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Time domain homogenization of metamaterials
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We propose a simple, robust, and versatile time domain approach to homogenize metamaterials, taking
into account both frequency and spatial dispersion. The macroscopic electromagnetic response of optical
metamaterials, such as the fishnet structure and plasmonic metamaterials with near zero parameters, is
characterized in terms of local effective parameters ε and μ, under the assumption that the effects of spatial
dispersion are weak.
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I. INTRODUCTION

Metamaterials are mesoscopic structures whose electro-
magnetic response in the long-wavelength limit is mainly
determined by artificially built-in features, and not directly
by the chemical composition. Such features effectively define
a new length scale in the system, and consequently enable
the emergence of exotic physical phenomena such as negative
refraction,1 low loss broadband anomalous dispersion,2 and
artificial magnetism.3

It is very convenient to describe the propagation of elec-
tromagnetic waves in metamaterials using effective medium
theories. This enables reducing the inherent microscopic
complexity of the material to a few effective parameters,
usually an equivalent permittivity and permeability, making
an otherwise very intricate problem easily accessible to
theoretical modeling. Such an approach is physically sound
when the wavelength of the radiation is much longer than the
characteristic features of the metamaterial, so that the intrinsic
granularity of the system can be neglected, and the structure
can be regarded as a continuous effective medium.

Different homogenization techniques have been proposed
over the years to characterize composite media, e.g. Refs. 4–
13. In particular, a few years ago this author proposed a fully
self-consistent homogenization method to characterize peri-
odic metamaterials formed by dielectric or metallic particles of
arbitrary shapes and material parameters, taking into account
both the effects of frequency and spatial dispersion. Within this
formalism, the medium is characterized by a dielectric function
εeff(ω,k), which completely determines the effective response
of the medium to an external excitation with a space-time
variation of the type e−iωt eik·r(the macroscopic response for
an excitation with an arbitrary space-time dependence, e.g., a
localized source embedded in the medium, can be determined
using Fourier theory).4,5,14,15 In previous works, it was shown
how the effective dielectric function can be numerically
computed using the method of moments (MoM) (based on
a periodic Green function)4 and the finite difference frequency
domain (FDFD) method.5 However, the MoM and integral
equation methods are difficult to apply to dielectric structures
and are mainly appropriate when the inclusions are perfect
electric conductors. On the other hand, the FDFD method
requires solving an N×N linear system (N being proportional
to the number of nodes in the mesh), which is inefficient
and often computationally prohibitive in the case of complex
three-dimensional systems.

In this work, we develop a homogenization algorithm
based on the finite difference time domain (FDTD) (Ref. 16)
method originally introduced by Yee17 to compute the effective
dielectric function of periodic metamaterials. Our solution has
the typical advantages of the FDTD method:16 (i) It is an
order-N method, i.e., the computational effort scales linearly
with the size of the system. (ii) The update equations for the
fields are fully explicit and so the method requires neither
solving a linear system (as the FDFD method), nor evaluating
complex integrals involving functions with singularities (as the
MoM). (iii) It can be applied to both dielectric and metallic
systems and it is very simple to implement computationally
and suitable for parallelization (parallel computing).

This paper is organized as follows. In Sec. II, we present
the theoretical background. In Sec. III, we describe the FDTD
implementation of the homogenization problem. In Sec. IV,
several numerical examples that illustrate the application of
the method are given. Finally, in Sec. V, the conclusions
are drawn.

II. THEORETICAL BACKGROUND

The homogenization approach introduced in Ref. 4 is based
on the idea of using an external excitation to compute the
effective parameters of a metamaterial. The external excitation
must be macroscopic so that it remains invariant after spatial
averaging. Specifically, for given ω and k, the dielectric func-
tion εeff(ω,k) is computed by exciting the periodic structure
with a density of electric current of the form je = je,ave

ik·r
where je,av is a constant vector. Since je,av can be oriented along
three different directions of space, it is necessary to consider
three distinct sources (three linearly independent vectors je,av).
For each of the sources, the induced microscopic fields
are determined by solving Maxwell’s equations.4,5 Next, the
microscopic electric field e and the microscopic polarization
vector p = (ε − ε0)e are spatially averaged; En = 〈en〉 and
Pg,n = 〈pn〉, where n = 1,2,3 labels the fields associated with
one specific excitation je,av and 〈〉 represents the averaging
operator (in this work, the microscopic fields are denoted
with lower case letters and the macroscopic fields are denoted
with upper case letters). Finally, εeff(ω,k) is defined in such a

way that (εeff − ε0I) · En = Pg,n for n = 1,2,3. The effective
dielectric function is independent of the excitations je,av that
are considered.
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The spatial averaging procedure adopted in Ref. 4 is
equivalent to ideal low pass filtering.14,15 Thus, for example, if
the microscopic electric field is a Bloch wave associated with
the wave vector k (assumed to be within the first Brillouin
zone), we have 〈e〉 = Eave

ik·r where

Eav = 1

Vcell

∫
�

e(r) e−i k·rd3r (1)

Vcell being the volume of the unit cell �. Note that in this
work we adopt a convention eik·re−iωt in the spectral domain,
whereas in Refs. 4 and 5, we used instead e−jk·rejωt .

