging of the microscopic power flux vector sc,
in general affected by the spatial dispersion in εeff(ω,k),
requires considering the second-order spatial dispersion effects
associated with the effective metamaterial permeability. This
expression applies equally well to negative values of μeff , i.e.,
it holds for NIM.

In order to highlight the importance of our findings, let us
consider an arbitrary surface � that may intersect one or more

(a) (b)

FIG. 1. (Color online) (a) A closed surface � encloses a nonuni-
form region. (b) Extraction of the effective-medium parameters of a
composite material based on the theory of Ref. 4.
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different materials and may enclose sources of radiation, as
illustrated in Fig. 1(a). The power flow toward the region
outside � can be unambiguously calculated through the
microscopic Poynting vector as P = ∫

�
n̂ · sc ds. Obviously,

because of the strong fluctuations of the microscopic fields
near the portions of � that intersect regions with matter, the
use of e and b to calculate the power flow is impractical.
However, provided the wavelength of radiation is much larger
than the characteristic granularity of the materials, it is possible
to average out the fluctuations of the microscopic fields and use
the effective-medium theory. Indeed, assuming that � encloses
a macroscopic region, we can write

P =
∫

�

n̂ · sc ds ≈
∫

�

n̂ · S ds, (5)

where S is the spatially averaged Poynting vector, which, as
discussed before, in the case of local materials may be written
in terms of the average fields and effective parameters as in
Eq. (4). It follows that S can be really regarded as an averaged
flux of electromagnetic power, and the power flow through the
generic surface � remains the same, independent of the one
using the microscopic or the macroscopic fields. Actually, this
property is true even if � is not a closed surface, because the
averaging operator 〈〉 establishes an intrinsically local relation
between macroscopic and microscopic fields.

From the previous discussion it should also be clear that for
the Poynting vector to be really regarded as a flux of electro-
magnetic energy within an effective-medium description, then
S needs to be defined self-consistently as in Eq. (4) in every
material, because any acceptable definition of a macroscopic
Poynting vector is constrained to satisfy Eq. (5). In particular,
the definition of the macroscopic Poynting vector in a given
material cannot be made independent of the definition of the
(macroscopic) Poynting vector in vacuum, and it certainly
cannot be simultaneously compatible with different forms,
such as D × B, E × H, etc.6

III. POWER FLOW AND ENERGY RELATIONS IN
NEGATIVE-INDEX METAMATERIALS: NUMERICAL

VERIFICATION

In order to validate our theory in a practical example,
consider a two-dimensional (2D) metamaterial array formed
by high-index cylindrical dielectric inclusions with radius R,
permittivity εd = ε′ + iε′′, and permeability μ = μ0, embed-
ded in a plasmonic background material. The inclusions are
arranged in a square lattice with period a, as in the inset
of Fig. 2(d), excited with electric field in the xoy plane and
magnetic field along z, the cylinder axis. The permittivity
of the host medium follows the Drude dispersion model
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FIG. 2. (Color online) (a) Effective permittivity εeff (green curves) and permeability μeff (blue curves) versus normalized frequency ωa/c.
The discrete symbols correspond to the full wave homogenization values (Ref. 13) and the solid lines are obtained using Clausius-Mossotti
formulas. The inset shows the wave vector kx as a function of frequency. (b) x component of the Poynting vector calculated using (i) averaged
microscopic Poynting vector (solid blue) [Eq. (1)], (ii) nonlocal homogenization model (circles) [Eq. (2)], (iii) local effective parameters
(diamonds) [Eq. (4)], and (iv) results based on the definition of Poynting vector of Ref. 7. (c) Stored energy calculated using (i) averaged
microscopic stored energy (solid blue) [Eq. (6)], (ii) nonlocal homogenization model (circles) [Eq. (7)], and (iii) local effective parameters
(diamonds) [Eq. (8)]. (d) Heating rate calculated using (i) averaged microscopic heating rate (solid blue) [Eq. (9)], (ii) nonlocal homogenization
model (circles) [Eq. (10)], and (iii) local effective parameters (diamonds) [Eq. (11)]. The unit-cell geometry is shown in the inset.
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εh = 1 − ω2
p

