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Fractionally charged topological point defects on the kagome lattice
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We study a two-dimensional system of spin-polarized fermions on the kagome lattice at filling fraction f = 1/3
interacting through a nearest-neighbor interaction V . Above a critical interaction strength Vc a charge-density
wave with a broken Z3 symmetry is stabilized. Using the unrestricted mean-field approximation, we present
several arguments showing that elementary topological point defects in the order parameter bind a fractional
charge. Our analysis makes use of two appealing properties of the model: (i) For weak interaction, the low-energy
degrees of freedom are described by Dirac fermions coupled to a complex-valued mass field (order parameter).
(ii) The nearest-neighbor interaction is geometrically frustrated at filling f = 1/3. Both properties offer a route
to fractionalization and yield a consistent value ±1/2 for the fractional charge as long as the symmetry between
the up and the down triangles of the kagome lattice is preserved. If this symmetry is violated, the value of the
bound charge varies continuously with the strength of the symmetry-breaking term in the model. In addition,
we have numerically computed the confining potential between two fractionally charged defects. We find that it
grows linearly at large distances but can show a minimum at a finite separation for intermediate interactions. This
indicates that the polaron state, formed upon doping the charge-density wave, can be viewed as a bound state of
two defects.
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I. INTRODUCTION

The concept of fermion fractionalization has been applied
to a variety of condensed-matter systems. Prominent examples
are spin-charge separation in polyacetylene,1 fractionally
charged excitations in the fractional quantum Hall states2

and magnetic monopoles in spin ice.3 In all these examples,
excitations carrying fractional quantum numbers with respect
to the elementary particles forming the system were found. The
term fractionalization is stringently used only if well-defined
excitations with fractional quantum number exist on all length
scales. In gapped insulating systems in dimensions d � 2
this requires topological order of the ground state,4 that is,
a ground-state degeneracy which depends on the topology of
the underlying system. Naturally, the effective low-energy
theory describing the fractional excitations is a gauge theory
in the deconfining phase, such as the Chern-Simons theory
for the two-dimensional fractional quantum Hall state or the
Coulomb gauge theory for the three-dimensional spin-ice
materials and other frustrated magnetic systems.5–7 Electron
fractionalization has also been discussed in the context of
the high-Tc cuprates on the basis of the Z2 gauge theory.8

In this article, however, we would like to use the concept
of fractionalization in a less stringent way. Particularly, we
are interested in phenomena where fractionalization occurs
only up to a certain length scale which usually depends on
temperatures and model parameters. This more general point
of view allows one to cover a broader range of phenomena and
to access this fascinating phenomena from distinct theoretical
viewpoints.

Several authors have stressed the field-theoretical point of
view where fractionalized quantum numbers are carried by
solitonic solutions of field theories which support isolated
mid-gap states.9,10 In condensed-matter physics, this route to
fractionalization is well appreciated for the one-dimensional
example discussed by Su, Schrieffer, and Heeger where the
soliton describes a domain wall separating two degenerate

dimerized ground states.1 More recently, a body of work
has appeared11–20 on generalizations of this concept to two
dimensions and it has been argued that topological defects
in the “kekule” order parameter offers an example for the
solitonic fractionalization in two-dimensional graphene.11

However, in contrast to the one-dimensional case, the energy
cost associated with a vortex in the complex-valued Bose field
is not finite but grows with system size. In the continuum
limit, the interaction between two vortices depends logarith-
mically on the distance and vortices can proliferate above
the Kosterlitz-Thouless temperature. On the lattice, however,
they are always confined at sufficiently long distances.11,15

It was also pointed out that in order to heal the vortex at
long distances, a coupling to an axial gauge field (which itself
supports a vortex) can be introduced, thereby rendering the
vortex energy finite.12,14

Another perspective on the fractionalization phenomena
emerges from models describing strongly interacting particles
on a lattice with geometrical frustration.21,22 In this class of
models, the strong interaction enforces a local constraint and it
is the violation of this local constraint which carries a fractional
charge. Clearly, there is a close relation to frustrated spin
models and the aforementioned spin-ice system is a prominent
representative. In many cases, the frustrated particle interaction
or spin exchange can be mapped on an effective hardcore dimer
model. Removing one dimer introduces two monomers which,
under certain circumstances, are well defined fractionalized
excitations.23–26

In this article, we want to make contact with both routes
to fractionalization by studying topological point defects
in a model of spin-polarized fermions on the kagome lat-
tice subject to a nearest-neighbor interaction V . Previous
investigations27,28 of this model at filling fraction f = 1/3
suggest a zero-temperature phase transition at a critical
interaction Vc between the semimetallic Dirac liquid for V <

Vc and a gapped and charge-ordered state with a
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reconstruction of the unit cell for V > Vc. Our discussion
of topological point defects in the order parameter of the
charge-density wave will make use of two important properties
of the model. First, the low-energy degrees of freedom in the
weakly interacting limit are well described by Dirac fermions
coupled to the complex-valued order parameter which enters
as a mass field. This offers the possibility for the solitonic
fractionalization mechanism in two dimensions in analogy
with graphene11–14,18 and related systems.15,19,20 Second, the
nearest-neighbor interaction is geometrically frustrated and
the classical charge configurations with lowest energy satisfy
the “triangle rule.” This constraint states that there is exactly
one particle on every triangle of the kagome lattice. A local
violation binds a fractional charge. Indeed, this possibility has
recently been explored in the strongly interacting limit using
exact diagonalization techniques and it has been argued that the
defects carry a fractional charge ±1/2 and are asymptotically
free in the large V limit.29

Our paper is organized as follows. In Sec. II we introduce
the model and discuss the triangle rule and the effect of
its local violation. In Sec. III we introduce the unrestricted
mean-field approximation, discuss the leading instability of
the Dirac liquid toward the charge-density wave, and introduce
a Ginzburg-Landau expansion of the free energy. This sets the
stage for introducing topological point defects in Sec. IV, and
in Sec. V we numerically study solutions with point defects and
compute the value of the bound charge and the confinement
potential between two defects. Eventually, in Sec. VI, we
consider the weakly ordered state and establish a description
in terms of Dirac fermions coupled to a complex-valued mass
term.