In Ref. 4 the homogenization problem was formulated
directly in the frequency domain. However, evidently, it is also
possible to formulate it in the time domain. In order to show
this, let us suppose that the metamaterial is characterized at
the microscopic level by a frequency independent permittivity
εs(r). The general case where the permittivity is frequency
dependent is discussed in the Appendix.

In the time domain, the Maxwell’s equations in the periodic
structure (assuming that all the materials are nonmagnetic) can
be written as

∇ × e = −μ0
∂h
∂t

, (2a)

∇ × h = je + εs(r)
∂e
∂t

. (2b)

In order to evaluate εeff(ω,k) for a given wave vector k =
(kx,ky,kz) we propose to solve the system (2) in the time
domain with trivial initial time boundary conditions,

e(r,t = 0) = 0; h(r,t = 0) = 0 (3)

and with an external source of the form

je(r,t) = ûne
ik·rg(t) (n = 1,2,3), (4)

where g(t) is some suitable function of time (e.g., a Gaussian
pulse) and ûn is a unit vector directed along one of the
coordinate axes. It is worth noting that in general the solution
of Eq. (2) is complex valued because the excitation also is.
Moreover, due to the periodicity of the metamaterial, for every t
fixed the microscopic fields are clearly Bloch modes associated
with the wave vector k. Therefore the computational domain
can always be reduced to a unit cell.

We also note that the spatially averaged electric field and
polarization vector in the time domain are of the form 〈e〉 =
Eav(t)eik·r and 〈p〉 = Pg,av(t)eik·r with

Eav(t) = 1

Vcell

∫
�

e(r,t)e−ik·rd3r, (5a)

Pg,av(t) = 1

Vcell

∫
�

(εs − ε0)e(r,t) e−ik·rd3r. (5b)

In order to see how εeff(ω,k) can be obtained from the
solution of Eq. (2), let us calculate the unilateral Laplace
transform of the microscopic fields. The Laplace transform
is denoted with the symbol “∼” so that the Laplace transform
of the electric field (for example) is

ẽ(r,s) =
∫ +∞

0
e(r,s)e−st dt . (6)

Because of the passivity of all materials, the region of
convergence of the Laplace transform includes always the
semiplane Re(s) > 0.

Since the Laplace transform of ∂f/∂t is f̃ (s)s − f (0), it
follows that (using the fact that e = 0 and h = 0 for t = 0)

∇ × ẽ = −μ0sh̃, (7a)

∇ × h̃ = ûne
ik·rg̃(s) + sεs ẽ. (7b)

Thus it should be clear that ẽ and h̃ evaluated for s = −iω

are the solutions of the homogenization problem formulated
in Ref. 4. Hence we conclude that εeff(ω,k) can be determined
from 〈ẽn〉 and 〈p̃n〉, evaluated for s = −iω, where n = 1,2,3
labels the considered excitation (external current along ûn). It
is obvious that

〈ẽ〉 = Ẽav(s)eik·r, 〈p̃〉 = P̃g,av(s)eik·r, (8)

where Eav(t) and Pg,av(t) are defined as in Eq. (5). Hence for
a given k, we can use the following algorithm to compute
εeff(ω,k):

(i) For n = 1,2,3, solve the time domain problem defined
by system (2), subject to trivial initial time boundary conditions
and an external excitation as in Eq. (4). The electric field
solution of each of these time domain source driven problems
is denoted by en.

(ii) For n = 1,2,3, determine the spatially averaged electric
field Eav,n(t) and the spatially averaged polarization vector
Pg,av,n(t) defined as in Eq. (5).

(iii) For n = 1,2,3, calculate the Laplace transforms of
Eav,n(t) and Pg,av,n(t), i.e., calculate Ẽav,n(s) and P̃g,av,n(s).

(iv) The unknown dielectric function εeff(ω,k) is such that

(εeff − ε0I) · Ẽav,n = P̃g,n for n = 1,2,3, where Ẽav,nand P̃g,n

are evaluated for s = −iω.
Some notes are in order at this point. First of all, it should be

clear that for a given k the dielectric function εeff is computed
simultaneously for all frequencies, i.e., for all ω. Moreover, the
computed εeff is completely independent of g(t), i.e., of the
dependence in time of the excitation [see Eq. (4)]. As discussed
later, in practice g(t) is chosen so that its frequency spectrum
is concentrated in the frequency range of interest.

Another important aspect is that in a lossless scenario, for
example, if the inclusions are dielectrics with no dispersion
as considered in this section, there is no absorption loss.
Moreover, due to the Bloch boundary conditions, there is
also no radiation loss, and thus the electromagnetic fields
do not die out, even when the excitation is switched off. In
practice this implies that the region of convergence of the
Laplace transform is the semiplane Re{s} > 0. Indeed, the
system has its poles in the imaginary axis Re{s} = 0. This
is obviously an inconvenience because for ω real valued,
s = −iω is over the imaginary axis, which is outside the
region of convergence of the Laplace transform. Nevertheless,
it is possible to circumvent this problem by considering that
ω = ω′ + iω′′ where ω′′ should be ideally an infinitesimally
small positive number. Thus in practice εeff will be evaluated
for a complex valued frequency (in the upper half plane and
very close to the real axis). The computational implications of
this fact will be discussed in the next section.

