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Coherent and incoherent dynamics in excitonic energy transfer: Correlated fluctuations
and off-resonance effects
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We study the nature of the energy transfer process within a pair of coupled two-level systems (donor and
acceptor) subject to interactions with the surrounding environment. Going beyond a standard weak-coupling
approach, we derive a master equation within the polaron representation that allows for the investigation
of both weak and strong system-bath couplings, as well as reliable interpolation between these two limits.
With this theory, we are then able to explore both coherent and incoherent regimes of energy transfer
within the donor-acceptor pair. We elucidate how the degree of correlation in the donor and acceptor
fluctuations, the donor-acceptor energy mismatch, and the range of the environment frequency distribution impact
upon the energy transfer dynamics. In the resonant case (no energy mismatch) we describe in detail how a crossover
from coherent to incoherent transfer dynamics occurs with increasing temperature [A. Nazir, Phys. Rev. Lett.
103, 146404 (2009)], and we also explore how fluctuation correlations are able to protect coherence in the energy
transfer process. We show that a strict crossover criterion is harder to define when off-resonance, though we find
qualitatively similar population dynamics to the resonant case with increasing temperature, while the amplitude
of coherent population oscillations also becomes suppressed with growing site energy mismatch.
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I. INTRODUCTION

A fascinating series of recent experiments demonstrating
signatures of quantum coherence in the energy transfer
dynamics of a variety of systems1–9 has sparked renewed
interest in modeling excitation energy transfer beyond stan-
dard methods.10–19 This process, which occurs when energy
absorbed at one site (the donor) is transferred to another nearby
site (the acceptor) via a virtual photon,20 is often considered to
be incoherent; the result of weak donor-acceptor interactions,
treated perturbatively using Fermi’s golden rule.21,22 However,
though this approach has proved to be immensely successful
when applied in many situations,23,24 accounting for quantum
coherence within the energy transfer dynamics requires an
analysis beyond straightforward perturbation theory in the
donor-acceptor interaction.

An alternative starting point for investigations into coherent
energy transfer is to treat the system-environment interaction
as a perturbation instead. Such weak-coupling theories, often
referred to as being of Redfield or Lindblad type depending
upon the approximations made in their derivation,25 have been
successfully applied to elucidate a number of effects that could
be at play in multisite donor-acceptor complexes. Examples
include studying the interplay of coherent dynamics and
dephasing in promoting efficient energy transfer in quantum
aggregates,26–32 exploring the role of environmental correla-
tions in tuning the energy transfer process,33 and extensions to
assess the potential importance of non-Markovian effects.34,35

Nevertheless, to properly understand the transition
from coherent to incoherent energy transfer which oc-
curs as the system-environment coupling or temperature is
increased,11,36–38 it is necessary to be able to describe the
system dynamics beyond either of these limiting cases.24,39,40

Building on earlier work,36,41–43 a number of methods have

been put forward to accomplish this. For example, modifi-
cations to both Redfield44–47 and Förster48–50 theories have
extended the range of validity of both approaches. Moreover,
it is possible to define an alternative perturbation term through
the small polaron transformation,51 which under certain
conditions allows interpolation between the Redfield and
Förster limits.11–13 For particular forms of system-environment
interaction, this can also be achieved through the hierarchical
equations of motion technique.16,52 Numerically exact calcu-
lations, based, for example, on path integral,15,53 numerical
renormalization group54 and density matrix renormalization
group14 methods, have also been applied to study energy
transfer beyond perturbative approaches.

In this work, we investigate the conditions under which
coherent or incoherent motion is expected to dominate the
energy transfer dynamics of a model donor-acceptor pair.
Following Ref. 11, we employ a Markovian master equation
derived within the polaron representation for this purpose since
it allows for a consistent analysis of the dynamics from weak
to strong system-bath coupling (or, equivalently, low to high
temperatures).51,55 In addition to presenting a full derivation
of the theory, we also extend it to explore, in detail, the
important effects of donor-acceptor energy mismatch, deriving
analytical forms for the dissipative dynamics valid over a large
range of parameter space. Furthermore, we move beyond the
scaling limit studied in Ref. 11 to consider an environment
frequency distribution of finite extent, characterized by a
high-frequency cutoff in the bath spectral density. In the
resonant case (no energy mismatch) we define a strict crossover
temperature above which the energy transfer dynamics ceases
to be coherent.11

Of particular practical interest is the role played by
correlations between the donor and acceptor environmental
fluctuations, suggested as one mechanism by which quantum
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coherence may survive in the energy transfer process under
otherwise adverse conditions1,4,9,11,53,56–60 (though see, for
example, Refs. 61 and 62 for alternatives). These correlations
are also easily treated within our formalism, through position-
dependent couplings between the system and the common
environment. As the donor and acceptor are brought closer
together, there comes a point at which their separation becomes
comparable to, or smaller than, the wavelength of relevant
modes in the bath. As this happens, fluctuations at each
site become ever more correlated, and dephasing effects are
suppressed. We shall show, consequently, that as the level of
correlation increases, so too does the crossover temperature to
the incoherent regime. Hence, strong correlations lead to the
survival of coherence at high temperatures.