II. MODEL FOR CHARGE-ORDERED KAGOME LATTICE

Our starting point is a tight-binding model of spin-polarized
fermions on the kagome lattice at filling fraction f = 1/3
subject to a nearest-neighbor repulsion V . The Hamiltonian is
given by

H = −t
∑
〈i,j〉

(c†i cj + H.c.) + V
∑
〈i,j〉

ninj + HBOW. (1)

Here c
(†)
i annihilates (creates) a spin-polarized fermion on site

i and ni = c
†
i ci . The hopping integral is denoted by t > 0 and

V > 0 specifies the nearest-neighbor interaction. At several
places in this article we also consider a term which enhances
the hopping on the up triangles:

HBOW = −δt
∑

〈i,j〉∈�

(c†i cj + H.c.). (2)

This term induces a bond order wave which breaks the
symmetry between the up and the down triangles. However,
unless otherwise stated, we set δt = 0. The noninteracting
(V = 0) band structure is obtained by diagonalizing the matrix
H0(K ) = −2t�(K ), where

�(K ) =

⎛
⎜⎝

0 cos(K1/2) cos(K2/2)

cos(K1/2) 0 cos(K3/2)

cos(K2/2) cos(K3/2) 0

⎞
⎟⎠ . (3)

TABLE I. Definitions of the lattice vectors used in this paper (in
units of the lattice constant a) and the values of the inner product with
the uniform ordering vector G = (8π/3,0) modulo 2π .

ν 1 2 3

aν (1,0) (1/2,
√

3/2) (−1/2,
√

3/2)
G · aν 2π/3 −2π/3 2π/3

rν (−1/4, − √
3/12) (1/4, − √

3/12) (0,
√

3/6)
G · rν 2π/3 −2π/3 0

Above, we have introduced Kν = K · aν and aν (ν = 1,2,3)
are given in Table I. There is a flat band at energy 2t , as well
as two dispersing bands. It is well known that at f = 1/3, the
linearized band structure near the Fermi energy is described
by two Dirac cones, similar to the situation found in graphene.

A. Triangle rule in the atomic limit

Let us now look at the atomic limit t = 0. It is known that at
filling fraction 1/3 the interaction energy can be minimized by
a macroscopic number of classical charge configurations. This
fact becomes clear when rewriting the interaction Hamiltonian
in real space as a sum over all triangles δ of the kagome lattice
in the following way:

HV = V
∑
〈i,j〉

ninj = V

2

∑
δ

(Nδ − 1)2, (4)

where Nδ = ∑
i∈δ ni denotes the total charge operator on the

triangle δ (δ can label both an up or a down triangle). Clearly,
the interaction is lowest for configurations which fulfill the
local constraint Nδ = 1. Taking r to be the center of an
up triangle and using the labeling convention introduced in
Fig. 1(a) and Table I, this constraint takes the form

n1(r) + n2(r) + n3(r) = 1, (5a)

n3(r) + n1(r + a2) + n2(r + a3) = 1. (5b)

The first equation is written for the up triangles and the
second one for the down triangles. Thus, HV is minimized

1 2

3

r1
r2

r3

(a) (b)

r r + a1

r + a2

FIG. 1. (Color online) (a) The unit cell of the kagome lattice
contains three sites labeled by 1, 2, and 3. The vector r is an element
of the underlying triangle lattice and denotes the location of the center
of the up triangles. The unit cell vectors are denoted by a1 and a2.
(b) Density distribution in the charge-density wave phase found in
the model defined by Eq. (1). There is a

√
3 × √

3 reconstruction of
the unit cell.
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by classical charge configurations with exactly one fermion
on every triangle and the ground state is macroscopically
degenerate. In the following, we refer to the local constraint
Eq. (5) as the “triangle rule.”30 It is instructive to see how
the macroscopic degeneracy shows up in reciprocal space.
Introducing the Fourier components

nν( Q) =
∑

r

nν(r)e−i Q·(r+rν ), (6)

we can write the interaction as

HV = V

N

∑
Q

�n( Q)†�( Q)�n( Q). (7)

Here, N denotes the number of unit cells and we have
introduced the vector notation

�n( Q)† = [
n1(− Q) n2(− Q) n3(− Q)

]
(8)

The matrix �( Q) is given in Eq. (3). Its lowest eigenvalue is
equal to −1, independent of Q. It follows that the interaction
energy is minimized by all charge configurations which have
Fourier components lying in the flat band. Indeed, it is
straightforward to show that charge configurations which are
proportional to the eigenvectors of the flat band fulfill the
two constraints [Eq. (5)] in momentum space. For Q = 0
the conditions (5a) and (5b) are equivalent, which is a
manifestation of the quadratic band touching point at Q = 0
in �( Q).

The macroscopic degeneracy of the classical charge con-
figurations is lifted for finite t . In particular, for t/V � 1, the
model Eq. (1) can be mapped onto a quantum dimer model
by identifying an occupied site of the kagome lattice with a
dimer on the hexagonal lattice.28,29 Thereby, ring exchange
processes of order t3/V 2 in the original model translate into
dimer flips in the dimer model which stabilizes a valence
bond crystal with a

√
3 × √

3 reconstructed unit cell.31 The
kinetic energy gained by resonating plaquettes favors charge
configurations which are connected by local dimer flips.
The classical configuration which has most flippable plaque-
ttes corresponds to the mean-field charge-density wave shown
in Fig. 1(b). Note also that the constraint (5) maps onto a
hardcore constraint for dimer coverings.

B. Violation of triangle rule and fractional charge

Let us now consider a classical charge configuration which
locally violates the triangle rule Eq. (5) for either an up or
a down triangle. An example is shown in Fig. 2 where the
triangle rule is violated on a single down triangle. In such a
situation, the total charge density per unit cell depends on how
it is measured. For example, if we measured it by summing the
charges on the up triangles, we would conclude that there is
exactly one particle in every unit cell. On the other hand, if we
measured it by summing the charges on the down triangles, we
would conclude that there is one particle missing in the unit cell
which contains the empty down triangle. A more sensitive way
which avoids this ambiguity is to introduce a charge density
defined on every triangle as half the value of the sum of the
charges on that triangle. This charge density is then defined

1/2

FIG. 2. (Color online) A classical charge configuration which
locally violates the triangle rule on the shaded (yellow) down triangle.
We introduce a local charge density defined on every triangle as
half the value of the sum of the charges on that triangle. In this
way we see that the violation of the triangle rule carries a fractional
charge 1/2.

on the hexagonal lattice formed by the center points of the
triangles (see Fig. 2). If the triangle rule is fulfilled everywhere,
there is a charge density −1/2 on every site of the hexagonal
lattice (we associate a charge −1 with a single particle). In this
way we see that an empty triangle carries a fractional charge
1/2 compared to a configuration which satisfies the triangle
rule. Likewise, a triangle with two particles carries a charge
−1/2 and with three particles a charge −1.