It is interesting to note that a similar strategy to achieve con-
vergence is used in Ref. 18, which deals with the computation
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of the photonic Green’s function using the FDTD method.
Moreover, our time domain problem [Eq. (2)] is formally
equivalent to that considered within the framework of the
so-called N-order method18,19 to calculate the band structure
of photonic crystals. However, here we compute the average
fields to determine the dielectric function, whereas in Ref. 19
the authors identify the spectral resonances to calculate the
band-structure diagram. In particular, an FDTD implementa-
tion of the N-order method can be easily adapted to solve the
homogenization problem considered here.

There is also another difference between the N-order
method and system (2): In our formulation we consider trivial
initial time boundary conditions and an external excitation,
whereas in Ref. 19 there is no external excitation and the initial
time electric and magnetic fields are nonzero. Actually this
difference is not really relevant, because it is possible as well
to compute εeff by assuming that there is no external excitation
[je(r,t) = 0] and that the initial time boundary condition for
the electric field is nontrivial e(r,t = 0) �= 0. Indeed, in such
scenario the Laplace transforms of the time domain fields
would satisfy [compare with (7b)]

∇ × h̃ = −εs(r)e(r,t = 0) + sεs(r)ẽ. (9)

Thus it is simple to verify that if the initial time boundary
condition is chosen in such a way that εs(r)e(r,t = 0) ∼
ûne

ik·r and h(r,t = 0) = 0 then εeff can be still calculated
using exactly the same algorithm as that delineated before, but
using je(r,t) = 0. Thus from a computational point of view,
our time domain homogenization approach is, indeed, related
to the N-order method of Ref. 19.

III. FDTD SOLUTION OF THE
HOMOGENIZATION PROBLEM

In the following, we briefly describe the FDTD imple-
mentation of system (2), and discuss how the function g(t)
that determines the time dependence of the excitation should
be chosen, as well as the duration of the simulation and the
time step.

A. Discretization of Maxwell’s equations

The FDTD discretization of system (2) is done in a
completely standard way.16 As mentioned before, the compu-
tational domain can always be taken equal to the unit cell of the
metamaterial. Assuming that unit cell is simple orthorhombic,
e.g., � = [0,ax] × [0,ay] × [0,az], the grid nodes can be
chosen equal to (considering uniform meshing along which
coordinate axes)

(xi,yj ,zk) =
(

ax

i − 1

Nx

,ay

j − 1

Ny

,az

k − 1

Nz

)
,

1 � i � Nx, 1 � j � Ny and 1 � k � Nz (10)

where Nx is the number of nodes along the x direction,
and Ny and Nz are defined similarly. Following the usual
approach, the point (xi,yj ,zk) is simply denoted by (i,j,k). The
distance between two consecutive nodes along the x direction is
evidently �x = ax/Nx . The parameters �y and �z are defined

similarly. We use the shorthand notation (i ± 1
2 ,j,k) to denote

the grid points (xi ± �x/2,yj ,zk), etc.
In the FDTD method the spatial components of the electric

and magnetic fields are spatially staggered so that each electric-
(magnetic-) field component is located midway between a
pair of magnetic- (electric-) field components.17 Specifically,
the electric-field components may be defined over the nodes
indicated below:

ex → ex

(
i + 1

2 ,j,k
)
, ey → ey

(
i,j + 1

2 ,k
)
,

ez → ez

(
i,j,k + 1

2

)
(11)

whereas the magnetic-field components are defined over the
nodes,

hx → hx

(
i,j + 1

2 ,k + 1
2

)
, hy → hy

(
i + 1

2 ,j,k + 1
2

)
,

hz → hz

(
i + 1

2 ,j + 1
2 ,k

)
(12)

with 1 � i � Nx , 1 � j � Ny and 1 � k � Nz. This meshing
scheme was originally proposed by Yee17 and enables replac-
ing spatial derivatives by central differences. For example, one
may approximate the z component of Eq. (2a) by

∂hz

∂t

(
i + 1

2
,j + 1

2
,k,t

)

= − 1

μ0

(
ey

(
i + 1,j + 1

2 ,k,t
) − ey

(
i,j + 1

2 ,k,t
)

�x

−ex

(
i + 1

2 ,j + 1,k,t
) − ex

(
i + 1

2 ,j,k,t
)

�y

)
. (13)

Whenever a given node lies outside the grid it can always be
brought back using the Bloch-Floquet boundary conditions.
For example,

ex

(
i + 1

2 ,j,Nz + 1
) = ex

(
i + 1

2 ,j,1
)
eikzaz . (14)

In the FDTD method the time derivatives are also ap-
proximated by finite differences. Moreover, the time nodes
for the electric and magnetic are staggered in time, so
that the electric- (magnetic-) field updates are taken in the
middle of consecutive magnetic- (electric-) field updates.
This leapfrog scheme was proposed by Yee,17 and enables
updating explicitly the values of the fields (without requiring
solving a linear system), in a marching in time procedure that
mimics the propagation of electromagnetic waves in an actual
physical system. Denoting ei(x,y,z,n�t ) by en

i (x,y,z) and
hi[x,y,z,(n ± 1

2 )�t ] by h
n±1/2
i (x,y,z), where �t is the time
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step, it follows that Eq. (13) can be written as

hn+1/2
z

(
i + 1

2
,j + 1

2
,k

)