ω(ω+i	) , where ωpa/c = 1.0 is the plasma frequency
and 	 is the collision frequency. Consider first the case in
which the background material is lossless, i.e., 	/ωp = 0.
We choose the cylinder permittivity εd ≈ 50.47ε0 and the
normalized radius R/a = 0.435 to ensure that εeff(ω) ≈
μeff(ω) ≈ −1 at ωa/c = 0.87, providing a negative index of
refraction and good matching with free space in this frequency
range, reproducing with good approximation the properties of
a Veselago-Pendry metamaterial lens.5

Figure 2(a) shows the local effective parameters εeff(ω),
μeff(ω), extracted as εeff(ω) = x̂ · εeff(ω,k = 0) · x̂/ε0 and
μ(ω) = 1 + (1 − 1

2ε0

ω2

c2 ŷ · ∂2εeff
∂k2

x
· ŷ|k=0)−1 (Ref. 4) from the

nonlocal dielectric function εeff(ω,k), evaluated numerically13

[the homogenization method is summarized in Fig. 1(b)].
As seen in Fig. 2(a), both permittivity and permeability are
simultaneously negative for 0.85 < ωa/c < 1. The solid lines
represent the effective parameters predicted by Clausius-
Mossotti mixing formulas,1 which agree fairly well with
the exact data extracted numerically (discrete symbols),
confirming that a quasistatic local description of such a NIM
is accurate.

In order to characterize the Poynting vector in the metama-
terial, we have fixed the wave vector at each frequency ω so that
kx = ω/c

√|εeffμeff|, as reported in the inset of Fig. 2(a). The
structure is excited by an external current density distribution
je = jeŷe+ikxx , which effectively excites the natural Bloch
mode of this array, and the corresponding microscopic fields
are determined numerically.13 The macroscopic averaged
electric and induction fields are then calculated as described

above. Figure 2(b) shows the computed x component of the
Poynting vector calculated using (i) the spatial average of
its exact microscopic definition s [Eq. (1)] (solid blue line),
(ii) the macroscopic (averaged) fields and generalized permit-
tivity tensor [Eq. (2)] (discrete circles), (iii) the local effective
parameters [Eq. (4)] (discrete diamonds), and (iv) the incorrect
definition of Poynting vector S = E × B/μ0 proposed in
Ref. 7. Consistent with Ref. 9, the results obtained with
microscopic and macroscopic (averaged) fields are coincident.
Even the results obtained with a local model, using the
standard Poynting vector definition (4), follow very closely
the exact curves. In particular, it is seen that all three curves
indeed flip the sign of power flow crossing the frequency
ωp, ensuring that for negative-index propagation (ω < ωp)
power univocally flows backward. Finally, the curve obtained
assuming the wrong definition in Ref. 7 yields a completely
different response, since it neglects the artificial magnetism
introduced by high-permittivity cylinders, and it cannot be
interpreted as an average power flux density. Its value is always
positive for kx > 0, incorrectly implying that no negative
refraction and backward propagation would be available in
such metamaterial.7

Our theory establishes that Eq. (2) yields exactly the same
result as the spatial average of s in the limit of vanishing loss,
ensuring that indeed Eq. (2) represents the correct macroscopic
definition of the Poynting vector in an arbitrary metamaterial.
In addition, it proves that Eq. (4) is the correct definition
for local (meta)materials, as in the present example. As
is well known, effects of loss are unavoidable in realistic
metamaterials, and thus it is interesting to study how the

(a)

(c) (d)

(b)

FIG. 3. (Color online) (a), (b) Similar to Fig. 2(b), except that losses are taken into account: (a) 	/ωp = 0.1, (b) 	/ωp = 2.0. (c), (d)
Similar to Fig. 2(c), except that losses are taken into account: (c) 	/ωp = 0.1, (d) 	/ωp = 0.5.
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energy flux vectors compare in a more realistic scenario,
as in Figs. 3(a) and 3(b), where we consider 	/ωp = 0.1
and 	/ωp = 2.0, respectively. Despite the presence of strong
loss, the general agreement between Eqs. (1), (2), and (4)
remains very good, confirming that even in lossy systems the
macroscopic Poynting vector can be self-consistently defined
(to a very good approximation) with the averaged microscopic
Poynting vector.

