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In this work we investigate the phase diagram of heavy (4d and 5d) transition-metal oxides on the pyrochlore
lattice, such as those of the form A2M2O7, where A is a rare-earth element and M is a transition-metal element.
We focus on the competition between Coulomb interaction, spin-orbit coupling, and lattice distortion when these
energy scales are comparable. Strong spin-orbit coupling entangles the spin and the t2g d orbitals giving rise
to doublet j = 1/2 and quadruplet j = 3/2 states. In contrast to previous works which focused on the doublet
manifold, we also discuss the quadruplet manifold which is relevant for several pyrochlore oxides. The Coulomb
interaction is taken into account by use of the slave-rotor mean-field theory and different classes of lattice
distortions which further split the levels of the quadruplet j = 3/2 manifold are studied. Various topological
phases are predicted, including exotic strong and weak topological Mott insulating phases. We discuss the
general structure of the phase diagram for several values of d-shell filling and various symmetry classes of lattice
distortions. Our results are relevant to the search for exotic topological insulators and quantum spin liquids in
strongly correlated materials with strong spin-orbit coupling.
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I. INTRODUCTION

Transition-metal oxides have been an active topic of
research for decades.1,2 In particular, the interplay between
Coulomb interaction, spin-orbit coupling, and lattice degrees
of freedom have made transition-metal oxides an ideal play-
ground to test new theories and discover exotic behaviors. No-
table among them are high temperature superconductivity,3,4

colossal magnetoresistance,5 and heavy fermion physics,6–8

among many other possiblities.1,2,9 The rather localized nature
of 3d orbitals (compared to 4d and 5d) in some transition-
metal oxides enhances the on-site electron-electron interaction
and typically makes it a dominant energy scale.1,2 In the 3d

transition-metal oxides other interactions such as spin-orbit
and electron-lattice coupling are typically small compared
to the on-site Coulomb interaction and ground states with
antiferromagnetic order are typical.10

However, 4d and 5d orbitals in layered perovskites such
as Sr2RuO4, Sr2RhO4, Sr2IrO4, and Na2IrO3 and the hyper-
kagome Na4Ir3O8 are more spatially extended and thus the
Coulomb interaction is typically weaker than those with 3d

orbitals.11 The more extended nature of the 4d and 5d orbitals
compared to the 3d orbitals leads to a greater level splitting in a
crystal field and enhances their sensitivity to lattice distortions.
In many oxides, the transition ions are surrounded by an
octahedron of oxygen atoms, MO6, where M represents a
transition-metal ion. The crystal field splits the five degenerate
(neglecting spin for the moment) d orbitals into two manifolds
[see Fig. 1(c)]: a lower lying t2g (dxy,dyz,dzx) manifold and
a higher lying eg (d3z2−r2 ,dx2−y2 ) manifold.1,2 The energy
separation between the t2g and eg levels is conventionally
denoted “10Dq” and is typically on the order of ∼1–4 eV,
which is large compared to many 3d compounds.12

Besides the crystal field, the relativistic spin-orbit coupling
is another energy scale that results from the large atomic
numbers of heavy transition elements. While in the absence
of spin-orbit coupling the on-site Coulomb interaction is of
the same order as the band width,13,14 inclusion of strong

spin-orbit coupling modifies the relative energy scales.15 Thus,
for materials with 4d and particularly 5d electrons, one expects
the appearance of novel phases with unconventional electronic
structure due to the characteristic energy of spin-orbit coupling
approaching that of the Coulomb interactions.15

In a cubic environment, the L = 2 orbital angular momen-
tum of the d orbitals is projected down to an effective angular
momentum l = 1 (with a minus sign) in the t2g manifold.15

When the spin-orbit coupling is also strong, neither spin nor
orbital angular momentum is a good quantum number. Instead,
the total angular momentum, i.e., j = l + s, is a conserved
quantity, where s is the spin of the electron. Thus, spin-orbit
coupling splits the t2g orbitals with spin into a j = 1/2
doublet and j = 3/2 quadruplet separated by an energy gap
proportional to the strength of the spin-orbit coupling, λ.
[See Fig. 1(c).] For large enough spin-orbit coupling, the
new effective spin states lead to a great deal of novel Mott
insulating states,16–21 possible spin liquids in the hyperkagome
lattice, 22–29 orbital-oriented exchange coupling in Kitaev-type
models,30,31 Dirac semimetals with Fermi arcs,32 the quantum
spin Hall effect,33 topological Mott insulators,15 topological
magnetic insulators with axionic excitations,34,35 and possibly
high temperature superconductivity.36

Of particular interest in this paper are the topological
phases that occur in weakly to moderately strongly interacting
systems with strong spin-orbit coupling.37–51 (For excellent
recent reviews see Refs. 52, 53.) The possible time-reversal
invariant topological phases of matter have nontrivial topo-
logical features in their global band structure and robust edge
(surface) states. When strong electron correlations are taken
into account, spin-orbit coupling can give rise to a topological
Mott insulating phase in which the charge degrees of freedom
are completely gapped (even on the surface), but where the
spin degrees of freedom inherit the nontrivial band topology
from the weakly interacting limit.15,54,55 Thus, the spin degrees
of freedom form gapless spin-only edge (surface) modes.
Such edge (surface) states can in principle be detected in
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FIG. 1. (Color online) (a) An illustration of the pyrochlore lattice
which is composed of corner sharing tetrahedra. Transition elements
are indicated by black solid circles. (b) Each transition ion is
surrounded by an oxygen octahedron shown by six solid blue (dark
gray) circles. A transition ion is located at the origin of the local
coordinate and is shown in black. We study a trigonal distortion
preserving C3 symmetry applied along the [111] direction (or its
equivalent), shown by two yellow (gray) faces, and an elongation
preserving C4 symmetry along the z axis of the local coordinate.
(c) A schematic representation of the splitting of the bare atomic d

levels (1), due to a cubic crystal field arising from the octahedral
environment (2), unquenched spin-orbit coupling in the t2g manifold
(3), and a distortion of the octahedron (4). The values of the splittings
in (4) depend on λ and �3,4.

thermal transport measurements (but not so readily in spin
transport as the spin-orbit coupling generically destroys all
spin conservation laws).

In this work we focus on the interplay and competition
between strong correlation effects, spin-orbit coupling, and
lattice distortion that is expected to be important in heavy
transition-metal oxides. In the heavy transition-metal oxides
one expects both the spin-orbit coupling33,56 and the lattice
distortion energies57 to be of the order of 0.05–0.5 eV, while
the interaction energy is typically at the higher end of this scale,
to a somewhat larger 0.5–2 eV.32,33 While the phase diagram
of an interacting undistorted pyrochlore model with j = 1/2
has already been studied,15 we expand those results to include
the effects of distortions of the local octahedra on the phase
diagram. We also investigate pyrochlore oxides at different
d-level fillings with the Fermi energy lying in the quadruplet
j = 3/2 manifold, which has not been considered in previous
works. One of our motivations is to see whether the j = 3/2
manifold can also realize the interesting Mott phases of the
j = 1/2 manifold.15 We find that, indeed, these exotic phases
can be realized for the j = 3/2 manifold. Moreover, we find
that for the j = 1/2 manifold “weak” topological variants of
the exotic Mott phases can also appear in the phase diagram
when certain types of lattice distortion are present.