= hn−1/2
z

(
i + 1

2
,j + 1

2
,k

)
− �t

μ0

(
en
y

(
i + 1,j + 1

2 ,k
) − en

y

(
i,j + 1

2 ,k
)

�x

− en
x

(
i + 1

2 ,j + 1,k
) − en

x

(
i + 1

2 ,j,k
)

�y

)
. (15)

The x and y components of Eq. (2a) are discretized in the same manner. On the other hand, the z component of Eq. (2b) can
be discretized as follows:

en+1
z

(
i,j,k + 1

2

)
= en

z

(
i,j,k + 1

2

)
+ �t

εs

(
i,j,k + 1

2

)[
− jn+1/2

e,z

(
i,j,k + 1

2

)

+ h
n+1/2
y

(
i + 1

2 ,j,k + 1
2

) − h
n+1/2
y

(
i − 1

2 ,j,k + 1
2

)
�x

−h
n+1/2
x

(
i,j + 1

2 ,k + 1
2

) − h
n+1/2
x

(
i,j − 1

2 ,k + 1
2

)
�y

]
. (16)

The x and y components of the same equation can be
discretized similarly. Using the update expressions (15) and
(16) (and the corresponding update formulas for the x and y
components of the fields), it is possible to determine the time
evolution of the electromagnetic field for vanishing initial time
boundary conditions and a given source je.

In order to determine the effective dielectric function
εeff(ω,k) it is necessary to evaluate and store at each time
step the averaged electric field and polarization vector. The
z components of these vectors are calculated at the nth
time step as follows (the x and y components are obtained
analogously):

En
av,z ≡ Eav,z(n�t ) = �x�y�z

Vcell

∑
i,j,k

en
z

(
i,j,k + 1

2

)
e−ik·(xi ,yj ,zk+�z/2), (17a)

P n
g,av,z ≡ Pg,av,z(n�t ) = �x�y�z

Vcell

∑
i,j,k

[
εs

(
i,j,k + 1

2

)
− ε0

]
en
z

(
i,j,k + 1

2

)
e−ik·(xi ,yj ,zk+�z/2). (17b)

When the FDTD simulation is concluded (after a sufficiently
large number of time steps; see the next subsection), one should
have the values of En

av and Pn
g,av stored in memory for every

time step n. At this point it is possible to determine the Laplace
transforms of Eav and Pg,av calculated at s = −iω. Assuming
that ω = ω′ + iω′′, these can be discretized as follows:

Ẽav(ω) = �t

∑
n

En
ave

−ω′′n�t e+iω′n�t . (18)

P̃g,av is defined similarly. In practice, as discussed in Sec. II,
one chooses ω′′ as some small positive number and evaluates
Ẽav and P̃g,av at the frequencies ω′ for which one wants to
determine εeff(ω,k). For a sequence of values of the form
ω′ = 2πl/�t , with l integer, summation (18) can be efficiently
evaluated using the fast Fourier transform (FFT). Once Ẽav and
P̃g,av are known for three different excitations, the nonlocal
dielectric function can be determined as explained in the
previous section.

B. Time step and time profile of the excitation

The time profile g(t) of the excitation should be such that
its spectral content is concentrated in the frequency window
ωmin < ω < ωmax where we are interested in calculating the
effective parameters. A suitable choice is a Gaussian pulse of
the form

g(t) = sin(ω0t) exp
[−(t − tm)2/σ 2

g

]
, t > 0. (19)

The parameter ω0 may be chosen as ω0 = (ωmin + ωmax)/2,
and the parameters σg and tm should be such that σg ∼
2/(ωmax − ωmin) and tm ∼ 3σg .

The time step �t should be consistent with the well-known
stability criterion:16,20

�t <
1

c

(
1

�2
x

+ 1

�2
y

+ 1

�2
z

)−1/2

. (20)

In our simulations we used �t ∼ �t, max/1.5. Finally, the
duration of the time simulation, tmax, is determined by both ω′′
(which must be different from zero to ensure the convergence
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of the homogenization method) and by ωmin. We used the
following criterion to determine tmax:

tmax ∼ max

{
2π

ω′′ ,10 × 2π

ωmin

}
. (21)

Since desirably we should have ω′′ � ωmin, tmax is typically
of the order of tmax ∼ 2π/ω′′. The number of time steps is
tmax/�t .

It is clear that the simulations will take longer for smaller
values of ω′′. On the other hand, small values of ω′′ yield more
accurate results. Indeed, we want to calculate the effective
parameters for real valued frequencies [εeff(ω′,k)], but the
result of the numerical calculation is actually εeff(ω′ + iω′′,k).
In all our simulations we used ω′′a/c = 0.001, where a is the
lattice constant of the metamaterial. We found that such a
choice gives very accurate results. The typical number of time
steps for a spatial grid with Nx = Ny = Nz = 30 ranges from
105 to 106.