To further validate this effective-medium theory, we have
used CST Microwave Studio to study the refraction of a
Gaussian beam by a finite metamaterial slab with the same
microstructure. The considered metamaterial slab is finite
along the x and y directions, with thicknesses Lx = 17.8a

and Ly = 60.4a, respectively. In the simulation, the effect of
loss is taken into account by considering 	/ωp = 0.05. A
Gaussian beam illuminates the structure at an angle θi = 33◦.
Figure 4(a) shows a time snapshot of Hz at ωa/c = 0.87, for
which εeff ≈ μeff ≈ −1. Negative refraction is evident in the
plot and, in the corresponding time animation,15 it is possible to
verify that the phase velocity is antiparallel with the direction
of energy flow inside the slab, which confirms that Sx and
kx have opposite signs, as correctly predicted by our theory
[Fig. 2(b)]. In Fig. 4(b) we have analyzed the emergence of
backward wave propagation and negative refraction in the
presence of much higher loss, 	/ωp = 0.9 (this value may

(a)

(b)

FIG. 4. (Color online) Time snapshot of Hz for a Gaussian
beam illuminating the metamaterial slab (θi = 33◦). (a) slab with
dimensions Lx = 17.8a and Ly = 60.4a and plasmonic host with
collision frequency 	/ωp = 0.05. (b) Similar to (a) but for the
parameters Lx = 6a, Ly = 60a, and 	/ωp = 0.9.

model the response of some semiconductors). Notwithstanding
the presence of strong absorption, the emergence of negative
refraction is still evident, even though now the transmission
level is quite weak here.

Within this framework, we can also consider other spatially
averaged energy quantities of interest. The expression for the
averaged stored energy,

Wav = 1

4Vcell

∫
�

|b|2
μ0

d3r+ 1

4Vcell

∫
�

∂

∂ω
(ωε)|e|2 d3r, (6)

may be related to the macroscopic effective parameters in
analogy with Eq. (2) as9

Wav = 1

4

|B|2
μ0

+ 1

4
E∗ · ∂

∂ω
(ωεeff) · E. (7)

Equations (6) and (7) are strictly valid for vanishingly
small loss and time-harmonic Bloch microscopic fields. In the
special case of local metamaterials, for which Eq. (3) applies,
the stored energy expression becomes

Wav = 1

4

∂

∂ω
(ωμ0μeff)|H|2 + 1

4

∂

∂ω
(ωε0εeff)|E|2, (8)

which is consistent with classic textbook formulas for mag-
netoelectric dispersive media,1 but extended here to local
metamaterials and effective constitutive parameters.

Figure 2(c) shows the stored energy Wav in the metamaterial
sample of Fig. 2(b), comparing the results based on Eqs. (6)–
(8), in analogy with Fig. 1(b). It is seen that the exact averaged
stored energy [Eq. (6)] (solid blue line) coincides with the
stored energy computed from nonlocal effective parameters
[Eq. (7)] (discrete circles), in agreement with Ref. 9. Moreover,
the results obtained from local effective parameters [Eq. (8)]
(discrete diamonds) follow reasonably well the two curves,
confirming that the metamaterial response is local. When
losses are taken into account [Figs. 3(c) and 3(d), consistent
with the lossy scenario of Figs. 3(a) and 3(b)], the results
obtained using Eqs. (6) and (7) partially lose their close agree-
ment, but this is not surprising, since the same definition of
macroscopic stored energy density loses much of its physical
meaning in presence of losses (Ref. 10, p. 63). Still, the dif-
ferent curves show good agreement in the limit of low losses.

Finally, we can apply analogous considerations to the
heating rate in metamaterials. The spatially averaged heating
rate is analogously defined as

qav = 1

Vcell

∫
�

ω

2
ε′′(r)|e(r)|2 d3r, (9)

which may be written in terms of the generalized permittivity
tensor as9

qav = 1
2 Re{−iωE∗ · εeff(ω,k) · E}. (10)