Off-resonance, we find that it is less straightforward to
define a crossover temperature. In contrast to the resonant
case, for sufficient energy mismatch between the donor and
acceptor, increasing the temperature causes the amplitude
of the coherent contribution to decrease, though not to
disappear altogether. In principle, it then becomes possible
for a coherent component to exist in the dynamics at all but
infinite temperatures. Although we are then unable to define
a crossover in quite the same way, we still find that bath
correlations have a qualitatively similar effect to the resonant
case, protecting coherence in the transfer process.

The paper is organized as follows. In Sec. II we introduce
our model, and derive a master equation describing the
donor-acceptor dynamics within the polaron representation.
Section III considers the resonant case and the coherent-
incoherent crossover. In Sec. IV we investigate off-resonant
energy transfer and obtain analytic expressions for the dynam-
ics in a number of limits. Finally, in Sec. V we summarize our
results.

II. POLARON TRANSFORM MASTER EQUATION

A. The system and polaron transformation

We consider a donor-acceptor pair (j = 1,2), each site of
which is modeled as a two-level system with ground state
|G〉j , excited state |X〉j , and energy splitting εj . The pair
interact via Coulombic energy transfer with strength V , which
is responsible for the transfer of excitation from one site
to the other. We label the state corresponding to a single
excitation on site 1 as |1〉 ≡ |XG〉, and that on site 2 as
|2〉 ≡ |GX〉. The environment surrounding the donor-acceptor
pair is modeled as a common bath of harmonic oscillators,
coupled linearly to the excited state of each site. The total
system-bath Hamiltonian in the single excitation subspace
(in which energy transfer occurs) is therefore written (where
h̄ = 1)

HSUB = ε1|1〉 〈1| + ε2|2〉 〈2| + V (|1〉 〈2| + |2〉 〈1|)
+ |1〉 〈1|B(1)

z + |2〉 〈2|B(2)
z +

∑
k

ωkb
†
kbk, (1)

where the bath is described by creation (annihilation) operators
b
†
k (bk) with corresponding angular frequency ωk, and wave

vector k. The bath operators are given by B
(j )
z = ∑

k(g(j )
k b

†
k +

g
(j )∗
k bk), with coupling constants g

(j )
k . As in Ref. 11, we shall

consider the case in which each site is coupled to the bosonic

bath with the same magnitude |gk|, but make the separation
between the sites explicit through position-dependent phases
in the coupling constants of the form g

(j )
k = |gk|eik·rj , with

rj being the position of site j . As we shall see, this form of
coupling gives rise to correlations between the bath influences
experienced at each site, allowing a range of totally correlated,
partially correlated, and completely uncorrelated fluctuations
to be explored.11,53

A standard weak-coupling approach to the system dynamics
would now be to derive a master equation for the evolution of
the reduced system density operator under the assumption that
the system-bath interaction terms, as written in Eq. (1), can
be treated as weak perturbations.25,63 In this work, we shall
instead derive a master equation describing the donor-acceptor
energy transfer dynamics in the (now widely used) polaron
representation,11–13,43,51,55,64 whereby we displace the bath
oscillators depending on the system state. We may then identify
alternative perturbation terms, which can be small over a much
larger range of parameter space than those in the original
representation. In particular, the polaron framework allows
us to reliably explore from weak (single-phonon) to strong
(multiphonon) coupling regimes between the system and the
bath, provided that the energy transfer interaction V does not
become the largest energy scale in the problem (in which case
the full polaron displacement is no longer appropriate65), and
that there is no infrared divergence in its bath-renormalized
value VR (see Eq. (7) below).66 In contrast, with a weak
system-bath coupling treatment we would only be able to probe
single-phonon bath-induced processes, and hence not be able
to properly explore the crossover from coherent to incoherent
dynamics in which we are primarily interested.