C. Extraction of the local parameters

In case of metamaterials characterized by weak spatial
dispersion, it is possible to extract the local parameters (e.g.,
local effective permittivity and permeability) from the nonlocal
dielectric function by calculating derivatives of εeff(ω,k) with
respect to the wave vector.4,5,14,15,21 Assuming that there is no
magnetoelectric coupling, the local (relative) permittivity is
given by4,15

ε(ω) = 1

ε0
εeff(ω,k = 0). (22)

On the other hand, if the effects of second-order spatial
dispersion can be characterized by a permeability tensor (and
if the effect of the quadrupole moment is negligible; see Ref. 5)
the zz component of the permeability satisfies4,15

μzz

μ0
≡ μr,zz(ω) = 1

1 − (
ω
c

)2 1
2ε0

∂2εeff,yy

∂k2
x

∣∣∣
k=0

. (23)

The formulas for other components of the permeability can
be obtained by considering permutations of the indices x, y,
and z. In practice, the permeability is calculated by evaluating
the k derivatives of εeff(ω,k) using finite differences.

IV. NUMERICAL STUDY

In order to validate the time domain homogenization
method, in the first example we consider a two-dimensional
square array of dielectric cylinders. The lattice constant of the
array is a, and the cylinders have radius R = 0.4a, permittivity
εd = 56.0, and stand in host material with εh = 1.0. We have
calculated the local effective parameters using Eqs. (22) and
(23). It is important to emphasize that the calculation of the
effective permeability μ (in this and in all the remaining
examples of the paper) is done by calculating derivatives of the
nonlocal dielectric function with respect to the wave vector,
as in Eq. (23). In practice, this involves evaluating εeff(ω,k)
for nontrival values of k. Therefore the effective permeability
can be regarded as a manifestation of weak spatial dispersion.
On the other hand, the local permittivity is obtained from the
nonlocal dielectric function by setting k = 0, as in Eq. (22).

/a c

,

0.2 0.4 0.6 0.8 1.0 1.2 1.4

10

5

5

10

2R
a

FIG. 1. (Color online) Effective permittivity and permeability as
a function of the normalized frequency for an array of dielectric
cylinders with εd = 56.0 and R = 0.4a. Solid lines: FDTD results;
discrete symbols: FDFD method of Ref. 5. The inset shows the
geometry of the unit cell.

In Fig. 1, we depict the effective permittivity and per-
meability as a function of frequency calculated with (i) the
FDTD approach proposed here, and (ii) the FDFD method
of Ref. 5 (discrete symbols). As can be seen, the agreement
between both methods for this two-dimensional geometry is
very good. Figure 1 shows that the metamaterial has a resonant
magnetic response, which is a consequence of a Mie resonance
in the high-permittivity inclusions.22,23 This example clearly
illustrates that even though the metamaterial is completely
lossless, and that even though there is no radiation loss, the
proposed time domain approach yields, indeed, convergent
results. As explained in Sec. II, this is made possible by
the fact that the effective parameters are evaluated in the
upper-half plane, slightly above the real frequency axis. It
is interesting to compare the computational efficiency of
our FDTD scheme with the FDFD formulation of Ref. 5.
For the present two-dimensional (2D) problem, and for a
computational domain with 40×40 spatial nodes we found
that the time domain simulation is three times faster than the
corresponding FDFD simulation for a comparable number of
frequency samples. We expect the efficiency to be dramatically
improved for large scale three-dimensional problems (such
problems are inaccessible to our nonoptimized implementation
of the FDFD formalism; indeed, it is limited to about 4000
unknowns due to the fact that it calculates the solution of the
pertinent linear system using the Gauss elimination method,
without taking advantage of numerical methods to solve sparse
linear systems). Nevertheless, it should be mentioned that the
computational load of the frequency domain approach may be
drastically reduced by using spectral estimation methods that
may help predicting a wideband response from a few frequency
samples. A detailed discussion of these aspects is, however,
out of the intended scope of the present work.

In the second example, we consider a metamaterial that
is known to be characterized by strong spatial dispersion in
the long-wavelength limit: the “wire medium.”24 The material
is formed by an array of metallic rods oriented along the z
direction, with radius R, and arranged in a square lattice with
period a. The metallic rods are characterized by a Drude-
type dispersion model with εm = 1 − ω2

p/ω(ω + i	). The
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FIG. 2. (Color online) Nonlocal dielectric function [εzz(ω,k)] as a
function of the frequency for the case kz = 0.1π/a and kx = ky = 0.
Blue (darker) lines: FDTD results; green (lighter) lines: analytical
model of Ref. 25. The solid lines represent the real part of the
permittivity and the dashed lines the imaginary part. The inset shows
the geometry of the metamaterial.

normalized plasma frequency is taken equal to ωpa/c = 10.0,
and the collision frequency is such that 	 = 0.01ωp. In order
to highlight the effects of spatial dispersion, and to demonstrate
that our numerical method can capture these quite accurately,
we have computed the z component [εzz(ω,k)] of the nonlocal
dielectric function as a function of the frequency for the
case kz = 0.1π/a and kx = ky = 0. The obtained results are
depicted in Fig. 2 (blue lines). In the same figure we plot the
value of εzz(ω,k) predicted by an available analytical model
[green lines calculated using Eq. (16) of Ref. 25]. Notice that
in the present example the inclusions are dispersive materials,
and thus the homogenization method must be implemented as
explained in the Appendix. As seen, the agreement between
the full wave results and the analytical model is quite good.
Notice that the effective permittivity for low frequencies is
positive and extremely large. Quite differently, if one would
neglect the effects of spatial dispersion (i.e., the dependence
of the dielectric function on kz), one would find that εzz would
be negative and follow a Drude dispersion model. For more
details about the effects of spatial dispersion in wire media the
reader is referred to relevant works on this topic (e.g., Ref. 24).