The above formula exactly holds only in the case of
real-valued wave vector k, which, due to the presence of
loss, can only be obtained if the metamaterial is excited by an
external current distribution je = Je,ave

ik·r (they are evidently
not eigenmodes of a lossy array). For a local material, Eq. (10)
simplifies into

qav = 1
2ωε0ε

′′
eff(ω)|E|2 + 1

2ωμ0μ
′′
eff(ω)|H|2, (11)
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again extending the textbook formulas for natural materials to
local metamaterials. Figure 2(d) shows the comparison among
these three definitions (9)–(11) for 	/ωp = 0.1 and cylin-
der permittivity εr = 50.47 + 0.1i (for simplicity, frequency
dispersion in the dielectric is ignored). The results obtained
using Eqs. (9) (solid blue line) and (10) (discrete circles)
are virtually coincident, consistent with Ref. 9. Similarly, the
results computed using the local model [Eq. (11)] (discrete
diamonds) agree extremely well.

IV. CONCLUSIONS

We have shown here how it is possible to self-consistently
define the Poynting vector and energy relations in meta-
materials with local constitutive parameters, even when the
negative index of refraction or anomalous values of effective
constitutive parameters are considered. We have proven from
first-principles considerations based on the general theory
derived in Ref. 9 that the correct definitions of the Poynting
vector, stored energy, and heating rate in NIMs coincide with
those in natural materials after properly defining macroscopic
averaged fields and effective constitutive parameters, and that
other proposed definitions are not physically meaningful.
We have also validated our results with full-wave numerical
simulations considering a 2D NIM, which indeed supports
backward propagation and power flow antiparallel to phase
velocity, showing excellent quantitative agreement with Eq. (4)
and our theory. Moreover, within a purely classical framework,
we have extended the theory of Ref. 9 to the case of natural
dielectrics, showing that also in this case the spatially averaged
microscopic Poynting vector can be written in terms of
macroscopic fields. This further supports that, independent
of whether we consider one or two levels of homogenization
(over an atomic scale in natural media, and over an additional
mesoscopic scale in metamaterials), the macroscopic Poynting
vector can always be defined self-consistently with its form in
vacuum, maintaining its physical meaning of a power flux
density vector.

To conclude, we would like to point out that our theory
implies (in time-harmonic regime) that if the electromagnetic
momentum density is g = ε0e × b at the microscopic (molecu-
lar) level, then the average electromagnetic momentum density
in a macroscopic local medium is given by 〈g〉 = ε0〈e × b〉 =
E × H/c2, which is the so-called Abraham form.16 Notice
that at the microscopic level, if the fields are not averaged
in any form, both the Minkowski and the Abraham forms
are coincident. However, as discussed in detail in Ref. 16,
the electromagnetic momentum of the fields does not give a
complete description of a physical system: One also needs
to consider the terms related to the motion of matter (e.g.,
the mechanical momentum of the electrons in the molecular
dipoles).1,16 Therefore, 〈g〉 = ε0〈e × b〉 = E × H/c2 is insuf-
ficient to characterize the total momentum a physical system
incorporating both electromagnetic waves and material media.
Quite differently, the results of this work indicate that the
(time-averaged) energy flux vector (understood as a flux of
electromagnetic energy) can be fully described by S = E × H
in low loss macroscopic media with a local effective response.
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APPENDIX A: SPATIALLY AVERAGED POYNTING
VECTOR

In this appendix, we extend the theory of Ref. 9 to the cases
where (i) the medium is excited with an external (macroscopic
current) and (ii) the medium is formed by point dipole-type
electrical scatterers. The latter case may model with good
approximation (within the framework of a purely classical
theory) the response of natural dielectrics. Let us consider a
periodic material such that the microscopic fields (in time-
harmonic regime) satisfy the Maxwell’s equations

∇ × e = iωb; ∇ × b
μ0

= −iωε0e + jd + je. (A1)

In the above, je is the external (macroscopic) excitation
(if any), and jd is the microscopic density of current induced
in the material. Since je is a macroscopic excitation, it must
satisfy je = 〈je〉 and, assuming it has the Bloch property,
it is necessarily of the form je = Je,ave

ik·r, with Je,av a
constant vector. The induced currents are of the form jd =
−iω(ε − ε0)e, if the material is described at the microscopic
level by a dielectric function ε = ε(r) (e.g., metamaterials),
or alternatively by jd = ∑

I −iωpe,Iδ(r − rI), in the limit in
which the material may be described as a collection of electric
point dipoles at a microscopic level (e.g., classical description
of natural materials); rI represents the sites of the dipoles and
pe,I the corresponding electric dipole moments.