This paper is organized as follows. In Sec. II we derive
an effective nearest-neighbor tight-binding Hamiltonian that

properly captures the noninteracting limit of the physics, and
include an on-site Hubbard interaction term to describe elec-
tron correlations. In the absence of interactions and distortions,
the ground state is metallic for weak spin-orbit coupling, and
becomes a strong topological insulator as spin-orbit coupling
grows. In Secs. III, IV, and V we study the effects of Coulomb
interaction and lattice distortion on equal footing using the
slave-rotor mean-field theory.58,59 As the strong correlation
limit is approached, a Mott transition occurs and exotic phases
are realized. We discuss the conditions that favor these unusual
phases. Finally, we conclude in Sec. VII and outline interesting
topics for further study.

II. DERIVATION OF THE EFFECTIVE HAMILTONIAN

In this work, we restrict our attention to pyrochlore oxides
of the form A2M2O7, where A is a rare-earth element and
M is a transition-metal element. Examples include A2Ir2O7

(A = Y, Pr, Eu or other rare-earth elements), Cd2Os2O7, and
Cd2Re2O7. In these materials, the transition-metal elements
form a pyrochlore lattice and each M sits in the center of an
oxygen octahedron.60 The relevant geometry and coordinate
system we use, along with the important level splittings, are
shown in Fig. 1.

For strong spin-orbit coupling and with dα (α � 4, i.e.,
less than 4 electrons), the upper j = 1/2 manifold is empty
and the important electronic structure is given by the lower
j = 3/2 manifold. In ordered double perovskites with a local
quadruplet, strong on-site interactions add biquadratic and
bicubic exchange interactions to the effective spin exchange
Hamiltonian deep in the Mott regime.61 It is also argued that
the same local C3 distortion that we consider in subsequent
sections maps the exchange Hamiltonian onto a pseudo-spin-
1/2 model that favors magnetic order.56

Here we focus on the weak to moderately strong interaction
regimes.15,51,60 We begin by deriving an effective tight-binding
Hamiltonian between transition ions located at the vertices of
the corner-shared tetrahedrons in the pyrochlore lattice shown
in Fig. 1(a). The transition ions we consider have 5d orbitals
with three or five electrons in the triply degenerate (neglecting
spin) t2g manifold. The spin-orbit coupling in this manifold
has the following form:1

Hso = −λl · s, (1)

where l = 1 and s = 1/2 describe the orbital and spin degrees
of freedom, and λ > 0 parameterizes the strength of the spin-
orbit coupling. That the t2g orbitals can be effectively described
by angular momentum l = 1 comes from the projection of the
d-orbital angular momentum onto the local basis of the t2g

manifold.15,61

To study the effects of lattice deformations,62 we assume
that the octahedron surrounding an ion can be distorted in two
ways: (1) a trigonal distortion preserving local C3 symmetry
and (2) an elongation (expansion) of octahedra preserving local
C4 symmetry. [See Fig. 1(b).] The former has been argued
to be rather common and can be described by the following
Hamiltonian on each transition-metal ion site:60

Htri = −�3(d†
yzdzx + d†

yzdxy + d†
zxdxy) + h.c., (2)
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where �3 parametrizes the strength and sign of the C3 pre-
serving distortion, and the C4 elongation/contraction splitting
is described by61

Hel = �4l
2
z = �4(nyz + nzx), (3)

where �4 parametrizes the strength and sign of the distortion,
and lz is the z component of the effective angular momentum
of the t2g orbitals related to the occupation of the dxy orbital
by nxy = nd − (lz)2 which follows from the constraint nd =
nxy + nyz + nzx .61 (See also Appendix A.) For an elongation
of the tetrahedron, �4 < 0, and for a compression of the
tetrahedron, �4 > 0. Trigonal distortions appear to be more
common in real materials, and the magnitude of the energy
splittings can be crudely estimated from density functional
theory calculations based on x-ray determined positions of
oxygen atoms around the transition metals. We are not aware of
detailed calculations of this type for the 4d and 5d pyrochlore
oxides, but closely related 3d systems appear to have splittings
on the level of 0.01–0.5 eV.57 We take this as crude estimate,
with the larger end of the energy scale probably more likely
for the more extended 4d and 5d orbitals.

Thus, the local Hamiltonian describing the t2g orbitals on
each site is

Hlocal = Hso + Htri + Hel. (4)

The Hamiltonian (4) can be easily diagonalized and its
eigenvectors describe a projection onto the spin-orbit plus
distortion basis. We will denote the projection by a matrix
M , which contains all the information about the spin-orbit
coupling and the distortion of the octahedra (all assumed
identical so translational invariance is preserved). Moreover,
due to the presence of time-reversal symmetry, the eigen-
vectors form Kramers pairs. A schematic representation of
splitting t2g upon including the terms in Eq. (4) is shown in
Fig. 1(c).

We now turn to a derivation of the effective Hamiltonian. We
first assume λ = �3 = �4 = 0, i.e., neglect the contributions
in (4). To obtain the kinetic terms of the Hamiltonian, we
need to describe the t2g orbitals of a single ion in the local
coordinate system defined by the octahedron of oxygen atoms
surrounded the ion, and we need the p-orbitals of oxygen in
the global coordinate system. The hopping of electrons from
one transition-metal ion to a nearest-neighbor transition-metal
ion is mediated by the oxygen p orbitals. (We note that for
the relatively extended 5d orbitals direct overlap may also be
important, as well as further neighbor hopping.20) We thus
compute the p-d overlaps to determine the hopping matrix
elements. The local and global axes are related by a set of
rotation matrices.15,60 The combination of rotation matrices
and d-p overlaps gives rise to the following Hamiltonian:

Hd = εd

∑
iγ σ

d
†
iγ σ diγ σ + t

∑
〈iγ σ,i ′γ ′σ ′〉

T ii ′
γ σ,γ ′σ ′d

†
iγ σ di ′γ ′σ ′, (5)

where i, γ , and σ in the sums run over lattice sites, t2g orbitals
(xy,yz,zx), and spin degrees of freedom, respectively. The εd

stands for the on-site energy of the degenerate t2g orbitals, and

t = V 2
pdπ

εp−εd
is the unrotated hopping amplitude depending on

the overlap integral Vpdπ and the energy difference between p

and d orbitals. The parameter t sets the basic hopping energy
scale in the problem. Without loss of generality we set εd = 0.