In the next example, we consider a fully three-dimensional
metamaterial formed by a simple cubic (sc) lattice of dielectric
spheres with radius R = 0.45a and permittivity εd = 20.0
standing in air (εh = 1.0). The calculated effective permittivity
and permeability are plotted in Fig. 3 (solid lines), superposed
on the results predicted by the well-known Lewin’s formulas.26

In the case of inclusions with a trivial magnetic response,
Lewin’s formulas may be written as follows:

εL = εh

(
1 + 1

a3α−1
e − 1/3

)
, μL = 1 + 1

a3α−1
m − 1/3

,

(24)

where

α−1
e = 1

4πR3

F (θ ) + 2εh/εd

F (θ ) − εh/εd

, α−1
m = 1

4πR3

F (θ ) + 2

F (θ ) − 1
(25)
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FIG. 3. (Color online) Effective permittivity and permeability as
a function of frequency for a simple cubic array of dielectric spheres
with εd = 20.0 and R = 0.45a embedded in air. Solid lines: FDTD
results; dashed lines: Lewin’s formulas (Ref. 26). The inset shows the
geometry of the unit cell.

with F (θ ) = 2(sin θ − θ cos θ)/[(θ2 − 1) sin θ + θ cos θ ] and
θ = (ωR/c)

√
εd , εd being the permittivity of the spherical

inclusions and εh the permittivity of the host material.26 It
is seen in Fig. 3 that while for relatively low frequencies
the agreement between the full wave results and Lewin’s
mixing formula is excellent, there is some disagreement close
to the resonances of the permittivity and permeability, and in
particular Lewin’s formula—being quasistatic in nature—fails
to predict the second resonance of the permeability. This
second resonance is therefore due to the interaction between
the dielectric particles (effect of periodicity).

In the previous examples both the permittivity and the
permeability may be negative over some frequency band, but
unfortunately such bands do not overlap. There is, however,
a quite interesting possibility of designing matched double
negative materials based on permittivity near zero (ENZ)
materials.27 In fact, in a previous work28 it was shown that by
embedding dielectric particles in a ENZ host it is possible to
tune the permittivity of the inclusions in a such a way that the
effective medium has simultaneously near zero permittivity
and permeability. Hence because of causality constraints,
this implies that for frequencies below the plasma frequency
the effective parameters are simultaneously negative. Even
though the geometry considered in Ref. 27 was intrinsically
two dimensional, next we demonstrate with the help of
our time domain homogenization formalism that the same
ideas also hold in the three-dimensional case. To this end,
we consider a sc lattice of dielectric spheres with radius
R = 0.4a and permittivity εd embedded in a host material
such that the permittivity has a Drude-type dispersion: εh =
ε∞[1 − ω2

p/ω(ω + i	)]. The normalized plasma frequency is
taken equal to ωpa/c = 1.0, and to begin with the effect
of loss is neglected, 	 = 0. It is clear that at the plasma
frequency ω = ωp (ENZ regime) the effective medium is also
characterized by a zero effective permittivity.27 In order that
the effective permeability also vanishes at the same frequency,
we used Lewin’s formula for the permeability (24) to tune the
permittivity of the inclusions. Assuming R = 0.4a, this gives
us εd = 73.1. We used ε∞ = 3.6 in our simulations because
we checked with Lewin’s formulas that this would ensure
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FIG. 4. (Color online) Effective permittivity ε = ε′ + iε′′ and
effective permeability μ = μ′ + iμ′′ as a function of frequency for a
simple cubic array of dielectric spheres with εd = 73.1 and R = 0.4a

embedded in a plasmonic host. Panel (a) Lossless case; solid lines:
FDTD results; dashed lines: Lewin’s formulas (Ref. 26). Panel (b)
Zoom of panel (a) but for a lossy host with 	/ωp = 0.019.

that εL ≈ μL (matched index material) over a broad range of
frequencies close to ω = ωp.

