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Role of spin quantization in determining the thermodynamic properties
of magnetic transition metals
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We propose a combined ab initio-spin quantum Monte Carlo (QMC) approach to compute thermodynamic
properties of magnetic materials by first principles. The key to the proposed approach is a mapping of the
magnetic long-range system onto an effective, nearest-neighbor quantum Heisenberg model, for which the QMC
approach provides a numerically exact solution. The performance of the proposed method is demonstrated for the
transition metals Fe, Co, and Ni by computing magnetization shapes, specific heat capacities, and free energies.
Spin-quantization effects are found to be critical, even close to TC .
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I. INTRODUCTION

The rapid progress of first-principles methods, in particular
density functional theory (DFT), allows nowadays an accurate
parameter-free prediction of thermodynamic properties for a
wide range of nonmagnetic materials.1–3 A particular chal-
lenge is, however, the incorporation of magnetic excitations,
which are mandatory for an accurate description of many of
the technologically relevant structural and functional materials
such as, e.g., steels,4–11 magnetic shape memory alloys,12 and
half-metallic ferromagnets.13

A commonly employed approach to capture magnetic con-
tributions is to combine DFT calculations with the Heisenberg
model,11,14–20

Hmag = −
∑

ij

Jij SiSj , (1)

where the Si,j represent effective spin operators localized at
lattice sites i,j , and the Jij represents the exchange parameters.
For the computation of the Jij parameters within DFT,
well-established approaches exist, such as the magnetic force
theorem,21 or the frozen-magnon approach based on adiabatic
spin dynamics.22

To obtain finite-temperature properties, such as the Curie
temperature TC , the magnetic contribution to the specific heat
capacity Cp(T ), or free energy F (T ), a numerically accurate
solution of the quantum model (1) is critical. In principle, a
straightforward method is given by the spin quantum Monte
Carlo (QMC) method. In practice, however, this method
is severely limited by the negative-sign problem, which
occurs if any form of magnetic frustration is present. This
problem arises due to the fact that the quantum-mechanical
expectation value is mapped onto a classical one: The resulting
weights (probabilities) may become negative, making the
QMC approach impractical.23 The sign problem is a serious
and often prohibitive obstacle in applying the QMC method
for realistic systems, where the Jij parameters are typi-
cally long range and show a Ruderman-Kittel-Kasuya-Yosida
(RKKY)-type oscillating (ferromagnetic, antiferromagnetic)
behavior.

Due to the sign problem, one is typically forced to
solve the Heisenberg Hamiltonian approximately. Common
approximations are the analytic random-phase approximation
(RPA) or classical Monte Carlo (CMC) calculations. Both

yield reliable predictions of selected data, such as the Curie
temperature TC .11,15–20 Recent studies, however, show that
severe limitations arise11,20 when applying these concepts
to access temperature-dependent properties such as, e.g.,
heat capacities: While the analytic RPA is found to provide
excellent agreement with available experimental data up to
TC , it does not capture local magnetic order above TC , giving
rise to clear deviations in this temperature range.11 In contrast,
CMC works well at higher temperatures (above TC), but fails
at lower temperatures due to the neglect of spin quantization.20

Also, both approaches show clear deficiencies in predicting net
magnetization curves M(T ).11

An important step toward making the available spin QMC
methods applicable to realistic long-range and weakly frus-
trated magnetic systems (and thus including spin-quantization
in realistic materials) would be a prescription that allows one
to map the full Hamiltonian [Eq. (1)] onto a frustration-free
and, ideally, short-range effective magnetic system without
losing relevant information. Recent studies showed that while
the type of magnetism (ferromagnetic, antiferromagnetic) or
the inclusion of second or more interaction shells may have a
significant impact on TC , the rescaled shape of thermodynamic
quantities, such as the heat capacity Cp(T/TC), is largely
independent.20 This remarkable insensitivity indicates that the
full long-range spin Hamiltonian may be transformed into a
nearest-neighbor model with effective exchange interactions.
As will be demonstrated, this transformation gives an excellent
approximation to the full Hamiltonian (provided that the TC

of the full model is reproduced) and can be readily solved by
standard QMC calculations.

Furthermore, as will be shown in the following, this
approach works remarkably well and provides an accurate
description of the thermodynamic properties for often-studied
magnetic benchmark systems (Fe, Co, and Ni). The proposed
approach also dramatically improves the description of the net
magnetization compared to existing ab initio approaches, and
has similar accuracy to empirically fitted approaches,30 yet is
fully ab initio.