The effect of spin-orbit coupling and distortion are included
via the projection of the Hamiltonian in Eq. (5) onto the
eigenvectors of the local Hamiltonian in Eq. (4) using matrix
M as follows:

H0 =
∑
iα

υαc
†
iαciα + t

∑
〈iα,i ′α′〉


ii ′
α,α′c

†
iαci ′α′ , (6)

where υα (α = 1,...,6) stands for the six eigenvalues of the
local Hamiltonian (4), and the matrix 
 describes the hopping
between sites given in the local basis via 
 = M∗T MT . The
c
†
iα (ciα) is the creation (annihilation) operator of an electron at

site i and in local state α. Finally, we add a Coulomb interaction
to obtain

H = H0 + U

2

∑
i

(∑
α

c
†
iαciα − nd

)2
, (7)

where U is the on-site Coulomb interaction and nd is the
number of electrons on the 5d orbital of the transition-metal
ion. In the remainder of this paper, we investigate the zero-
temperature phase diagram of the full Hamiltonian (7), which
includes the spin-orbit coupling and lattice distortions in (4).

Before closing this section, it is instructive to take a look
at the noninteracting limit of our model. In the absence of
distortion, small spin-orbit coupling favors a metallic state for
all fillings we consider (because they correspond to partially
filled bands). However, strong spin-orbit coupling opens a gap
at λ/t = 2.8 for filling nd = 5,15 and for λ/t = 2.5 at filling
nd = 3 (see Fig. 3). The two fillings correspond to the j = 1/2
and j = 3/2 manifolds in the bands, with one hole/ion in
each case. Therefore, strong spin-orbit coupling can turn the
metallic band structure arising from the quadruplet j = 3/2
manifold into a band insulating phase.

By using the Fu and Kane43 construction, we can determine
whether the insulating phase is trivial or topological. We make
use of the inversion symmetry of the model and look for the
parity of eigenstates at the time-reversal invariant momenta.
Those parities are related to the strong topological Z2 index ν0

via the following relation:

(−1)ν0 =
∏
m

∏
i

ξ2m(
i), (8)

where the first product is taken over filled bands, the second
one over the time-reversal invariant momenta 
i , and ξm(
i)
is the corresponding parity eigenvalue of band m at time-
reversal invariant momentum 
i . [Note that only one band
from each set of Kramers pairs is included in the product.
Note also that we have followed convention and used 
i with
a single subscript for the time reversal invariant momenta. It
should not be confused with the multi-indexed 
ii

α,α′ in (6)
that describes the hopping.] The index i is a collective index,
i.e., i ∈ {i1,i2,i3}, in terms of reciprocal lattice vectors K of
the pyrochlore lattice: 
i = 1/2(i1K1 + i2K2 + i3K3) so that
i1,i2,i3 = 0,1. The weak indices are defined in a similar way
to the strong index:

(−1)νj =
∏
m

∏
i(ij =1)

ξ2m(
i), (9)
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where j = 1,2,3. Thus, the index (ν0; ν1ν2ν3) defines sixteen
classes of band insulators. If ν0 = 1, the state is said to be
a strong topological insulator (STI) and it has time-reversal
symmetry protected gapless boundary excitations described
by an odd number of Dirac cones in the surface state
Brillouin zone.43 On the other hand, if ν0 = 0 but νj �= 0
for at least one j ∈ (1,2,3) then the state is said to be
a weak topological insulator (WTI). In this case, gapless
surface modes may be present in a clean system, but can be
destroyed with disorder. As we will see, we find both STI
and WTI (including strong correlation generalizations) in our
model when lattice distortions are present. (See Fig. 2, lower
panel.)

III. SLAVE-ROTOR MEAN-FIELD THEORY AND
SELF-CONSISTENT EQUATIONS

In this section we apply the slave-rotor mean-field theory
developed by Florens and Georges58,59 to treat the effect of
weak to intermediate strength Coulomb interactions in the
regime where the charge fluctuations remain important. In
this theory each electron operator is represented in terms of
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FIG. 2. Phase diagram of the jeff = 1/2 band model correspond-
ing to nd = 5 with positive �3 = 2t (upper panel) and negative
trigonal distortion �3 = −2t (lower panel). The dashed line separates
the rotor condensed phases (below) from the uncondensed phases
(above). We set t = 1, and the phases labeled are as follows:
Strong topological insulator (STI), weak topological insulator (WTI),
gapless Mott insulator (GMI), topological Mott insulator (TMI), weak
topological Mott insulator (WTMI), and metallic phases.
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FIG. 3. Phase diagram of j = 3/2 band model on the undistorted
lattice for nd = 3. The abbreviations used are the same as those in
Fig. 2. The dashed line separates the rotor condensed phase (below)
from rotor uncondensed phase (above). All energies are expressed in
units of t , as before. Compared to the corresponding phase diagram for
j = 1/2 with nd = 5, the STI and TMI occupy a much smaller portion
of the phase diagram (Ref. 15). The phase diagram for j = 2/3 with
nd = 2 has no topologically nontrivial phases within our model, even
in the presence of distortion.

a collective phase, conjugate to charge, called a rotor and an
auxiliary fermion called a spinon as

ciα = eiθi fiα, (10)

where ciα is the electron destruction operator at site i with
quantum number α, representing the states in (7). The factor
eiθi acting on the charge sector is a rotor lowering operator
(with θi a bosonic field), and fiα is the fermionic spinon
operator. The product of the two results in an object with
Fermi statistics, needed for the electron. Note the rotor part
only carries the charge degree of freedom while the spinon
part carries the remaining degrees of freedom α. Therefore, an
electron has natural spin-charge separation if α is spin in this
representation.

A constraint should be imposed to retain the physical states
as

Li +
∑

α

f
†
iαfiα = nd, (11)

where Li is number of rotors. Using this representation, the
interacting Hamiltonian (7) can be written as

H =
∑
iα

(υα − μ)f †
iαfiα + t

∑
〈i,i ′〉


ii ′
α,α′e

−i(θi−θi′ )f
†
iαfi ′α′

+U

2

∑
i

L2
i , (12)

where a chemical potential μ has been introduced. In order
to treat the phase θ and angular momentum L on an equal
footing, we need to switch from (θ,L) to fields (θ,i∂θ )59 so that
i∂τ θ = ∂H

∂L
, which gives L = (i/U )∂τ θ . The corresponding
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action is

S =
∫ β

0
dτ [−iL∂τ θ + H + f †∂τf ]. (13)

We next introduce bosonic operators Xi = eiθi and recast the
action into

S =
∫ β

0
dτ

{ ∑
iα

f
†
iα(∂τ + υα − μ − hi)fiα

+
∑

i

[
1

2U
∂τX

∗
i ∂τXi + hi

2U
(X∗

i ∂τXi − c.c.)