The computed effective parameters are shown in Fig. 4(a)
(solid lines), superposed on the curves obtained using Lewin’s
theory (dashed lines). The results of Fig. 4(a) reveal a
formidable agreement between Lewin’s theory and our full
wave time domain homogenization, particularly near ω = ωp.
Moreover, close to ω = ωp the metamaterial behaves as a
matched index material and the conditions ε = μ = −1 are
observed simultaneously, which indicates that the metamate-
rial may behave to some extent as a Veselago-Pendry’s lens.1,29

These ideas will be further developed elsewhere.
It is important to emphasize that, unlike in the example

of Fig. 3, in the case of an ENZ host Lewin’s theory can be
extremely accurate, even for relatively large frequencies of
operation. The reason is actually quite simple to understand:
In an ENZ material we have εh ≈ 0 and hence the wavelength
in the host material is extremely large. As a consequence,
the interaction between the inclusions is inherently quasistatic
and hence the effective parameters are accurately modeled
by Lewin’s formulas. It is also interesting to observe that
despite the absence of loss mechanisms in the host material
(with a Drude-type dispersion), the FDTD simulations yield
convergent results.
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FIG. 5. (Color online) Effective permittivity and permeability as
a function of frequency for a simple cubic array of dielectric spheres
with εd = 56.0 and R = 0.4a embedded in a plasmonic host. Solid
lines: FDTD results; dashed lines: Lewin’s formulas (Ref. 26).

We have also studied the effect of loss in the host material
on the effective parameters of the metamaterial. This study
is reported in Fig. 4(b), at the frequency window where both
the permittivity and permeability are simultaneously negative.
In the simulations it was assumed that the host material
is characterized by a collision frequency such that 	/ωp =
0.019. It is seen in Fig. 4(b) that the effect of absorption on the
effective parameters is very moderate, particularly the effect
on the permeability is practically negligible.

In order to demonstrate the extraordinary design potentials
of metamaterials based on an ENZ host material, in Fig. 5
we study the scenario where dielectric spheres with R = 0.4a

and εd = 56.0 are embedded in a host with ε∞ = 1.0, 	/ωp =
0, and ωpa/c = 1.0. In this example, the permittivity of the
inclusions was tuned using Lewin’s formulas so that εeff = 0
and μeff = ∞ at the plasma frequency of the host material. As
seen in Fig. 5, even in this extreme scenario the full wave FDTD
results agree extremely well with Lewin’s formulas. Therefore
an important conclusion of this study is that Lewin’s formulas
may be regarded as nearly exact in case of an ENZ host.

In the last example, in order to illustrate the generality and
robustness of our method, we consider a fishnet metamaterial.
The geometry of unit cell is shown in the inset of Fig. 6.
The parameters of the metamaterial are taken from Ref. 30,
which reported the emergence of negative refraction in the
optical domain: transverse period a = 860 nm, longitudinal
period p = 80 nm, thickness of the silver (Ag) layers pAg =
30 nm, thickness of the magnesium fluoride (MgF2) layers
pMgF2

= 50 nm, and y and z widths of the fishnet wy = 565 nm
and wz = 265 nm. The Ag and MgF2 layers stand in air.
Following Ref. 30, the permittivity of silver is modeled
by a Drude dispersion model with ωp/2π = 2173 THz and
	/ωp = 0.006. The index of refraction of MgF2 is taken equal
to n = 1.38.

In Fig. 6(a) we depict the calculated effective permittivity
(εyy) and permeability (μzz) as a function of frequency.
Consistent with the results of Ref. 30, it is seen that in
the band 160 THz < f < 200 THz the effective parameters
are simultaneously negative. In Fig. 6(b) we compare the
real part of the index of refraction neff = √

εμ calculated
with our homogenization approach (solid line), with data

165104-7
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FIG. 6. (Color online) (a) Effective permittivity εyy = ε′ + iε′′

and effective permeability μzz = μ′ + iμ′′ of a fishnet metamaterial
as a function of frequency. (b) Solid line: real part of the index of
refraction as a function of frequency (propagation is along the x
direction); Discrete symbols: data extracted from Ref. 30. The inset
shows the geometry of the unit cell.

extracted from Fig. 3(b) of Ref. 30 (star-shaped symbols)
obtained with a “rigorous coupled wave analysis” (RCWA). As
seen, the agreement is remarkably, and perhaps surprisingly,
good. In particular, our effective-medium theory completely
supports the findings of Ref. 30 and the emergence of
negative refraction. It is, however, important to mention that
μ calculated using Eq. (23) can be regarded as the local
permeability only in the case of weak spatial dispersion, and
assuming that the contribution of the quadrupole moment is
negligible. In general, these conditions may not be satisfied
by the fishnet structure due to spatial dispersion effects,31–33

and thus μ may depend on the direction of propagation in
the metamaterial5 losing its meaning as a true mesoscopic
parameter. This important issue is out of the scope of this
paper and will be analyzed in detail elsewhere.