Let us now consider two Bloch solutions e1 and e2 of
Eq. (A1), associated with the external currents je,1 = Je,1e

ik1·r
and je,2 = Je,2e

ik2·r, where the wave vectors k1 and k2 are
such that k1 = k∗

2. In case e1 is a natural mode of the periodic
structure the external current je,1 is trivial (je,1 = 0). A similar
statement can be made about the field e2.

Similar to the analysis of Ref. 9, Eq. (26), e1 can always
be regarded as an element of a family e1F (r; k) of solutions
of Maxwell’s equations associated to the external excitation
je,1 = Je,1(k)eik·r, such that

Je,1(k) = −iωε0

[
− 1

ε0
εeff(ω,k) + c2

ω2
k2I − c2

ω2
kk

]
· Eav,1.

(A2)

Specifically, we have that e1(r) = e1F (r; k1). In the above,
Eav,1 is such that 〈e1〉 = Eav,1e

ik1·r. It is interesting to note that
the amplitude of the external excitation, Je,1(k), is written in
terms of the dielectric function of the effective medium. All
the elements of the family e1F (r; k) have the same amplitude
after the microscopic fluctuations are filtered out: 〈e1F (·; k)〉 =
Eav,1e

ik·r (with Eav,1 independent of k).9 For simplicity, in
what follows we will drop the subscript F from the family of
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fields e1F (r; k) and regard simply e1 = e1(r; k) as a continuous
function of the wave vector.

As in Ref. 9, we define an auxiliary vector field s1,2 as
follows:

s1,2 = 1

−4iωμ0
(e1 × ∇ × e∗

2 − e∗
2 × ∇ × e1). (A3)

It is a simple exercise to show that if

e1 · j∗d,2 + e∗
2 · jd,1 = 0, (A4)

then

∇ · s1,2 = −1

4
(e1 · j∗e,2 + e∗

2 · je,1). (A5)

The condition (A4) holds if the material is lossless. Indeed,
when the material is modeled at the microscopic level by a
dielectric function ε = ε(r) and jd = −iω(ε − ε0)e, Eq. (A4)
is always satisfied provided ε = ε(r) is real valued. The case
where the material is formed by an array of electric dipoles at
the microscopic level is trickier and is studied in Appendix B.

Our objective is to calculate the spatial average of s1,2:

(s1,2)av = 1

Vcell

∫
�

s1,2 d3r. (A6)

To this end, we calculate the derivative of both members of
Eq. (A5) with respect to kl (l = x,y,z), regarding e1 = e1(r; k)
and je,1 = Je,1(k)eik·r as functions of k, as explained before.
Integrating the resulting equation over the unit cell it is found
that

1

Vcell

∫
�

∇ · ∂s1,2

∂kl

d3r

= − 1

4Vcell

∫
�

(
∂e1

∂kl

· j∗e,2 + e∗
2 · ∂je,1

∂kl

)
d3r. (A7)

Now it is simple to check that for k = k1 the function ∂s1,2

∂kl
−

ixls1,2 is periodic. Thus, the integral of ∇ · ( ∂s1,2

∂kl
− ixls1,2) over

the unit cell vanishes, and we find that

i

Vcell

∫
�

∇ · (xls1,2)d3r

= − 1

4Vcell

∫
�

(
∂e1

∂kl

· j∗e,2 + e∗
2 · ∂je,1

∂kl

)
d3r. (A8)

The above identity holds for k = k1 [where k is the parame-
ter associated with the family of functions e1 = e1(r; k)]. After
trivial manipulations, using again Eq. (A5), it is found that

(s1,2)av,l = 1

4Vcell

∫
�

(
i
∂e1

∂kl

+ xle1

)
· j∗e,2

+ e∗
2 ·

(
i
∂je,1
∂kl

+ xlje,1

)
d3r, (A9)

where (s1,2)av,l = (s1,2)av · ûl . Since i
∂je,1
∂kl

+ xlje,1 =
i

∂Je,1

∂kl
eik1·r and i ∂e1

∂kl
+ xle1 = i[ ∂

∂kl
(e1e

−ik·r)]eik·r we have that

(s1,2)av,l = i

4

∂Je,1

∂kl

· E∗
av,2

+ i

4Vcell
J∗

e,2 ·
(

∂

∂kl

∫
�

e1e
−ik·rd3r

)
k=k1

.(A10)