+ρi(|Xi |2 − 1)

]
+ t

∑
〈i,i ′〉


ii ′
α,α′X

∗
i Xi ′f

†
iαfi ′α′

}
, (14)

where hi and ρi are Lagrange multipliers imposing the
constraints Li + ∑

σ f
†
iσ fiα = nd and |Xi |2 = 1, respectively

on each site. We have effectively carried out the integration
over L by using the relation L = (i/U )∂τ θ . The action (14)
describes the coupled spinon and rotor degrees of freedom.
We will assume that translational symmetry is preserved
and decompose (14) into two parts by use of the following
mean-field ansatz:

Qf = 〈X∗
i Xi ′ 〉, Qθ =

∑
αα′


ii ′
α,α′ 〈f †

iαfi ′α′ 〉. (15)

Then, the action in Eq. (14) can be written as S = Sf + Sθ , in
which

Sf =
∫ β

0
dτ

[ ∑
iα

f
†
iα(∂τ + υα − μ − h)fiα

+tQf

∑
〈i,i ′〉


ii ′
α,α′f

†
iαfi ′α′

]
, (16)

Sθ =
∫ β

0
dτ

{ ∑
i

[
1

2U
∂τX

∗
i ∂τXi + h

2U
(X∗

i ∂τXi − c.c.)

+ρ(|Xi |2 − 1)

]
+ tQθ

∑
〈i,i ′〉

X∗
i Xi ′

}
. (17)

The chief benefit of the above actions Sf and Sθ is that
they are quadratic in spinon and rotor fields, and therefore
the calculation of the corresponding Green’s function is
straightforward. One can simply use Fourier transformation
and go to the eigenfunction basis to obtain

Sf =
∑
k,n,j

[
f̃

†
knjw(iωn + εj (k))f̃knj

]
, (18)

where k is the momentum, j labels the four sites in a unit
cell as well as the effective spin degrees of freedom, and the
dispersion of band j is given by εj (k). The iωn are fermionic
Matsubara frequencies and f̃knj is a linear combination of fkα

that diagonalizes the spinon part of the Hamiltonian:

Hf =
∑
iα

f
†
iα(υα − μ)fiα + tQf

∑
〈i,i ′〉


ii ′
α,α′f

†
iαfi ′α′ . (19)

The rotor action reads

Sθ =
∑
k,n,j

{
X̃∗

j (k,νn)

[
ν2

n

U
+ ρ + tQθξ (k)

]
X̃j (k,νn)

}
, (20)

where the parameter U has been replaced by U/2, so that the
atomic limit is treated correctly.58 Note that we have set h = 0,
which guarantees that the constraint Eq. (11) is satisfied on the
mean-field level.58 The νn are bosonic Matsubara frequencies
and ξ (k) is related to the spectrum of the rotor Hamiltonian15

via ξ1,2(k) = 2(1 ±
√

1 + ∑
μ<ν cos(kμ/2) cos(kν/2)), and

ξ3,4 = −2. In the sum under the radical, μ,ν run over three
values and give max{|ξi |} = 6.

The spinon and rotor Green’s function can be readily written
as

Gf (k,iωn) = 1

iωn + ε(k)
, (21)

Gθ (k,iν) = 1
ν2
n

U
+ ρ + tQθξ (k)

, (22)

which can be used to to determine the character of spinon
and rotor excitations. We note that the spinons are single-
particle-like excitations, while the rotors represent collective
excitations.

The self-consistent equations that should be solved to
determine the phase boundaries in the phase diagram are
(where the rotors are assumed condensed)

1 = |Xi |2 = 1

4N

1

β

∑
n,j,k

1
ν2
n

U
+ ρ + tQθξj (k)

, (23)

Qf = − 1

24N

1

β

∑
n,j,k

ξj (k)
ν2
n

U
+ ρ + tQθξj (k)

, (24)

Qθ =
∑
αα′


ii ′
α,α′ 〈f †

iαfi ′α′ 〉, (25)

4nd = 1

N

∑
j,k

�(μ − εj (k)), (26)

where N is the number of unit cells in the lattice, β is the
inverse temperature, and �(x) is the step function. By use of
the Matsubara sum54 1/β

∑
n Gθ (k,iνn) = U

2
√

U (ρ+ξ (k))
, the

first two equations above in the set starting with (23) can
be simplified as15

1 = 1

4N

∑
j,k

√
U

4[ρ + tQθξj (k)]
, (27)

Qf = − 1

24N

∑
j,k

ξj (k)

√
U

4[ρ + tQθξj (k)]
. (28)

The rotor condensed phase is characterized by a nonzero value
of Z ≡ 〈eiθ 〉, where the electron operator is proportional to the
spinon operator: ciα = Zfiα . The condition for condensation
is that the gap of the rotor’s spectrum �g = 2

√
U (ρ + 6tQθ )

closes. Therefore, right at the phase boundary ρ = −6tQθ .
Combined with Eq. (27) and Eq. (28), Qf and the critical U

can be determined.15,54
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IV. j = 1/2 BAND MODEL: EFFECT OF TRIGONAL
DISTORTION

In this section we discuss the slave-rotor mean-field phase
diagram of the j = 1/2 model studied in Ref. 15 when a
C3 symmetry preserving trigonal distortion of the oxygen
octahedra is included.60 The effect of the trigonal distortion
on the atomic t2g levels is given by Eq. (2), which describes
the compression or expansion of the octahedra along the [111]
direction or any equivalent direction in the local coordinate.
Figure 1(b) shows a schematic of this deformation as indicated
by the shaded faces of the octagon. This distortion splits the
t2g manifold into a singlet |a〉 with energy εa = −2�3 and
doublet |e′

g〉 with energy εe = �3.
The effect of spin-orbit coupling on the doublet can be

understood by noting that the spin-orbit coupling in the
subspace spanned by the doublet states acts like a Zeeman
field,20

〈Hso〉e′
g
= λ

2
τ z ⊗ �σ · �n, (29)

where τ z and �σ act on the pseudospin space spanned by e′
g

states and real spin, respectively. The unit vector �n points
in the direction of the trigonal distortion. Thus a gap may
open by tuning the spin-orbit coupling in the presence of a
strong distortion, which is consistent with density functional
calculations for the iridate Na2IrO3.20

As discussed in Ref. 60, in the noninteracting limit a strong
trigonal distortion can turn a strong topological insulator
into a metal. We would like to understand to what degree
this happens in the presence of interactions, and to what
degree the undistorted, interacting phase diagram of Pesin
and Balents15 is changed by distortions. We thus study both
interaction and distortion on equal footing. After verifying that
our calculations successfully reproduce the phase diagram in
Ref. 15, we first consider the case of �3 > 0. Our results are
shown in Fig. 2. The upper panel exhibits the phase diagram
with positive distortion. The thick dashed line separates the
rotor condensed phase (below the line) from the uncondensed
part (above the line). At the noninteracting level and for
weak spin-orbit coupling, the system is in the metallic phase.
However, a small window of gap opening exists for λ ≈
2.8t − 3.3t , which is a strong topological insulating (STI)
phase with Z2 invariant (1;000). This small window forms
a narrow gapped region in the phase diagram along the U = 0
axis. Note that the “reentrant” metallic phase in the presence
of distortion is different from the robust insulating phase found
in Ref. 15 for large λ, and is qualitatively similar to the
noninteracting distortion results found in Ref. 60.