II. THEORY

To allow a direct comparison with experimentally accessi-
ble quantities, we compute in the following the full free energy.
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Following our previous studies,11,20 we decompose the free
energy F (T ,V ) into electronic, vibronic, and magnetic contri-
butions. The specific heat capacity at constant pressure is ob-
tained via CP (T ) = −T ( ∂2F (T ,V )

∂T 2 )V,P . Electronic and vibronic
contributions have been evaluated using the quasiharmonic
approximation and finite-temperature DFT, respectively, as in
Refs. 11,20,31. The DFT calculations are performed with the
VASP32 package using the projector augmented-wave (PAW)
method33 within the generalized gradient approximation
(Perdew-Burke-Ernzerhof parametrization).34 The numerical
parameters have been carefully chosen to ensure a numerical
convergence of <1 meV per atom in the considered tempera-
ture range.35 The QMC calculations are done employing the
direct-loop algorithm in the stochastic series expansion, as
implemented in the ALPS code.36 Monte Carlo calculations in-
volve 2.5 × 106 steps, including thermalization and statistical
averaging. The model calculations are carried out for three
different system sizes (N = 512, 1728, and 5832) to estimate
the impact of finite-size effects.

To construct an effective spin Hamiltonian that can be
solved by the QMC method, three ingredients are needed:
(i) the crystallographic structure of the spin lattice, (ii) the spin
quantum number S, and (iii) the effective interaction parameter
Jeff . The first ingredient, the crystallographic structure, is
given by the position of all atoms exhibiting local magnetic
moments. For the unary transition metals considered here,
these are simply the bcc and fcc lattice sites. For alloys
consisting of magnetic and nonmagnetic or weakly magnetic
atoms, only the positions of the magnetic ones are used. The
second ingredient, the spin quantum numbers S, are defined
via the theoretical ground-state magnetic moments M0,

37 as
S = M0/(gμB), where g ≈ 2 denotes the Landé factor.

The third ingredient, the effective interaction parameter Jeff ,
has to be constructed such that the corresponding effective
Hamiltonian reproduces the correct TC . The change of the
effective parameters due to thermal volume expansion is
expected to be a small effect, and is neglected in this study.
The remaining task is the determination of TC . In principle,
TC can be determined fully ab initio, e.g., by calculation
of all Jij parameters and using approximate methods such
as RPA,11,17,18 renormalized RPA,38 CMC,6,15,16,20 or ex-
tended Heisenberg models.6,39 In order to avoid additional
approximations, we use in the present study the experimental
value40 to assign the resulting errors solely to the mapping
onto the effective Hamiltonian. We note that the proposed
mapping procedure is based on the empirical observation
that spin systems with very different spin interaction pa-
rameters give almost identical Cp(T ) curves, provided that
the resulting critical magnetic temperature is identical. A
mathematical formulation expressing this relation and showing
the underlying approximations would be desirable but is yet
lacking. Following the above steps, the effective Hamiltonian
is constructed and solved using the QMC method. Based on
these calculations, the heat capacity is obtained by employing
the fluctuation-dissipation theorem. The magnetic contribution
to F (T ,V ) is computed combining the magnetic inner energy
U = 〈H〉 (which is directly obtained in the QMC calculations),
with the magnetic entropy determined by integrating the heat
capacity.

III. RESULTS

To check the reliability and accuracy of the effective
Hamiltonian, we first investigated and analyzed the tem-
perature dependence of the net (reduced) magnetization
M(T )/M0. As has been shown in previous studies, even
sophisticated approaches fail to give an accurate description
of the magnetization shape. For example, for bcc Fe, the RPA
gives a very good qualitative description of TC , CP , and F

when using DFT-computed spin-interaction parameters, but
fails to accurately describe M(T )/M0.11 Similar observations
have been made for classical Monte Carlo approaches.20 As
a consequence, the magnetization shape is commonly not
described using ab initio-derived spin-interaction parameters.
Rather, approximate physical models with parameters fitted to
experimental data are used.30 This empirical model showed a
universal relationship and has been successfully applied to a
wide range of magnetic materials.

The magnetization shape, as obtained from the effective
Hamiltonian using the QMC method, is shown in Fig. 1 (first
column). The magnetization shape shows significant finite-
size effects. To analyze these effects in more detail, we show
results for three different system sizes (N = 512, 1728, and
5832). As can be seen, the largest cell provides converged
results (with respect to the cell size) for reduced temperatures
below T/TC ≈ 0.95. Above this value, finite-size effects can
no longer be neglected. Fig. 1 shows that below this value an
excellent agreement with the experimental data is achieved.
The agreement of the QMC-computed magnetization shape
(i.e., fully ab initio) is comparable to the established Kuz’min’s
empirical approach.30

The fact that classical Monte Carlo method fails to
accurately describe the magnetization shape indicates that
finite-temperature magnetization is substantially affected by
spin-quantization effects. By performing classical Monte
Carlo calculations using a nearest-neighbor Hamiltonian,
which reproduces the same TC , we have a unique oppor-
tunity to quantify the quantum effects. As can be seen in
Fig. 1, the magnetic contributions (shaded magenta regions)
are substantial, even at high temperatures (i.e., close to TC),
where quantum effects are often assumed to be negligible.
They are also responsible for ensuring the exact Bloch T 3/2

relation for low temperatures and are clearly significant in
obtaining the overall agreement. The good agreement between
the classical and the quantum-mechanical calculation around
and above TC indicates that better converged results in this
region can be achieved by classical calculations that are
numerically much less expensive.