V. CONCLUSION

In this work, building on our previous works,4,5 we
developed a time domain approach to characterize the effective
parameters of metamaterials. The method is based on the
excitation of the metamaterial with an external current source.
Alternatively, instead of considering an external source as
assumed here, the effective parameters could also be obtained
by assuming that the initial time boundary conditions are of

the form h(t = 0) = 0 and d(t = 0) ∼ eik·r, where d is the
microscopic electric displacement vector. Unlike frequency
domain methods, the computational effort of our approach
scales linearly with the size of the computational domain
(number of nodes in the mesh), and thus it provides an efficient,
rigorous, and general approach to the homogenization of
arbitrary fully three-dimensional metamaterials. The proposed
algorithm can be very easily implemented in existing FDTD
electromagnetic solvers. An important finding of this paper
is that metamaterials based on an ENZ host with dielec-
tric inclusions enable a regime of relatively low loss and
matched impedance operation, with the effective permittiv-
ity and permeability simultaneously negative. Furthermore,
such metamaterials can be modeled very accurately using
Lewin’s mixing formulas. Our time domain homogenization
formalism can be easily adapted to the study of nonlinear
metamaterials.
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APPENDIX: THE FREQUENCY DISPERSIVE CASE

In this Appendix, we discuss the general case where the
permittivity of the inclusions is frequency dispersive. Let us
suppose that the complex (microscopic) permittivity of the
system is of the form

ε(r; ω) = εs(r) − σ

iω
+ ε0χd (r; ω), (A1)

where εs is the “static” component of the permittivity (in-
dependent of frequency), σ = σ (r) is the conductivity, and
χd is the frequency-dependent part of the susceptibility. For
simplicity, we only discuss the scenario where χd (r; ω) =
−ω2

p/[ω(ω + i	)], which is adequate to model inclusions with
a Drude-type dispersion model. The parameters ωp = ωp(r)
and 	 = 	(r) are the usual plasma and collision frequencies,
respectively. They are position dependent, and should be set
equal to zero in dielectric regions (i.e., in regions where
χd = 0). The general case where χd is a rational function
of frequency (e.g., a Lorentz dispersion model) can be treated
similarly to the Drude case.

In order to formulate the homogenization problem in the
time domain it is necessary to introduce an auxiliary field v1

that describes the dynamics of the response of the microscopic
dielectric function in terms of a differential equation. The
problem to be solved in the time domain is now (this is similar
to the approach of Ref. 34)

∇ × e = −μ0
∂h
∂t

, (A2a)

∇ × h = je + σ (r)e + εs(r)
∂e
∂t

+ ε0ω
2
p(r)v1, (A2b)

∂v1

∂t
+ 	v1 = e. (A2c)
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Therefore there are three unknown vector fields: e, h, v1.
All the unknowns need to be discretized in the FDTD solution.
The initial time conditions are taken as

e(r,t = 0) = 0 h(r,t = 0) = 0,

v1(r,t = 0) = 0 (A3)

It can be easily checked that in the Laplace domain the
electric and magnetic fields satisfy

∇ × ẽ = −μ0sh̃, (A4a)

∇ × h̃ = j̃e + sε(r; s)ẽ, (A4b)

where ε(r; s) is defined as in Eq. (A1) with s = −iω. This
justifies the definition of the auxiliary field v1.

The averaged polarization vector in the time domain must
now be defined as

Pg,av(t) = 1

Vcell

∫
�

(εs − ε0)e(r,t)e−ik·rd3r

+ W1(t) + W2(t), (A5)

where

Wm(t) =
∫ t

0
Vm(t)dt (m = 1,2) (A6)

and

V1(t) = 1

Vcell

∫
�

ε0ω
2
p(r)v1(r,t)e−ik·rd3r, (A7)

V2(t) = 1

Vcell

∫
�

σ (r)e(r,t)e−ik·rd3r. (A8)

Notice that the Laplace transform of Pg,av(t) satisfies

P̃g,av(s) = 1

Vcell

∫
�

[ε(r; s) − ε0]ẽ(r,s) e−ik·rd3r, (A9)

which justifies the form of Eq. (A5).
The effective dielectric function can be determined from

Pg,av(t) and Eav(t), exactly in the same manner as explained
in section II. The FDTD discretization of system (A2) is
analogous to that of Sec. III. The auxiliary field v1 is discretized
at the same spatial and time nodes as the electric field. The time
discretization of Eq. (A2c) is done as follows:

vn+1
1 (r) = �t

1 + 	(r)�t/2
en(r) + vn

1(r)
1 − 	(r)�t/2

1 + 	(r)�t/2
,

(A10)

where vn
1(r) = v1(r,n�t ), etc. On the other hand, Eq. (16)

should be replaced by 20

en+1
z

(
i,j,k + 1

2

)

= 1 − q
(
i,j,k + 1

2

)
�t/2

1 + q
(
i,j,k + 1

2

)
�t/2

en
z

(
i,j,k + 1

2

)
+ 1

1 + q
(
i,j,k + 1

2

)
�t/2

�t

εs

(
i,j,k + 1

2

)
×

[
− jn+1/2

e,z

(
i,j,k + 1

2

)
− ε0ω

2
p

(
i,j,k + 1

2

)
vn+1

1,z

(
i,j,k + 1

2

)

+h
n+1/2
y

(
i + 1

2 ,j,k + 1
2

) − h
n+1/2
y

(
i − 1

2 ,j,k + 1
2

)
�x

− h
n+1/2
x

(
i,j + 1

2 ,k + 1
2

) − h
n+1/2
x

(
i,j − 1

2 ,k + 1
2

)
�y

]
, (A11)

where q = σ/εs . Finally, Eq. (A6) may be discretized as follows:

Wn+1
m = Wn

m + �tVn
m, (m = 1,2), (A12)

where Wn
m = Wm(n�t ) and Vn

m = Vm(n�t ).
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