To proceed, we thus apply a unitary transformation which
displaces the bath oscillators according to the location of the
excitation. Defining HP = eSHSUBe−S , where

S = |1〉 〈1|P (
g

(1)
k

/
ωk

) + |2〉 〈2|P (
g

(2)
k

/
ωk

)
, (2)

with bath operators P (αk) = ∑
k(αkb

†
k − α∗

kbk), results in the
polaron transformed spin-boson Hamiltonian51 HP = H0 +
HI , with

H0 = ε

2
σz + VRσx +

∑
k

ωkb
†
kbk, (3)

and

HI = V (Bxσx + Byσy). (4)

Here, the bias ε = ε1 − ε2, gives the energy difference
between the donor and acceptor, while the Pauli opera-
tors are defined in a basis in which σz = |1〉〈1| − |2〉〈2| =
|XG〉〈XG| − |GX〉〈GX|. The bath operators appearing in
Eq. (3) are constructed as Bx = (1/2)(B+ + B− − 2B) and
By = (i/2)(B+ − B−), where

B± =
∏

k

D

(
±

(
g

(1)
k − g

(2)
k

)
ωk

)
, (5)

with displacement operators D(±αk) = exp[±(αkb
†
k −

α∗
kbk)]. Note that the interaction terms in Eq. (4) therefore

depend upon the difference in donor and acceptor system-bath
couplings g

(1)
k and g

(2)
k , respectively. Importantly, the term

driving coherent energy transfer in Eq. (3) will not be treated
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perturbatively, though it does now have a bath-renormalized
strength, VR = BV , where

B = exp

[
−

∑
k

|gk|2
ω2

k

[1 − cos(k · d)] coth(βωk/2)

]
, (6)

is the expectation value of the bath operators with respect to the
free Hamiltonian: B = 〈B±〉H0 . The donor-acceptor separation
is given by d = r1 − r2.

To calculate the renormalization factor, we take the contin-
uum limit to convert the summation in Eq. (6) into an integral.
Defining the bath spectral density J (ω) = ∑

k |gk|2δ(ω − ωk),
which contains information regarding both the density of
oscillators in the bath with a given frequency, and also how
strongly those oscillators interact with the donor-acceptor pair,
and assuming a linear, isotropic dispersion relation, we find

B = exp

[
−

∫ ∞

0

J (ω)

ω2
[1 − FD(ω,d)] coth(βω/2)

]
. (7)

Here, β = 1/kBT is the inverse temperature, while the
function FD(ω,d) captures the degree of spatial correlation in
the bath fluctuations seen at each site, and is dependent upon
the dimensionality of the system-bath interaction (D = 1,2,3)
(Refs. 33,53,67). In one dimension F1(ω,d) = cos(ωd/c),
with c the bosonic excitation speed, in two dimensions
F2(ω,d) = J0(ωd/c), where J0(x) is a Bessel function of the
first kind, and in three dimensions F3(ω,d) = sinc(ωd/c). In
all cases FD(ω,d) → 1 as d → 0, that is, when the donor and
acceptor are at the same position, bath fluctuations are perfectly
correlated, and the energy transfer strength is not renor-
malized (VR → V ). In fact, in this limit dissipative process
are entirely suppressed (provided |g(1)

k | = |g(2)
k |) and energy

transfer remains coherent for all times and in all parameter
regimes in our model (the single-excitation subspace is then
decoherence-free68,69). In two and three dimensions, as d →
∞, FD(ω,d) → 0, and the renormalization takes on the value
that would be obtained by considering separate, completely
uncorrelated baths surrounding the donor and acceptor. In the
following, we shall characterize the degree of correlation in
terms of the dimensionless parameter μ = c/ω0d, where ω0

is a typical bath frequency scale [see Eq. (29) below]. We
therefore have μ = 0 in the absence of correlations, μ < 1 for
weak correlations, and μ > 1 for strong correlations.

B. Markovian master equation

Having identified a perturbation term by transforming
our Hamiltonian to the polaron representation, we can now
construct a master equation describing the evolution of the
donor-acceptor pair reduced density operator ρ up to second
order in HI . We employ a standard Born-Markov approach,
which yields a polaron frame, interaction picture master
equation of the form25

∂ρ̃(t)

∂t
= −

∫ ∞

0
dτ trB{[H̃I (t),[H̃I (t − τ ),ρ̃(t) ⊗ ρB]}, (8)

where tildes indicate operators in the interaction picture,
Õ(t) = eiH0tOe−iH0t , and trB denotes a trace over the bath
degrees of freedom. In deriving Eq. (8) we have assumed (i)
factorizing initial conditions for the joint system-bath density
operator within the polaron frame, χ (0) = ρ(0) ⊗ ρB , with

ρB = e−βHB /trB(e−βHB ) being a thermal equilibrium state of
the bath; (ii) that by construction the interaction is weak in
the polaron frame so that we may factorize the joint density
operator as χ̃(t) = ρ̃(t)ρB at all times; (iii) that the time scale
on which the donor-acceptor system evolves appreciably in
both the Schrödinger and interaction pictures is large compared
to the bath memory time τB . Since, for the spectral density we
shall consider below, τB ∼ 1/ωc, where ωc is a high-frequency
cutoff [see Eq. (29)], this is not too restrictive, as we must keep
V < ωc anyway in order for the polaron theory to work well.
We note that interesting non-Markovian and nonequilibrium
bath effects have been explored in the polaron formalism in
Refs. 12 and 13.