Having verified the performance of the effective Hamil-
tonian, we consider now the specific heat capacity CP . Its
computed temperature dependence is shown in Fig. 1 (second
column) together with experimental data obtained at zero
pressure.41 To better understand the role of the magnetic
contributions, we first consider vibronic and electronic con-
tributions only. As can be seen in Fig. 1 (second column), up
to a temperature of ≈300 K, the agreement is excellent: The
magnetic contribution in this range is negligible, indicating
that the studied systems are still strongly magnetically ordered
up to this temperature. Going above room temperature, the
magnetic contribution becomes clearly relevant for all three
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FIG. 1. (Color online) Reduced magnetization M(t)/M0 (first column), specific heat capacity CP (T ) (second column), and free energy
F (T ) (third column) are shown for Fe, Co, and Ni in comparison with experimental results (Refs. [24–28]) and data obtained by the CALPHAD

approach, employing the THERMOCALC program and the SGTE unary database (Ref. [29]). For Fe (first row), the results of [20] are shown for
comparison.

materials. Analyzing the various free-energy contributions,
it becomes obvious that the electronic contribution increases
from Fe over Co and is highest for Ni. This is inherently
connected with the magnitude of the band splitting being
smallest in the case of Ni (of the order of the thermal energy
∼0.2–0.3 eV). Due to the small splitting, both the spin-up and
spin-down channel are only partially occupied, thus giving rise
to a substantial electronic entropy.

Adding the magnetic contribution significantly affects the
heat capacity over a large temperature window around TC .
As can be seen in Fig. 1 (second column), the magnetic
contribution is smallest for Ni. This is a direct consequence
of the fact that the spin quantum number S is smallest for
this element. The figure also shows that for all three studied
metals, the agreement of the resulting total heat capacity with
the experimental data is excellent. The largest discrepancies
are found close to TC , particularly for Fe. This may be related
to finite-size effects in the QMC calculations, which are
particularly relevant near the critical point. Also, experimental
scatter is largest around TC due to the rapid change in CP

around the critical point.24–28

To further analyze the performance of the effective Hamil-
tonian, we consider the Helmholtz free energy. The results
are shown in Fig. 1 (third column). Also shown are free
energies derived from experimental calorimetric data within
a CALPHAD approach. In order to allow a direct comparison

between the ab initio results and the results obtained by the
CALPHAD approach, we follow previous studies3,11,20 and align
both data sets at 200 K. Similarly as for CP , we first consider
the vibronic and electronic contributions. As can be seen in
Fig. 1 (third column), the agreement up to room temperature
is excellent. Errors are <2 meV. A closer inspection shows
that the electronic contribution to the free energy increases
from Fe over Co, and reaches its maximum for Ni (≈70 meV
at T = 1800 K). The origin is similar as for CP , and is the
decrease in band splitting from Fe towards Ni.

The addition of the magnetic contribution results in an
excellent agreement with the experimental data for all three
metals. The magnitude of the magnetic contribution shows a
reversed trend as observed for the electronic contribution: The
strongest magnetic contribution is obtained in case of bcc Fe
(≈100 meV at the highest temperature T = 1800 K considered
here). The reason is that among the studied elements, Fe
has the highest spin quantum number (S ≈ 1.1). Interestingly,
although Co has a larger spin quantum number than Ni, their
magnetic contributions are comparable. The reason for this
deviation from the general trends is the low TC of Ni. Due
to this already occurring at moderate temperatures, the spin
system is close to the fully disordered state, whereas in the
same temperature window, a noticeable amount of magnetic
energy in Co is still stored in the magnetic short-range order.
Comparing the free energies (including all contributions) with
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the CALPHAD values, we observe an excellent agreement for all
three studied metals. The strongest deviations are observed for
bcc Fe (≈30 meV at T = 1800 K) due to the poor description
of CP around TC (see Fig. 1, second column), whereas a
nearly perfect quantitative agreement is obtained for Co and
Ni (≈10 meV at T = 1800 K).

IV. CONCLUSION

In conclusion, we propose a straightforward mapping
procedure that transforms the full magnetic Hamilton operator
of realistic systems with long-range and oscillating interac-
tions onto an effective Hamiltonian with nearest-neighbor
effective interactions only. The effective interaction parameter
is constructed such that the effective model reproduces the
TC of the full magnetic Hamiltonian. The approach allows
one to decouple the estimation of TC—for which it is well
known that for some materials (e.g., Ni) mechanisms such as
longitudinal spin fluctuations are critical—from the determina-
tion of other thermodynamic properties. In contrast to the full
Hamiltonian, the effective model is free of any frustrations
in the spins and can be thus efficiently solved by the spin
QMC method. Combining the QMC results with vibronic and
electronic free-energy contributions allowed us to carefully

and systematically compare the performance and accuracy of
this approach with available experimental data. Generally, an
excellent agreement has been found with small restrictions
to the region closely around TC , where finite-size effects
become substantial. The strong impact of spin quantization
on thermodynamic properties even at temperatures close to
TC is remarkable, and highlights the importance of developing
approaches that are able to take these effects accurately into
account.
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M. Körner, A. Kozhevnikov, A. Läuchli, S. Manmana,
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