III. MEAN-FIELD DESCRIPTION

In this section we start with a conventional mean-field
theory and discuss some properties of the uniformly ordered
system. In the Hartree approximation the density-density
interaction is decoupled in the following way:

nν(r)nμ(r ′)
≈ nν(r)ρμ(r ′) + nμ(r ′)ρν(r) − ρν(r)ρμ(r ′). (9)

Here we have introduced the expectation values

ρν(r) = 〈nν(r)〉 = 1

N

∑
Q

ρν( Q)ei Q·(r+rν ) (10)

of the local densities with Fourier components ρν( Q). In
addition to the Hartree terms in Eq. (9) also the Fock terms
have been considered in Ref. 27 for uniform solutions. These
terms tend to stabilize the semimetallic phase and the critical
interaction strength for the phase transition is V HF

c ≈ 3t , in
good agreement with other methods.28 On the other hand,
when keeping only the Hartree terms as in Eq. (9), the critical
interaction strength is smaller, V H

c ≈ 2.2t . However, except
for this shift, the qualitative aspects of the Hartree solution
seems to be the same and to keep it simple, we use the
decoupling Eq. (9). We note here that the situation for filling
fraction f = 2/3 is quite different because complex Fock
terms stabilize an interaction-driven topological insulator for
arbitrary small nearest-neighbor interactions,27 similar to what
is found on the decorated honeycomb lattice at half filling.32
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A. Mean-field triangle rule

Any mean-field state is characterized by a self-consistent
charge distribution {ρν(r)} and the configurations with lowest
energies fulfill the triangle-rule Eq. (5) on average. In Fourier
space, we can write it for Q 
= 0 as

0 = ρ1( Q)e−iQ2/2 + ρ2( Q)e−iQ3/2 + ρ3( Q), (11a)

0 = ρ1( Q)eiQ2/2 + ρ2( Q)eiQ3/2 + ρ3( Q), (11b)

where Qν = Q · aν , as before. If we introduce the vector
�ρ( Q) = [ρ1( Q) ρ2( Q) ρ3( Q)]T the above condition is equiv-
alent to the “flat-band” condition

�( Q) �ρ( Q) = −�ρ( Q). (12)

The mean-field interaction can then be written as

H ′
V = −2V

N

∑
Q,ν

nν(− Q)ρν( Q) + V

N

∑
Q,ν

ρν(− Q)ρν( Q),

where �ρ( Q) satisfies Eq. (12).

B. Leading instability

In order to find the leading instability of the interacting
system as function of the interaction V , we can study the static
mean-field susceptibility associated with flat-band configura-
tions [configurations which are compatible with Eq. (12)]:

χMF( Q) = χ0
Q

1 − V χ0
Q

. (13)

The leading instability at a fixed temperatures occurs at an
ordering vector G which satisfies V χ0

G = 1 for the smallest
value of V . This also defines the critical interaction V 0

c =
1/χ0

G . In Eq. (13) we have introduced the response function of
the noninteracting system which probes charge configurations
satisfying the triangle rule on average:

χ0
Q(T ) = − T

N

∑
iωn

Tr[G0(iωn)A( Q)G0(iωn)A(− Q)].

Here G0(iωn) = 1/[iωn − H0 + μ] is the Matsubara Green’s
function operator of the noninteracting system and ωn are
fermionic Matsubara frequencies. The operator A( Q) =
�e( Q) · �n( Q) with �( Q)�e( Q) = −�e( Q) and �e( Q) · �e( Q) = 1
enforces the triangle rule on average. The trace involves
summation over K and the three bands of the noninteracting
system. Figure 3 shows χ0

Q(T = 0). The static susceptibility is
largest at the corners of the hexagonal Brillouin zone and for
the critical interaction at T = 0 we find the numerical value
V 0

c (T = 0) ≈ 2.33t . The leading instability therefore occurs
at one of the three ordering vectors G1, G2, or G3 connecting
opposite corners of the hexagon.

As mentioned earlier, this instability is a charge-density
wave with a

√
3 × √

3 reconstruction of the unit cell and is
shown in Fig. 1(b). Instead of working with three different
ordering vectors, we fix G = G1 and allow for a complex
phase of the charge-density wave order parameter (see below).
In the following we choose

G = K+ − K−, (14)

FIG. 3. (Color online) The static susceptibility χ0
Q of the non-

interacting system at T = 0 associated with charge configurations
satisfying the triangle rule on average. χ 0

Q is largest at the corners of
the hexagon forming the first Brillouin zone. The leading instability
is a charge-density wave with one of the three ordering vectors G1,
G2, or G3.

where K± denote the locations of the two inequivalent Dirac
points in the first Brillouin zone,

K± = ±
(

4π

3a
,0

)
. (15)

Obviously, G couples the two Dirac points and it is this
“nesting” which opens a gap above a critical interaction.

C. Ginzburg-Landau expansion

From the triangle rule (11) it follows that ρ1(G) = ρ2(G) =
ρ3(G) and we define the complex-valued order parameter of
the charge-density wave as

� = |�|eiϕ = − 2V

3N
[ρ1(G) + ρ2(G) + ρ3(G)]. (16)

Note that there is an overall phase freedom in the definition
of � and that the amplitude satisfies |�| � 2V/3. With the
definition Eq. (16) of the order parameter, the interaction
Hamiltonian for the uniform charge-density wave reduces to

H ′
V = �

∑
ν

nν(−G) + �∗ ∑
ν

nν(G) + 3N

2V
|�|2. (17)

The free energy of a slowly varying charge-density wave in the
continuum limit is given by the perturbative Ginzburg-Landau
expansion in terms of � and its gradient �∇�:

FCDW − F0 =
∫

dx dy

A [α(V,T )|�|2 + η|�∗ �∇�| + κ| �∇�|2

+ γ |�|3 cos(3ϕ) + β|�|4 + · · ·]. (18)

Here A = √
3a2/2 is the unit cell area of the kagome lattice

and the coefficient β > 0 stabilizes this expansion to order
|�|4. The coefficient α(V,T ) changes sign as function of the
interaction strength or temperature and is given by

α(V,T ) = 3

2

[
1

V
− 1

V 0
c (T )

]
, V 0

c (T ) = 1/χ0
G(T ). (19)

The term proportional to cos(3ϕ) in the expansion Eq. (18)
introduces an anisotropy as a result of the threefold rotation
symmetry of the triangular Bravais lattice. The numerical value
of its prefactor at T = 0 is γ ≈ 0.22/t2. This term acts as
a pinning potential for the complex phase ϕ of the order
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parameter � and in the ground state, it assumes one of the
three values

ϕA = −π/3, ϕB = π/3, ϕC = π, (20)

thereby reducing the continuous rotation symmetry to a
threefold one. This Z3 freedom arises from the possibility
to translate the configuration of the charge-density wave as a
whole by a unit cell vector a1 or a2. A finite γ also shifts the
critical interaction strength Vc to a smaller value compared
to V 0

c . Moreover, it turns the second-order (quantum) phase
transition into a first-order one. A crystal-field term ∝cos(pϕ)
can also strongly affect the thermodynamic properties of
the model and the value of the integer p is important.33

For the planar xy model supplemented with a crystal-field
term ∝cos(pϕ) it has been shown that the ground state
always has a broken symmetry. However, for p � 4 and at
higher temperatures, there is a critical phase characterized
by bound vortex-antivortex pairs similar to the one found in
the absence of the crystal field. They can unbind above the
Kosterlitz-Thouless-Berezinskii temperature. For p = 3, such
a critical phase is absent in the planar model.