Within the slave-rotor mean-field theory, one finds that a
narrow window of STI persists to interactions of order the
bandwidth, after which it becomes a tiny sliver. A metallic
phase has mostly replaced what would be the STI in the
absence of distortions. As interactions are further increased,
and a Mott transition occurs to gap out the rotor degree
of freedom (above the dashed line), one finds the metal is
converted into a gapless Mott insulator (GMI), which is a type
of spin liquid with gapless bulk spin excitations15 described
by the spinon Hamiltonian in Eq. (19). The only effect of the
interaction U is to renormalize Qf through the self-consistent

equations. The large regions of GMI indicates that lattice
distortions of �3 > 0 type may be helpful in the realization of
a gapless spin liquid state in this class of materials. A very tiny
sliver of STI is converted into a topological Mott insulator
(TMI) above the line for which the rotors are no longer
condensed.15 Thus, distortions of this type are detrimental to
the realization of the TMI phase and suggest this phase may
not be stable against lattice distortions.

Next we consider the case of �3 < 0. The phase diagram
is shown in the lower panel of Fig. 2. One distinctive feature
compared to the case of positive distortion is that the critical
Uc for the Mott transition (dashed line) grows as the spin-orbit
coupling strength is increased. A second feature is that a variety
of phases appear from the interplay of spin-orbit coupling
and correlation effects. At zero interaction, while small and
intermediate values of spin-orbit coupling favor the metallic
phase, a gap is opened for λ ≈ 3.1t − 3.3t . According to the
Z2 classification38 this insulating phase is a weak topological
insulator (WTI) with Z2 invariant (0;010), and the small
window survives and persists up to intermediate interactions.
To the best of our knowledge, this is the first identification of
a weak topological insulator in an interacting model. Gapless
modes along certain classes of defects may be a way to identify
this state in experiment.63

Another interesting feature of the phase diagram for �3 < 0
is that the correlation effect can drive the metallic and
weak topological insulator phases into a strong topological
insulating phase. All realized phases in the condensed rotor
phase (below the dashed line) have carriers with both spin
and charge. When the correlation is strong enough to strip the
charge degree of freedom (above the dashed line), those phases
will turn into the corresponding phases with only spin degrees
of freedom. As before, the metallic and strong topological
insulator phases are transformed into the GMI and TMI phases,
respectively. Moreover, the weak topological insulator phases
realize anew the weak topological Mott insulator (WTMI) with
increased interactions. These latter phases are absent on the
undistorted lattice15 and to the best of our knowledge, this is the
first time the WTMI phase has been identified in a calculation.
It will have gapless thermal transport along the same class of
defects that would have gapless charge (and thermal) transport
in the WTI phase.63 We note that there is an accidental gap
closing in the TMI phase where two TMI phases are separated
by a boundary. However, since the gap closing occurs at an
even number of Dirac-like nodes, the topological properties
remain unchanged through the gap closing points.

V. j = 3/2 BAND MODEL: PHASE DIAGRAM OF
UNDISTORTED LATTICE

To date, the search for time-reversal invariant insulators in
transition-metal oxides has primarily focused on the j = 1/2
manifold because of its obvious connection to the s = 1/2
manifold heavily studied in the theoretical literature thus
far.15,16,32,33,60 While the j = 1/2 manifold is relevant for
1/2-filling (nd = 5), the j = 3/2 manifold is relevant for
nd = 2 which occurs in Cd2Re2O7 and nd = 3 which occurs
in Cd2Os2O7.64,65 In this section we investigate whether
topological phases are still possible in the j = 3/2 manifold
for some range of λ and study the phase diagram in the
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presence interactions, as was done for j = 1/2 in Ref. 15.
In the next section, we will consider the effects of distortion
on the j = 3/2 phase diagram.

In our calculations, we find that the noninteracting model
with 5d2 remains metallic for all physical spin-orbit coupling,
although we can open a gap by distortion. A direct evaluation
of the Z2 invariant shows that the distortion-induced insulating
phase is a trivial insulator. So we will focus on the case with
a 5d3 electron configuration, with Cd2Os2O7 one possible
example.64,65 In the noninteracting limit and for small values
of spin-orbit coupling, we find a metallic phase. However,
for λ ≈ 2.5t a gap opens and a STI appears. The STI phase
is characterized by the Z2 indices (1; 000) and survives to
moderate interaction. The corresponding phase diagram is
shown in Fig. 3. The metallic phase is still present in a large
portion of the phase diagram if the spin-orbit coupling is not
too strong. It results in part from the fact that the corresponding
band structure coming from the j = 3/2 manifold has a larger
band width than the upper j = 1/2 manifold and therefore has
a weaker correlation effect for the same value of U .

The phase boundary that separates the STI phase from
the weakly interacting metallic phase can be determined
analytically.15 One notes that in the noninteracting limit a gap
is opened at λ ≈ 2.5t . Therefore, the λ and U that respect λ ≈
2.5Qf (U ) form the critical line between the STI and the metal.
As in the case of the j = 1/2 manifold, the Mott transition
between the metallic (STI) phase and the GMI (TMI) phase is
characterized by a vanishing amplitude of the rotor condensate
at some critical value Uc(λ) (given by the dashed line). The
GMI-metal transition and its extension to finite temperature,
which appears to be a possible Mott transition between a
spin-liquid insulator and metal, has already been studied with
a possible connection to the experimental observations in
Na4Ir3O8.25,26,66

The TMI phase is described by a gapped bulk spectrum
of the spinon Hamiltonian and is in the same topological
phase appearing in the j = 1/2 manifold.15 It supports gapless
surface states of charge-neutral spinons. The same spin-charge
separation also occurs in 2D cases,54,55 where a quantum spin
Hall state turns into an exotic quantum spin Hall effect at an
intermediate regime of on-site Hubbard interaction. However,
the 2D nature of the phase suffers from an instability due to
fluctuations of the gauge field.54,55

An analysis of symmetries reveals that the Hubbard model
in Eq. (7) has a U(1) gauge symmetry as the slave-rotor
representation of the physical electron in Eq. (10) is invariant
under the following gauge transformation: fiα → eiϕi fiα and
θi → θi − ϕi . In the insulating exotic state, the rotors can be
integrated out since the charges are gapped. The resulting
theory is a compact U(1) gauge theory coupled to the
spinons.67 The later theory is not stable against the fluctuations
of the gauge field as it is a confining compact theory in 2D.68