However, the integral 1
Vcell

∫
�

e1e
−ik·r d3r = Eav,1 is inde-

pendent of k, and thus the second term in the right-hand side
of the above equation vanishes. Therefore we conclude that

(s1,2)av,l = i

4
E∗

av,2 · ∂Je,1

∂kl

. (A11)

Using now Eq. (A2) it is found after straightforward
calculations that

(s1,2)av,l = 1

4

(
Eav,1 × B∗

av,2

μ0
+ E∗

av,2 × Bav,1

μ0

)
l

− ω

4
E∗

av,2 · ∂εeff

∂kl

(ω,k1) · Eav,1, (A12)

which is in agreement with Ref. 9. In particular, when k1 is
real valued we can choose e1 = e2 and this yields Eq. (2).

APPENDIX B: PROOF OF EQ. (A4) FOR LOSSLESS POINT
DIPOLES

Here, we demonstrate that, in case of a medium formed
(at the microscopic level) by point-dipole electrical scatterers,
condition (A4) is satisfied provided that

Im
{
α

−1
e

} = − 1

6π

(ω

c

)3
I, (B1)

where αe is the electric polarizability tensor of the dipoles,
and the time variation e−iωt is implicit. The current density
induced along a given dipole (which, without loss of generality,
is assumed to be centered at the origin) is of the form jd =
−iωpeδ(r) with pe = ε0αe · eloc; eloc is the local field in the
vicinity of the particle (i.e., the total field minus the self-
induced field created by the particle itself).

To prove the enunciated result, we note that Eq. (A4) is
equivalent to

e1(r) · p∗
e2δ(r) − e∗

2(r) · pe1δ(r) = 0. (B2)

For true point dipoles the fields calculated at the dipole
position are singular. To avoid such a pathologic situation first
we will regard δ(r) not as the exact Dirac distribution, but
instead as a smooth function (e.g., a Gaussian distribution)
extremely localized at the origin. In these conditions the fields
remain finite in the position of the dipole. Considering the
decomposition e1 = e1,loc + e1,self , and using pe = ε0αe · eloc,
we find that (using the fact that αe is a symmetric tensor)

e1,self (r) · p∗
e2δ(r) − e∗

2,self (r) · pe1δ(r)

+ 2i

ε0
p∗

e2 · Im
{
α

−1
e

} · pe1δ(r) = 0. (B3)

The self-field is given by eself (r) = 1
ε0

(ω
c

)2
∫

G(r|r′) ·
peδ(r′)d3r′, where G = (I + c2/ω2∇∇)�0(r − r′) with �0 =
ei(ω/c)r/4πr . Hence, we can write

e1,self (r) · p∗
e2 − e∗

2,self (r) · pe1

= 1

ε0

(ω

c

)2
∫

(p∗
e2 · G(r|r′) · pe1

−pe1 · G
∗
(r|r′) · p∗

e2)δ(r′)d3r′

= 1

ε0

(ω

c

)2
2i

∫
p∗

e2 · Im{G(r|r′)} · pe1δ(r′)d3r′, (B4)
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where we used the transpose symmetry of G. It can be easily

checked that Im{G(r|r′)} is a smooth function in the vicinity
of r = r′. Hence, at this point it is possible to let δ(r) become
the Dirac distribution. Therefore, Eq. (B3) yields

(ω

c

)2
p∗

e2 · Im{G(r = r′)} · pe1 + p∗
e2 · Im

{
α

−1
e

} · pe1 = 0.

(B5)

However, simple calculations show that Im{G(r = r′)} =
1

6π
ω
c

I, and therefore we finally conclude that the condition
(A4) is satisfied if and only if Eq. (B1) holds, as we wanted to
prove.

It is interesting to note that Eq. (B1) is nothing more than
the well-known Sipe-Kranendonk power-balance relation,11

which guarantees that the power extracted by the dipole from
the local field is equal to the radiated power.
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