IV. Z3 VORTICES

To study spatially fluctuating solutions we start again from
the energy functional (18). We find that the gradient term
proportional to η appears in the expansion because of the
Dirac-like single-particle spectrum in momentum space at
f = 1/3. However, this term disappears for slowly varying
configurations once a gap is opened in the noninteracting
system with finite δt . To keep our discussion simple we set
η = 0 in the following. In this case, there are two distinct
length scales in the problem. One is the coherence length
ξ = √

κ/|α|, which describes the characteristic length scale
over which the amplitude of the order parameter changes. The
second one is related to the anisotropy and naturally appears
in the equation of motion for ϕ:

�∇2ϕ = − 1

λ2
p

sin(p ϕ). (21)

This is the so-called sine-Gordon equation and in our model
p = 3. The characteristic length scale for the anisotropy is
λp = √

2κ/(pγ |�|) and it is a sensible quantity as long as
|�| ≈ const. If the linear extension L of the system satisfies
L � λp the anisotropy term on the right-hand side can be
neglected34 and we can consider a special class of (singular)
solutions to �∇2ϕ = 0:

ϕ(x,y) = q Im[log(x + iy)]. (22)

These vortex solutions have an integer nonzero topological
charge (vorticity)

q = 1

2π

∮
C

�∇ϕ · ds, (23)

where C is a loop encircling the singularity at the origin. The
energy of a single vortex configuration grows logarithmically
with system size L. If ξ � L � λp we expect that thermally
excited vortex-antivortex pairs are present.

On the other hand, on length scales L � λp, the right-hand
side of Eq. (21) can no longer be neglected. Then, the simplest

nontrivial solution is a domain wall between two degenerate
ground states. An example describing a kink which extends
along the x axis is

ϕ(y) = −π

p
+ 4

p
atan(e−√

py/λp ) (24)

and from the energy functional Eq. (18) it follows that there is a
finite energy per length associated with the domain wall. There
exist also single and multivortex solutions of Eq. (21) which
are obtained by deforming the vortex solutions of the Laplace
equation.34–37 (For p = 4 and q = ±1 a particularly simple
explicit expression is known.) The single vortexlike solutions
have the property that for |R| � λp they reduce to expression
(22), whereas for |R| � λp the domain walls between the
degenerate ground states are resolved, as in Eq. (24). As a
result, the energy of such a Zp vortex eventually grows linearly
with system size.

A. Triangle-rule violation in the vortex center

Z3 vortices can also be considered in the classical limit and
two examples are shown in Fig. 4. For a defect with q = ±1,
the complex phase of the order parameter changes from ϕA

to ϕB to ϕC and back to ϕA. This situations is sketched in
Fig. 4(a). It turns out that for such an elementary defect there
is necessarily one triangle (shaded) where the triangle rule
is violated. For an up-triangle-rule violation (“up defect”),
the phase changes clockwise while for a down-triangle-
rule violation (“down defect”) it changes counterclockwise.
Furthermore, as explained in Sec. II B, an empty triangle binds
a (positive) deficit charge of 1/2 compared to the uniform
phase while a triangle with two fermions binds −1/2. Thus,
we can label elementary defects by the pair (Q,δ) where
Q = ±1/2 refers to the bound charge and δ = � or ∇ indicates
on which triangle the triangle rule is violated. These defects
are topologically protected. Note that in the classical limit
(vanishing hopping), domain walls do not cost any energy
because the triangle rule is fulfilled.

A B

C
(b)

C

ABA

C

B

(a)

FIG. 4. (Color online) Schematics of two different Z3 vortices.
A vortex with circulation q = 1 is shown in (a) and a vortex with
circulation q = −2 in (b). In (a), three domain walls meet at a
down triangle and the triangle rule is necessarily violated. As a
consequence, a charge 1/2 (−1/2) is bound to this topological defect
if the center triangle is empty (singly occupied). The configuration in
(b) shows a double vortex where six domain walls meet. In the center
there is one particle for one down triangle and three up triangles.
This effectively results in two down-triangle-rule violations. The
double vortex shown in (b) binds a charge 1 but it can be split
into two topologically protected single vortices with a bound charge
of 1/2.
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It is also possible to construct defects which are composed
of more then one elementary defect. An example is sketched in
Fig. 4(b) where the phase changes twice when going clockwise
around the defect. It can be viewed as a composite object of
two elementary up defects (1/2,�) which in total binds a
unit positive charge. Therefore, this defect is topologically
not protected since it can be split into two elementary up
defects. Another example is the composite object involving
(1/2,�) and (1/2,∇) which can be viewed as a polaron state
(see Sec. V C).

V. NUMERICAL SOLUTIONS WITH DEFECTS

We now turn to a numerical study of mean-field solutions
with defects at zero temperatures. Thereby, we will focus
on the properties of the elementary Z3 vortices as sketched
in Fig. 4(a). Because the defects are charged, we found it
necessary to dope the system in order to stabilize mean-field
solutions with defects. We therefore discuss examples where
a single hole has been doped into a finite system with periodic
boundary conditions. Self-consistent solutions are found by
iterating the self-consistency equations. If the interaction is
not too close to the critical interaction (V � 3t > Vc ≈ 2.2t),
meaning that the defect size is comparable to the lattice
constant, it is possible to choose the initial charge configuration
such that solutions with two separated defects are stabilized.