Such confinement renders the states unstable in 2D as the
gauge fields confine the free spinon-like excitations, effectively
removing them as legitimate low-energy excitations.68–70

While it is believed that the extension of the spin index to
N flavors renders it deconfining for sufficiently large N , the
value of the critical N is not known.71 In order to stabilize
the edge modes, the gauge fluctuations must be screened by
other gapless degrees of freedom. In the 2D case, this can be

done by use of a bilayer structure in which the “second” layer
contains the necessary gapless degrees of freedom.55 In spite
of the shortcomings of the slave-rotor mean-field theory in 2D,
we note that recent quantum Monte Carlo calculations on the
Kane-Mele-Hubbard model show a similar phenomenology in
some respects at intermediate interaction strength.72–74

Returning to 3D, we note that in the TMI phase the
gapless spinon surface states are coupled to the bulk 3D gauge
fields.75 Thus, the low energy theory of the TMI phase is
given by the spinon surface states coupled to the 3D gauge
fields. This theory is believed to be stable,15 as the gauge
propagator is suppressed so that the spinons become better
defined (the self-energy scales as the energy itself, up to
logarithmic corrections).75 Thus, the lowest order calculation
in the U(1) gauge fluctuations suggests they are marginal;
a more careful scaling analysis suggests they are actually
marginally irrelevant.75

Unlike the STI phase, the surface states of the TMI phase
cannot be characterized by electrical transport measurements
due to the charge neutrality of the spinons on the surface of
the TMI. Moreover, because of this neutrality, there are no
Friedel oscillations around a charged impurity on the surface.
However, spinon surface states of the TMI can be detected in
thermal measurements, and by the way in which they modify
the RKKY interaction between magnetic impurities at the
surface.75 In the GMI phase, on the other hand, the bulk specific
heat behaves66 as C ∼ T ln(1/T ), while in the metallic state
it behaves as C ∼ T .

VI. j = 3/2 BAND MODEL: EFFECT OF DISTORTIONS

Having obtained the phase diagram of the undistorted
j = 3/2 model in Fig. 3, we now study the effect of the
local distortion of octahedra introduced in Sec. II. We focus
on two kinds of distortion with different symmetries: (1) a
trigonal distortion of oxygen octahedra that preserves the C3

symmetry, and (2) a compression and elongation of the oxygen
octahedra that preserves the C4 symmetry. We use parameter
�3 to describe the C3 distortion and �4 to describe the C4

distortions. The relevant Hamiltonians are given in (2) and (3).
We restrict our attention to the weak and intermediate

interaction limit, so we neglect possible magnetic phases that
could become favorable in the strong correlation limit. In that
limit geometrical distortions could alter the isotropic antifer-
romagnetic superexchange and the combined effects of spin-
orbit coupling and distortion can give rise to an anisotropic
pseudospin Heisenberg model for some perovskites.56

A. Trigonal distortion of oxygen octahedra

We first consider the trigonal distortion in Eq. (2) on the
j = 3/2, nd = 3 manifold. The resulting phase diagrams for
fixed �3 and fixed U are shown in Fig. 4. We find the general
structure of the phase diagram depends on �3 in a complicated
way. As one example, in the upper panel of Fig. 4 we show
the case of fixed trigonal distortion �3 = 2t . In that case,
we find that the noninteracting model is dominated by the
metallic phase, which is analogous to the trigonal distortion
driven metallic phase on the j = 1/2 band model, as discussed
in Sec. IV and also in Ref. 60. The gap opens at λ ≈ 1.8t
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FIG. 4. Phase diagram of the j = 3/2 band model with nd = 3,
including the trigonal distortion of the octahedra. The labeling of the
phases is the same as that used in Fig. 2. In the upper panel �3 = 2t .
In the lower panel the interaction is fixed at U = 4t and the strength
�3 of the trigonal distortion is varied, illustrating possible phases
that may arise upon the application of pressure to a real system.
All energies are expressed in units of t . In both phase diagrams
the dashed line separates the rotor uncondensed phase (above) from
the condensed phase (below). We note the “pocket” of STI around
λ ≈ 1,�3 ≈ 1.5 in the lower figure has a numerically difficult to
determine boundary with the metallic phase; we have presented our
best assessment.

and closes at λ ≈ 2.4t . Therefore, in the presence of trigonal
distortion only a small window of λ admits the STI phase in
the noninteracting limit. However, this small window grows
with small but increasing interaction strength which helps to
stabilize the STI phase.15 The metallic phase, however, remains
dominant for λ � 2.4t , even in the presence of interaction. We
note that the boundary separating STI phase from the metallic
phase around λ ≈ 2.4t is not exactly but very close to a straight
line.

From the phase diagrams shown in Fig. 4, it is clear that
trigonal distortion has two remarkable effects. First, compared
with the undistorted phase diagram in Fig. 3, it is evident
that the distortion drives the system across the Mott transition
(indicated by the dashed line) at rather smaller critical values
of interaction Uc(λ). This finding suggests that the distortion
may help stabilize the TMI phase in a physically realistic
range of interactions before the system undergoes a transition
to a magnetically ordered phase at strong interaction. The
considerable decrease of the critical Mott transition point can
be traced back to the effect of distortion on the j = 3/2
manifold. Without distortion this manifold represents four

degenerate states which in turn contribute to the formation
of bands. However, upon the inclusion of distortion this
degenerate manifold splits into two Kramers pairs separated
by an amount of energy related to the strength of the distortion,
i.e., �3. The corresponding bands will also be separated by the
same energy scale. Thus with distortion, we are dealing with a
half-filled band, with an effective bandwidth reduction. So, a
smaller Hubbard interaction is needed for the Mott transition.16

Second, distortion stabilizes the TMI phase by extending
its region of the phase diagram in comparison with the small
region seen around U ≈ 9 in the undistorted lattice. (See
Fig. 3.) We note that the GMI phase is found at both small
and large spin-orbit coupling in the presence of a trigonal
distortion.

The lower panel in Fig. 4 explicitly shows the effect of
distortion at fixed interaction U = 4t , which is relevant to the
application of pressure, for example. At small distortions �3 �
t , most of the phase diagram is dominated by metallic and STI
phases. One can think of distortion as a driving parameter that
transfers the system from the rotor condensed phase (below
the dashed line) into the uncondensed phase (above the dashed
line). Although the actual form of the geometrical distortion
could be more complicated than the one we considered here,
the result is appealing as this minimal distortion can drive
the system across a variety of phases. Starting from the STI
phase at zero distortion, the ground state of the system can
exhibit a metallic behavior or perhaps transits to GMI and TMI
phases with increased distortion. We hope this observation will
help motivate new classes of experiments searching for exotic
quantum phases in correlated materials with strong spin-orbit
coupling.