A. Fractionally charged defect

Let us first look at a configuration where the defects form
a regular lattice. In the most symmetric case, the up and down
defects are arranged on interpenetrating triangular lattices and
the defect lattice then has a hexagonal symmetry. Such a
configuration offers a convenient possibility to investigate the
properties of an isolated defect if they are separated far enough
from each other. In actual calculations we considered finite
systems of the form of a hexagon with defects located at its
corners and employed periodic boundary conditions. Figure 5
shows the self-consistent charge configuration (periodically
extended) of such an arrangement. In this example, we have
considered 1641 sites with 536 particles and the interaction has
been set to V = 4t . The diameter of the circles building the
kagome lattice is proportional to the local density. As before,
the three inequivalent uniform phases are denoted by A, B, and
C and in Fig. 5 the domain walls between them are indicated as
solid curves. In the initial state, the domain walls are straight
lines but after the iteration process has converged they reveal
a winding character.

Figure 6 shows the single-particle energy spectrum of the
same system. The defect states have energies which lie in the
gap of the uniform phase. In total, there are six in-gap states,
which gives three states per defect. Of the three states, one
state is lower in energy than the other two. For the considered
interaction strength, the defect size is comparable to the
lattice spacing. This means that the defect states are basically
localized on a single triangle and the energy splitting can be
derived from the eigenenergies of a particle hopping on an
isolated triangle (with amplitude t). Indeed, we have checked
that in the large V limit the energy splitting between the two
upper states and the lower one approaches 3t = t − (−2t).

FIG. 5. (Color online) Periodically extended charge configuration
of a finite hexagonal system with defects at its corner. The considered
system contains 1641 sites, 536 particles, and two well-localized
defects (up and down triangles), each binding a charge 1/2. The three
different uniform ground states (A, B, and C) meet at the center of
the defects and domain walls are indicated by the solid curves. The
diameter of the circles building the kagome lattice is proportional to
the local density and the interaction has been set to V = 4t .

Note that because the overlap between up and down defects
is very small for the considered system, the energy splitting
between them is not visible in Fig. 6. The steplike features
in the spectrum at higher energies (near 6t and 7t) are the
remains of the subband formation due to the enlarged unit cell
of the uniform charge-density wave. For the uniform solution
we find true energy gaps between the steps but in the presence
of the topological defects, these gaps are filled. The states with
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FIG. 6. (Color online) Single-particle energy spectrum for the
defect lattice shown in Fig. 5. The inset shows a magnification of the
spectrum near the gap. In total, there are six in-gap states, which
gives three per defect. The splitting between the upper four and
lower two in-gap states is proportional to the hopping t , whereas
the splitting among the upper or lower states is exponentially small.
The quasicontinuum of states between the steplike features at higher
energies are the domain-wall states.
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FIG. 7. (Color online) (a) Integrated charge deficit within a circle
of radius R around the origin. The steps of magnitude 1/2 indicate
that a charge of 1/2 is bound to each defect. (b) Logarithmic color
plot of the locally averaged charge deficit and (c) logarithmic color
plot of the locally averaged charge excess. In (b) and (c) a cutoff of
10−7 has been used, consistent with the numerical precision of the
solution. The parameters of the defect lattice are the same as in Figs. 5
and 6.

energies between the steps are localized along the domain walls
which can be confirmed by studying the wave functions in real
space.

From the analysis of classical charge configurations we
expect that an elementary defect binds a fractional charge
±1/2. We now want to confirm this result for finite t by
an explicit calculation for the defect lattice of Fig. 5. In
order to get rid of the short wavelength density oscillations,
we have considered an averaged charge distribution on the
hexagonal lattice defined by the center-of-mass points of the
triangles forming the kagome lattice, as explained in Sec. II B.
Figure 7(a) shows the integrated density deficit (measured
from the uniform particle density 1/2) within a circle of radius
R around the origin. The location of the origin has been chosen
away from a high symmetry point of the defect lattice and is
indicated in panels (b) and (c). As function of R, there are
clearly visible steps of 1/2 in the integrated deficit density
which shows that every defect binds 1/2 of charge. The steps
are rather sharp, indicating that the defects are rather well
localized. This is also seen in panels (b) and (c), where the
charge deficit and excess measured from 1/2 in a logarithmic
scale is shown. Indeed, most of the charge deficit is located
very close to the defects but also along the domain walls,
the density deviates from its uniform value. As a matter of
fact, the charge density shows oscillatory behavior which is
reminiscent of Friedel oscillations and the density can also
exceed its uniform value in certain regions [see panel (c)].

B. Irrational versus rational charges

The value of 1/2 for the charge bound to a topological
defect depends on a crucial symmetry, namely, that the up
triangles are equivalent to the down triangles. To see this
we now consider the effect of a finite δt in Eq. (2). This
perturbation effectively increases the hopping on the up
triangles, t� = t + δt , thereby breaking the symmetry between
the up triangles and the down triangles. We have calculated
the charge bound to a defect as function of δt for different
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FIG. 8. The charge bound to a topological point defect as function
of the symmetry-breaking field δt for interactions V = 3t , V = 4t ,
and V = 5t . The upper set of curves corresponds to the � vortices
while the lower one corresponds to the ∇ vortices.

interaction strength. The result is shown in Fig. 8. Clearly, the
value of the charge varies continuously with the strength of
the symmetry-breaking potential δt/t . The effect is larger for
smaller values of the interaction. This behavior is in agreement
with Refs. 13 and 14where field-theoretical methods have been
used to study the effect of a symmetry-breaking potential.
Interestingly, it was found that by introducing a chiral gauge
field the energy of a single defect becomes finite turning
them into well-defined excitations.12 However, if this happens,
the fractional charge is rerationalized to 1/2.13 Turning this
argument around, we may view the dependence of the charge
on δt as a manifestation of the fact that in our system a chiral
gauge field is absent and that a single topological point defect
costs an energy which depends on the system size. We want to
stress again that the value of 1/2 is protected by the symmetry
between up and down triangles and does not result from a
spectral symmetry of the single-particle excitations. Such a
particle-hole symmetry is absent on the kagome lattice and
only emerges in the low-energy description (see Sec. VI).

C. Polaron state

In the previous section, the geometry and the boundary
conditions have been chosen such that the property of an
isolated defect can be studied. However, to have a configuration
which only costs a finite energy in the thermodynamic limit,
the vortex has to be healed at some point. This is possible when
considering pairs of defects and naturally shows up when we
study the property of a single hole doped into a large system.

In the following, we want to find the ground-state mean-
field solution for a single hole. First, we note that the uniform
mean-field solution which preserves the translational sym-
metry is always higher in energy than several solutions with
inhomogeneous charge distributions where the inhomogeneity
is restricted to a relatively small region. This signals the
failure of the rigid band picture in the interacting system.
As a matter of fact, a single hole doped into the uniform
phase tends to polarize its surrounding, which leads to an
inhomogeneous charge distribution around the hole. Following
standard nomenclature, we refer to the hole with its polarizing
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FIG. 9. (Color online) The charge distribution of different polaron
states obtained for V = 3t . In (b) and (d), we have marked the
misplaced Fermi-rich sites created by separating the up and down
defects with a cross.

cloud as a polaron state. What is special in the present system
is that the polaron has an internal structure. In fact, it can
be viewed as a bound state of an up and a down defect. The
confinement of the two defects results from the energy cost
of domain walls, which are necessarily created when trying to
separate them in real space.

Figure 9 shows the self-consistent charge distribution of
various polaron states for V = 3t . The density distribution
shown in (a) can be thought to be the result of removing
an electron from a Fermi-rich site. Clearly, the polaron wave
function is well localized. Panel (c) again shows a fairly
well-localized polaron state with large isotropy. However,
in this case the polaron is in an excited state. Panel (b)
shows the situation where the position of a Fermi-rich site
(marked with a cross) has changed as compared to that seen in
(a). As a result, up and down defects have been separated
and the polaron wave function acquires two components.
By moving the position of other Fermi-rich sites, the two
defects can be separated even further, as shown in (d). In
the simplest case, this procedure generates a straight “string”
which connects the two defects. If the charge-density wave
is in the ground state A at infinity, the string of misplaced
Fermi-rich sites can be viewed as the phases B and C with
a minimal extension in the direction perpendicular to the
string. (We note that it is also possible to stabilize solutions
where all the three phases are extended but we have found
that these configurations have higher energy than the straight
string for the same separation of the two defects.) The energy
as a function of the number D of misplaced sites [the sites
marked with a cross in Fig. 9(d)] measures the confinement
between the two defects. Figure 10 shows the energy of the
hole as function of D obtained for V = 3t and V = 5t . In both
cases, the energy grows linearly with D for large D. This is in
agreement with the expectation that every misplaced site costs
the same energy because the ring exchange in the hexagons
participating in the string is no longer effective.29 The slope
is smaller for larger V and eventually vanishes for V/t → ∞.
In this limit, the two defects are free to separate. For V =
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FIG. 10. The confinement potential between two fractional de-
fects in the charge-ordered kagome lattice. Shown is the energy
difference between mean-field states with a single hole and the
undoped uniform state as function of the number D of misplaced
sites necessary to separate the two defects, see Fig. 9. (Top) The
nearest-neighbor interaction is V = 3t . The minimal energy occurs
at a separation D = 3. (Bottom) The nearest-neighbor interaction of
V = 5t is considered. The minimal energy occurs at zero separation
of the defects. Results are obtained by solving the self-consistency
equations on a hexagonal cluster with periodic boundary conditions
including 1296 sites.

5t , the lowest energy configuration is the one with tightly
bound defects [cf. Fig. 9(a)]. It then costs a finite energy to
separate the two defects by one unit [cf. Fig. 9(b)] and after that
the energy increases linearly with distance D. Interestingly,
the situation looks quite different for weaker interactions.
Namely, as shown in Fig. 10 for V = 3t , the lowest energy
configuration corresponds to two defects separated by a string
of length D = 3. Thus, in this regime, the polaron state has
a diatomic molecule character where the confinement length
exceeds the defect size.

Quantum mechanical processes which go beyond the static
mean-field description (such as the ring exchange 29) will alter
the quantitative dependence of the confining potential on t/V .
However, we expect the qualitative aspects of the static mean-
field solutions to be robust against a more careful treatment of
these processes.
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FIG. 11. (Color online) The charge distribution of a polaron state
in the weakly ordered charge-density wave. The interaction has been
set to V = 2.3t .

The above systematic approach only works when the defect
size is comparable to the lattice spacing, which is the case
for V � 3t . We have also numerically studied the polaron
wave function for smaller interactions in the weakly ordered
state close to Vc. A typical converged solution is shown in
Fig. 11 for V = 2.3t . In this regime, the polaron extends over
several lattice spacings and it was not possible to control the
location of the elementary up and down defects. Moreover,
typical solutions are rather isotropic. This indicates that the
confinement length at zero temperature is smaller than the
defect size.

In general, we expect that the polaron is dynamical and
there is a center-of-mass motion as well as a relative motion
of the two defects forming the polaron. For a clean system, it
is likely that the polaron is not localized in real space. Rather,
one would try to restore the translational symmetry by taking
a superposition of localized polaron states with the same or
nearby energies by considering the configuration interaction
between the different mean-field states. Such an approach has,
for example, been used to study the dispersion of a doped hole
in the Hubbard model.38 On the other hand, in the presence of
imperfections, trapping of the polaron can occur.

In the strongly correlated regime, the quantum mechanical
polaron wave function has a large spatial extent because the
confining potential is weak. Therefore, increasing the doping
concentration could lead to new quantum phases where the
confining is no longer relevant. For example, one can speculate
that a plasma of fractionally charged defects is realized
once the mean distance between polarons falls below the
average diameter of a single bound pair.39 Other interesting
phases may involve crystalline structures of fractionally
charged defects.

VI. WEAKLY ORDERED STATE

To overcome the limitations of the numerical approach for
the weakly ordered state we now turn to a more analytical
description of topological point defects in the regime where
both the order parameter and its gradient are small. Thereby,

kx

ky

K0 K+K−

B0B− B+

FIG. 12. (Color online) The
√

3 × √
3 reconstruction of the

charge-ordered state leads to a partitioning of the Brillouin zone.

we are making a connection to the solitonic fractionalization
mechanism in two dimensions.11 Thus, we assume that we are
sufficiently close to the phase boundary (V � Vc) such that an
expansion in the order parameter is justified. In linear order,
only the low-energy degrees of freedom in the vicinity of the
two Dirac points enter.

For the analytical treatment it is convenient to use a notation
which is adapted to the

√
3 × √

3 reconstruction of the unit cell
in the ordered state. Hence, we divide the first Brillouin zone
into three patches B0 and B± located around � ≡ K 0 = (0,0)
and K± as shown in Fig. 12. We always use the convention
that a capital K or Q is defined in the original Brillouin zone
B = ⊕lBl , while a small k or q denotes a vector in B0. Then,
for K ∈ Bl (l = 0,±) we decompose the crystal momentum
according to K = K l + k with k ∈ B0 and define cνl(k) =
cν(K ). This allows us to write the local Fermi operators as a
sum over the patches in the following way:

cν(r) = 1√
3

∑
l

cνl(r)ei K l ·(r+rν ). (25)

Here we have separated out the oscillatory factors exp[K l ·
(r + rν)] and have defined

cνl(r) =
√

3

N

∑
k∈B0

cνl(k)eik·(r+rν ). (26)

The states in one patch live on a kagome lattice in real
space with a threefold enlarged unit cell. The single-particle
operators in the different patches are related by the uniform
ordering vector G:

cν−(k + G) = cν+(k), (27a)

cν0(k + G) = cν−(k), (27b)

cν+(k + G) = cν0(k). (27c)
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Therefore, the Fourier components ρα( Q) with Q close to ±G
couple the single-particle states between different patches and,
most importantly, between the two Dirac cones.