B. Compression and elongation of the oxygen octahedra

In this subsection we study the effects of the second type of
distortion, Eq. (3), which describes a tetragonal distortion of
the octahedron along one of its axes. This distortion preserves
the C4 rotation of an octahedron about the elongated axis,
say the z axis in Fig. 1(b). At zero spin-orbit coupling, the
degeneracy of the t2g manifold will be lifted by this distortion.
Compression of the octahedron, �4 > 0, lowers the energy of
the dxy orbital (which is at zero energy by our convention)
below that of the doubly degenerate dyz and dzx orbitals,
with energy �4. An elongation (expansion), �4 < 0, of an
octahedron lowers the energy of the dyz and dzx orbitals
relative to dxy . This rearranging of orbitals strongly affects
the magnetic properties of the double perovskites in the strong
interaction limit.56

When spin-orbit coupling is present, the levels split in
a more complicated way. Similarly to Eq. (29) for the e′

g

manifold, the spin-orbit coupling results in the following
effective Hamiltonian for a proper linear combination of |yz〉
and |zx〉 states:20

〈Hso〉yz,zx = −λ

2
τ z ⊗ σ z, (30)

where τ acts within the doublet {− 1√
2
(|yz〉 + i|zx〉),

1√
2
(|yz〉 − i|zx〉)}, and σ is the usual Pauli matrix of real spin.

Note that the spin-orbit coupling acts like a Zeeman coupling
so that the effective magnetic field has opposite direction in
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different states of the doublet; therefore, the time-reversal
symmetry is preserved. [This is evident as well from the
Hamiltonian (7).]

The effect of distortion on the spin-orbit basis can also be
treated in the same way. In particular, we consider its effect
on the quadruplet j = 3/2 manifold. (See Appendix B.) With
distortion the following states are obtained:

|ψ1〉 = − 1√
2

(|yz ↑〉 + i|zx ↑〉),

|ψ2〉 = 1√
2

(|yz ↓〉 − i|zx ↓〉), (31)

with energy ε1,2 = 1
2 (2�4 − λ) and

|ψ3〉 = C[−f (λ,�4)|yz ↓〉 − if (λ,�4)|zx ↓〉 + |xy ↑〉],
|ψ4〉 = C[f (λ,�4)|yz ↑〉 − if (λ,�4)|zx ↑〉 + |xy ↓〉],

(32)

with energy ε3,4 = 1
4 (2�4 + λ −

√
4�2

4 + 4�4λ + 9λ2). Here
C is a normalization constant depending on f . Note that in
Eq. (32) f is a function of its arguments with f → 1 as �4 →
0. In the limit of vanishing distortion, the above states |ψ1,2〉
and |ψ3,4〉 reduce to the four states | 3

2 , ± 3
2 〉 and | 3

2 , ± 1
2 〉

of the quadruplet j = 3/2 manifold, respectively. Note the
|ψ1,2〉 keeps the character of jz = ± 3

2 states even for �4 �= 0.
With electron occupation nd = 3 and for �4 > 0 (�4 < 0),
the states |ψ1,2〉 (|ψ3,4〉) form a half-filled band, and we will
see that the C4 distortions strongly affect the phase diagram
found in Fig. 3 for the undistorted lattice.

Figure 5 depicts the phase diagram of the j = 3/2 model
with compression (elongation) distortion in upper (lower)
panel. While both compression and elongation of octahedra
possess almost the same critical (dashed) line for the Mott
transition, the topological phases occupy rather different
regions. For example, the case of compression does not support
a STI phase, while elongation does. For strong compressional
distortion �4 > 0, the bands are mainly composed of the states
|ψ1,2〉, which are not spin-orbital entangled. The states |ψ3,4〉,
on the other hand, are spin-orbital entangled states. Even for
elongation, most portions of the condensed phase (below the
dashed line) are dominated by the metallic phase even in the
presence of interaction.

For both signs of the C4 distortions, strong interactions
open up a gap in the bulk spinon spectrum turning the GMI
phase into the TMI phase as shown Fig. 5. For �4 > 0, a
weaker distortion may extend the boundary of the TMI phase
toward weaker interactions, and perhaps open a region with a
STI phase. This is because at weaker distortion there would
be a considerable contribution from unentangled states in the
formation of the bands. This is clearly seen in the lower panel
of Fig. 5, where a finite region with a STI phase is established.
If the spin-orbit coupling is kept fixed, at very strong distortion
the coefficient f in Eq. (32) tends to zero, and therefore the
states become unentangled. This may partly explain why at
small interaction the metallic phase is dominant. However, the
lower panel of Fig. 5 reveals that interactions can drive the
formation of strong topological insulators even when the STI
phase is not present in the noninteracting limit, as it is in most of
the cases considered previously. A two-dimensional analog of
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FIG. 5. Phase diagram of the j = 3/2-band model with C4

tetragonal distortion. The upper and lower panel correspond to
compression and elongation distortion of octahedra, respectively.
We set �4 = 2t for compression and �4 = −2t for elongation. All
energies are expressed in units of t . In both phase diagrams the
dashed line separates the rotor uncondensed phase (above) from the
condensed phase (below). Note that for these values of distortion,
the topological phases are interaction-driven, i.e. they do not extend
down to the non-interacting limit as they do in Figs. 2-4.

this problem has been studied elsewhere,76–81 where it is shown
that the interaction-driven insulating phases with nontrivial
topology can be found on a variety of different lattices.

While the distortion favors the metallic phase in the weak
interaction limit and the GMI phase in the strong limit
(above the Mott transition) compared to the nondistorted case
(Fig. 3), it is possible that strong disorder can transform
the metallic phase and GMI into topological phases, the
so-called topological Anderson insulator.82–84 In particular, the
effect of disorder on the GMI phase would be an interesting
problem.

VII. SUMMARY AND CONCLUSIONS

In this work we investigated the phase diagram of some
transition-metal oxides with 5d orbitals on the pyrochlore
lattice. We focused on the interplay between electron cor-
relation, spin-orbit coupling, and distortion. Our main results
are summarized in the phase diagrams presented in Figs. 2–5
obtained within the slave-rotor mean-field theory.

Examples of pyrochlore transition-metal oxides include
A2Ir2O7 (A = Y, Pr, Eu or other rare-earth elements),
Cd2Os2O7, and Cd2Re2O7, in which different transition ions
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favor either j = 1/2 or j = 3/2 manifolds being partially
occupied.64,65 A central feature of our work was to consider
distortion of local oxygen octahedra surrounding the transition
ion in the presence of interactions. Such distortions are inherent
in the systems we studied.60,85

We first studied the effect of trigonal distortion on the
j = 1/2 phase diagram already obtained in Ref. 15. In the
noninteracting limit, we found the distortion destabilized the
STI phase and turned it into a metallic phase.60 (See Fig. 2.)
However, a �3 < 0 can also help stabilize a weak topological
insulating (WTI) phase which becomes a weak topological
Mott insulator (WTMI) above the Mott transition line. To the
best of our knowledge, these features have not been obtained
in previous interacting models before.