A. Effective sublattice basis on the kagome lattice

For the low-energy description it is justified to truncate the
Hilbert space by restricting to the single-particle states in the
vicinity of the Dirac points at K± [see Eq. (15)]. Therefore,
only operators associated with the two valleys l = ± are kept.
The next step involves a k-independent transformation from
the site to the “sublattice” basis:

c1,±(k) = e±iφ

√
3

[e∓iπ/3a±(k) + e±iπ/3b±(k)], (28a)

c2,±(k) = e±iφ

√
3

[e±iπ/3a±(k) + e∓iπ/3b±(k)], (28b)

c3,±(k) = e±iφ

√
3

[a±(k) + b±(k)] . (28c)

Above we have suppressed the contribution of operators acting
on states of the flat band at higher energy. The a and the b

operators are chosen in analogy to graphene, in which case they
would act on states living either on the A or the B sublattice.
It turns out that on the kagome lattice, the up and the down
triangles play the role of the A and B sites. This becomes
clear when inverting the relation (28) for a

†
±(0) and b

†
±(0) and

expanding in terms of real space operators:40

a
†
+(0) = 1√

3N

∑
r

[ω2c
†
1(r)+ωc

†
2(r)+c

†
3(r)]ei K+·r , (29a)

b
†
+(0) = 1√

3N

∑
r

[c†1(r) + c
†
2(r) + c

†
3(r)]ei K+·r , (29b)

a
†
−(0) = 1√

3N

∑
r

[ωc
†
1(r)+ω2c

†
2(r)+c

†
3(r)]ei K−·r , (29c)

b
†
−(0) = 1√

3N

∑
r

[c†1(r) + c
†
2(r)+c

†
3(r)]ei K−·r . (29d)

Here we have introduced ω = exp(2πi/3) and have set φ = 0
for clarity. In the state created by a

†
+(0) [a†

−(0)], the phase
on every up triangle increases by 2π/3 along each bond in the
[anti-]clockwise direction while the phase remains constant on
the down triangles. On the other hand, in the state created by
b
†
−(0) [b†+(0)], the phase on every down triangle increases by

2π/3 along each bond in the [anti-]clockwise direction while
the phase remains constant on the up triangles.

B. Projected mean-field Hamiltonian

The operators introduced in the previous section allow one
to obtain an effective low-energy Hamiltonian. The calculation
is straightforward but lengthy. In the following we only present
the final results.

1. Kinetic energy

Linearizing in k around K± and applying the transforma-
tion (28) brings the low-energy tight-binding Hamiltonian into
the canonical Dirac form

H0 =
∑
l=±

∑
k∈B0

[vF l(kx + ilky)a†
l (k)bl(k) + H.c.], (30)

with the Fermi velocity vF = √
3ta/2 (h̄ ≡ 1). We have shifted

the zero of energy to the Dirac points.

2. Bond order term

The term Eq. (2), which breaks the symmetry between the
up and down triangles, enters the low-energy description as a
staggered potential μs = −3/2δt for the effective sublattice
states:

HBOW = −μs

∑
l=±

∑
k∈B0

[a†
l (k)al(k) − b

†
l (k)bl(k)]. (31)

Here terms of order O(k2) have been neglected. The above
form is in full analogy with a staggered potential on the
honeycomb lattice. Furthermore, the effect of a finite μs is
plausible when considering the representation Eq. (29).

3. Mean-field interaction

In order to project this operator onto the low-energy degrees
we first write the density operators nν(− Q) in terms of the
patch operators cνl(k). Then, using the transformation (28) and
keeping only operators which act on the low-energy degrees
alone, the mean-field interaction assumes the following form:

H ′
V =

∑
k,q

�†(k − q)V̂ (q)�(k) + const. (32)

Here the summation is over the reduced Brillouin zone, k and
q ∈ B0. Furthermore, we have introduced the four-component
spinor

�(k) ≡

⎛
⎜⎜⎜⎝

b+(k)

a+(k)

a−(k)

b−(k)

⎞
⎟⎟⎟⎠ =

√
3

N

∑
R

�(R)e−ik·R. (33)

Note that �(R) is a coarse-grained operator defined on a
triangular lattice with a threefold bigger unit cell. We assume
that both |�| and the gradient �∇ϕ are small and we keep only
terms entering linear in these quantities. For the matrix V̂ (q)
we then find the following simple expression:

V̂ (q) =
(

0 �(q)1

�∗(q)1 0

)
. (34)

Here 1 is the 2 × 2 identity matrix and

�(q) = − 2V

3N
[ρ1(G + q) + ρ2(G + q) + ρ3(G + q)] (35)

is assumed to be peaked around q ≈ �∇ϕ.

4. Continuum limit

The continuum limit is defined by a → 0 while keeping
the Fermi velocity vF and the coupling constant V ′ = V vuc
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constant. It then follows that we scale the fermion fields
according to

vuc

∑
R

. . . →
∫

d2 R . . . , � → � ≡ �/
√

vuc. (36)

where the unit cell volume is vuc = 3
√

3a2/2. The linearized
mean-field theory takes the following continuum form

H =
∫

d2R

[
�†(R)K�(R) + 9

2V ′ |�(R)|2
]

(37)

for the four-component wave function �(R) given in Eq. (36).
In the notation similar to Ref. 12 the kernel K in Eq. (37) is
written as

K = vF α · (−i∇) + μsR + β[�1(R) − iγ5�2(R)]. (38)

We used the 4 × 4 Dirac matrices

αi =
(

σi 0

0 −σi

)
, β =

(
0 1

1 0

)
, γ5 =

(
1 0

0 −1

)
,

(39)

where i = x,y and the 2 × 2 matrices σi and R are defined as

σx =
(

0 1

1 0

)
, σy =

(
0 −i

i 0

)
,

and R ≡ σz =
(

1 0

0 −1

)
. (40)

�1 and �2 are real and imaginary parts of �.

C. Vortex solution and mid-gap states

We are now in a position to study the effect of a vortex
in �(R) on the fermionic spectrum. Thereby, we apply the
results previously found for graphene.11,13,14,41 We assume a
symmetric vortex configuration with vorticity q which in polar
coordinates is written as

�(r,θ ) ≡ �1 + i�2 = �0(r)eiqθ+α. (41)

The amplitude �0(r) vanishes for r → 0 and assumes a
constant value �0(∞) far away from the origin. It has been
shown that such a configuration leads to a single mid-gap
state at an energy E = μs or E = −μs , depending on the
sign of the vorticity q.14 These solutions merge into a single
zero-energy mode in the limit μs → 0. From the emergent
spectral symmetry of the Dirac equation and the completeness
of states in the absence and presence of a vortex it follows
that both the valence and the conduction band transfer half
a state to the zero-energy mode. As a result, a charge ±1/2
is bound to the vortex depending on if the zero-energy mode
is occupied or not. These simple considerations break down
for a finite μs because the emergent particle-hole symmetry
of the single particle spectrum is violated. The calculation of
the bound charge in this situation is more involved. We follow
here the argumentation of Refs. 13 and 14, which make use of
the fact that a inhomogeneous static configuration of the three
real fields μs , �1 and �2 induce a fermionic charge density.
This charge density is obtained from a perturbative treatment
around the uniform solution:10

ρ(x,y) = 1

4π
�n · (∂x �n × ∂y �n). (42)

Here �n is a unit vector defined as

�n = 1√
�2

0 + μ2
s

⎛
⎜⎝

�1

�2

μs

⎞
⎟⎠ . (43)

The total charge bound to the vortex can be obtained by
integrating the density over space

Q =
∫

dxdy ρ(x,y). (44)

From Eq. (42) it follows that the integral Eq. (44) measures
the area (in units of 4π ), which is covered on the sphere by
the unit vector �n in the mapping (x,y) �→ �n(x,y). The result
is therefore

Q = q

2

[
sign(μs) − μs√

�0(∞)2 + μ2
s

]
. (45)

In the limit μs → 0± and for q = ±1, we recover the value
Q = ±1/2. On the other hand, the dependence of the charge
on μs is similar to the result reported in Fig. 8.

VII. CONCLUSIONS

We have studied topological point defects in the charge-
density wave realized in a model of interacting spin-polarized
fermions on the kagome lattice at filling fraction 1/3. We
have found that elementary point defects carry a charge ±1/2
as long as the symmetry between the up triangles and the
down triangles of the kagome lattice is preserved. If this
symmetry is violated, the bound charge varies continuously
with the symmetry-breaking term. Moreover, we have argued
that in the classical limit the point defect corresponds to a
local violation of the triangle rule and is therefore related
to the fact that the interaction is frustrated. On the other
hand, in the weakly ordered state, we made a connection to
the solitonic fractionalization mechanism based on the Dirac
equation with a vortex in the background field. The considered
system therefore offers a unique possibility to realize these two
different routes to fractionalization in the same model.

Using unrestricted mean-field calculations we have studied
the ground state of a single hole doped into the charge-density
wave. We have found that the polaron state can be viewed
as a bound state of two defects, both carrying a charge 1/2.
We have also calculated the confining potential between these
two defects and have found that in the intermediate interaction
regime it is minimized for a finite separation.

We note here that the charge-ordered state considered in
this article bears some similarity with the “trimerized” phase
considered previously in that it shares the same enlarged unit
cell and also has three different ground states.16,20 However,
the charge density-wave order seems to be more easily realized
in an interacting system. Our basic conclusions remain valid
when the spin degree of freedom is taken into account as
long as the interaction still favors the charge-density wave.
Nevertheless, in the spinful case it is not the charge which
fractionalizes but the defects carry either a spin 1/2 and no
charge or a charge ±1 and no spin.
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ANDREAS RÜEGG AND GREGORY A. FIETE PHYSICAL REVIEW B 83, 165118 (2011)

ACKNOWLEDGMENTS

We acknowledge stimulating discussions and correspon-
dence with M. Franz, S. D. Huber, M. Kargarian, E. Louis,

and J. Wen. We acknowledge financial support from ARO
under Grant No. W911NF-09-1-0527 and NSF under Grant
No. DMR-0955778.

1W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,
1698 (1979).

2R. B. Laughlin, Rev. Mod. Phys. 71, 863 (1999).
3C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature (London)
451, 42 (2008).

4M. Oshikawa and T. Senthil, Phys. Rev. Lett. 96, 060601 (2006).
5L. Balents, M. P. A. Fisher, and S. M. Girvin, Phys. Rev. B 65,
224412 (2002).

6M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69,
064404 (2004).

7A. Banerjee, S. V. Isakov, K. Damle, and Y. B. Kim, Phys. Rev.
Lett. 100, 047208 (2008).

8T. Senthil and M. P. A. Fisher, Phys. Rev. B 63, 134521 (2001).
9R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).

10J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47, 986 (1981).
11C.-Y. Hou, C. Chamon, and C. Mudry, Phys. Rev. Lett. 98, 186809

(2007).
12R. Jackiw and S.-Y. Pi, Phys. Rev. Lett. 98, 266402 (2007).
13C. Chamon, C.-Y. Hou, R. Jackiw, C. Mudry, S.-Y. Pi, and A. P.

Schnyder, Phys. Rev. Lett. 100, 110405 (2008).
14C. Chamon, C.-Y. Hou, R. Jackiw, C. Mudry, S.-Y. Pi, and

G. Semenoff, Phys. Rev. B 77, 235431 (2008).
15B. Seradjeh, C. Weeks, and M. Franz, Phys. Rev. B 77, 033104

(2008).
16H.-M. Guo and M. Franz, Phys. Rev. B 80, 113102 (2009).
17C.-Y. Hou, C. Chamon, and C. Mudry, Phys. Rev. B 81, 075427

(2010).
18X. Liu and R. Zhang, Ann. Phys. 325, 384 (2010).
19C. Weeks and M. Franz, Phys. Rev. B 81, 085105 (2010).
20Z. Wang and P. Zhang, New J. Phys. 12, 043055 (2010).
21P. Fulde, K. Penc, and N. Shannon, Ann. Phys. (Weinheim, Ger.)

11, 892 (2002).
22E. Runge and P. Fulde, Phys. Rev. B 70, 245113 (2004).

23D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376
(1988).

24R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001).
25E. Fradkin, D. A. Huse, R. Moessner, V. Oganesyan, and S. L.

Sondhi, Phys. Rev. B 69, 224415 (2004).
26O. Sikora, F. Pollmann, N. Shannon, K. Penc, and P. Fulde, Phys.

Rev. Lett. 103, 247001 (2009).
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