We also extended the study of interacting topological
insulators in transition-metal oxides to include the case
where the j = 3/2 manifold is partially filled. (See Fig. 3.)
We found that strong spin-orbit coupling opens a gap in
the noninteracting spectrum and the STI appears, along
with a metallic phase at small spin-orbit coupling. These
phases persist in the presence of rather large interactions
due to the large bandwidth of the noninteracting model,
and eventually at large enough interactions the Mott phases
appear. Most portions of the Mott phase are identified as a
gapless Mott insulator (GMI). However, at some intermediate
regime of spin-orbit coupling, 1 � λ � 2, the TMI phase is
obtained.

Trigonal distortion extends the TMI phase to a wider
range of interaction and spin-orbit coupling (Fig. 4). Trigonal
distortion also decreases the critical interaction for the Mott
transition. Moreover, we showed that the distortion can
serve as a tuning parameter in which the transition between
a variety of phases could occur by distorting the lattice,
although a more realistic form of distortion could have a
more complicated evolution of the phases. We also examined
the effect of tetragonal distortion of octahedra caused by an
elongation or compression of an octahedra along one of its
axis (Fig. 5). The STI phase is found to be very delicate
with respect to this type of distortion, and most of the
phase diagram is occupied by either the metallic phase or
the GMI. For strong enough distortion, however, interaction
can restore both STI and TMI phases. The restoration of
these phases is an example of “interaction-induced” topo-
logical phases as these phases do not persist down to zero
interaction.

One might wonder to what extent the slave-rotor mean-field
results should be trusted. Is there an alternative method that
can be used to obtain a TMI phase, for example? As we
mentioned earlier, quantum Monte Carlo methods applied to
the 2D Hubbard model on the honeycomb lattice seem to
suggest72–74 that there is an intermediate, gapped phase that
lives over a region of the phase diagram similar to the one
for which the slave-rotor method predicts a 2D TMI (recall
that the slave-rotor method is not expected to be reliable in
2D). This may suggest that there is indeed a state with fully
gapped bulk excitations, but with gapless spin excitations on
the boundary. However, it may be that the slave-rotor method
fails to correctly capture the collective nature of the “true” low-
energy spin excitations by forcing them into a single-particle
mean-field formalism. One may also ask about the reliability

of the slave-rotor method more generally. The original work
of Florens and Georges58,59 on Hubbard models shows a
favorable comparison with dynamical mean-field theory and
Gutzwiller projection for quantities such as the quasiparticle
weight and effective mass below and just above the Mott
transition. Finally, the references contained in the work of
Pesin and Balents15 provide further support for the reliability
of the slave-rotor method when compared with path-integral
renormalization group calculations and variational cluster
methods on frustrated lattices. Taken together, it seems the
method works reasonably well in situations where interactions
are not too strong and no magnetic order is expected.
Nevertheless, a more careful study of the possibility of a TMI
phase within a more sophisticated class of calculations remains
highly desirable and we hope this work will help to inspire such
studies.

Regarding the physics of pyrochlore oxides, a number of
interesting directions for future study remain. For example, it
would be highly desirable to have a better understanding of the
specific form of lattice distortions that occur in nature and of
what their influence is in terms of candidate topological phases.
It would also be interesting to obtain a better understanding of
disorder on the interplay of correlations, spin-orbit coupling,
and lattice distortions. Finally, we note that even more exotic
possibilities exist for novel phases when certain conditions
are met.86–88 An improved understanding of how likely it is
that the conditions for these “fractional” phases with nontrivial
ground state degeneracy are to be met in real materials would
be welcome.

As we restricted ourselves to interactions that were not too
strong, we did not invoke the possible magnetic phases that
could be more favorable at very strong Coulomb interaction.
The magnetic phase is interesting in its own right as the
pyrochlore lattice has a geometrically frustrated structure.
The latter property along with the proximity to the metallic
phases can enhance the quantum fluctuations. Hence, even the
nearest-neighbor antiferromagnetic interaction may stabilize
a spin-liquid phase on the pyrochlore lattice.89–91 Besides the
antiferromagnetic interaction, j = 1/2 magnetic models that
include some additional interactions such as Dyzaloshinsky-
Moriya and other anisotropic interactions can help sustain
ordering on the pyrochlore lattice at low temperatures.92,93

However, the situation is more complicated for the j = 3/2
model: Because of orbitally dependent exchange, biquadratic
(forth-order in spin operators) and triquadratic (sixth-order
in spin operators) interactions arise.61 These new interactions
give rise to some exotic phases in double perovskites,61 and
tetragonal distortion of octahedra can result in an anisotropic
pseudospin antiferromagnetic exchange Heisenberg model.56

Such models can be developed for our model with distortion,
too. Indeed, what magnetic phases become favorable and how
they are related to the topological phases we addressed here
are interesting open problems.
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APPENDIX A: TRANSFORMATION TO ORBITAL
ANGULAR MOMENTUM STATES

In terms of the t2g states, the effective l = 1 angular
momentum states are given by

|lz = 1〉 = − 1√
2

(|yz〉 + i|zx〉), |lz = 0〉 = |xy〉,

|lz = −1〉 = 1√
2

(|yz〉 − i|zx〉),

so that in terms of the t2g orbitals the effective lz angular
momentum is given by

lz = 1√
2

⎛⎝0 0 0
0 0 i

0 −i 0

⎞⎠ ,

in the basis (dxy,dyz,dzx). This immediately gives l2
z = nyz +

nzx in terms of the t2g state occupations.

APPENDIX B: SPIN-ORBIT COUPLED STATES

The transformation between the spin s = 1/2 in the
effective l = 1, t2g orbital basis (dxy,dyz,dzx) and the basis
of |j,jz〉 for j = 1/2,3/2 is given by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

| 1
2 , 1

2 〉
| 1

2 , − 1
2 〉

| 3
2 , 3

2 〉
| 3

2 , 1
2 〉

| 3
2 , − 1

2 〉
| 3

2 , − 3
2 〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1√
3

0 i√
3

1√
3

0
1√
3

0 −i√
3

0 0 −1√
3

1√
2

0 −i√
2

0 0 0

0 −1√
6

0 −i√
6

2√
6

0
1√
6

0 −i√
6

0 0 2√
6

0 1√
2

0 −i√
2

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

|yz ↑〉
|yz ↓〉
|zx ↑〉
|zx ↓〉
|xy ↑〉
|xy ↓〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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