Inserting Eq. (4) into Eq. (8), and moving back into
the Schrödinger picture, we arrive at our Markovian master
equation describing the energy transfer dynamics within the
single-excitation subspace, and written in the polaron frame as

∂ρ(t)

∂t
= − i[(ε/2)σz + VRσx,ρ(t)]

−V 2
∫ ∞

0
dτ ([σx,σ̃x(−τ )ρ(t)]�xx(τ )

+ [σy,σ̃y(−τ )ρ(t)]�yy(τ ) + H.c.), (9)

where H.c. denotes Hermitian conjugation. The effect of the
bath is now contained within the correlation functions �ll(τ ) =
〈B̃l(τ )B̃l(0)〉H0 , which are given explicitly by

�xx(τ ) = (B2/2)(eφ(τ ) + e−φ(τ ) − 2), (10)

�yy(τ ) = (B2/2)(eφ(τ ) − e−φ(τ )), (11)

where

φ(τ ) = 2
∫ ∞

0
dω

{
J (ω)

ω2
[1 − FD(ω,d)]

× [cos ωτ coth(βω/2) − i sin ωτ ]

}
. (12)

Notice that the phonon propagator φ(τ ) is correlation
dependent due to the factor [1 − FD(ω,d)], and so clearly the
dissipative effect of the bath will be dependent upon the degree
of correlation also. For example, as d → 0, FD(ω,d) → 1, and
the dissipative contribution to Eq. (9) vanishes, as anticipated
earlier.

C. Evolution of the Bloch vector

We solve our master equation in terms of the Bloch vector,
defined as α = (αx,αy,αz)T = (〈σx〉,〈σy〉,〈σz〉)T . As we are
working exclusively in the single-excitation subspace, αx and
αy describe the coherences between the states |1〉 ≡ |XG〉 and
|2〉 ≡ |GX〉, while αz captures the donor-acceptor population
transfer dynamics generated by the coupling V .

Though Eq. (9) is written in the Schödinger picture, it
is still in the polaron frame, and so we must determine
how expectation values in the polaron frame are related
to those in the original, or “lab” frame. We can see this
by writing αi = trS+B(σiχL(t)) = trS+B[σie

−Sχ (t)eS] =
trS+B[eSσie

−Sρ(t)ρB], where χL(t) = e−Sχ (t)eS is the
lab frame total density operator, and we have made use
of the Born approximation in the polaron frame to write
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χ (t) = ρ(t)ρB . Since eSσxe
−S = |2〉 〈1|B− + |1〉 〈2|B+,

eSσye
−S = i(|2〉 〈1|B− − |1〉 〈2|B+), and eSσze

−S = σz, this
implies that the lab Bloch vector elements are αi = BαiP , for
i = x,y, and αz = αzP , where αiP is an expectation value in
the polaron frame: αiP = TrS[σiρ(t)]. Alternatively, we can
define a matrix L which maps the polaron frame Bloch vector
(αP ) to its lab frame counterpart (α): α = L · αP , where
L = diag(B,B,1).

Working in terms of the Bloch vector, we arrive at an
equation of motion of the form

α̇(t) = M · α(t) + b. (13)

In the following, we shall often be interested in determining
whether the energy transfer dynamics is predominantly coher-
ent or incoherent. It is then helpful to write Eq. (13) as

α̇′(t) = M · α′(t), (14)

with α′(t) = α(t) − α(∞), where α(∞) = −M−1 · b is the
steady state. This makes clear that the nature of the energy
transfer process lies solely in the matrix M , while the
inhomogeneous term b is needed only in determining the
steady state.

Equipped with the eigensystem of M , we may determine
the corresponding time evolution as follows: an eigenvector of
M , say mi , has equation of motion ṁi = qimi , where qi is the
corresponding eigenvalue. Its subsequent evolution then has
the simple exponential form mi(t) = mie

qi t . More generally,
we can say that any initial state α′(0) will have the subsequent
evolution

α′(t) =
3∑

i=1

aimie
qi t , (15)

where the coefficients ai are determined by the initial condi-
tions [i.e., the solutions of α′(0) = ∑

i aimi]. The solution to
the full inhomogeneous equation is then found simply by the
addition of the steady state α(t) = α′(t) + α(∞).

III. RESONANT ENERGY TRANSFER

We start by considering the important special case of
resonant energy transfer, in which the interplay of coherent
and incoherent effects is particularly pronounced. As we shall
see, in this situation it is relatively straightforward to derive
a strict criterion governing whether or not we expect the
energy transfer dynamics to be able to display signatures of
coherence.11,51 Hence, resonant conditions provide a natural
situation in which to begin to understand, for example, the role
of bath spatial correlations9,11,33,53,56–60 or the range of the bath
frequency distribution in determining the nature of the energy
transfer process.

Setting the donor-acceptor energy mismatch to zero
(ε = 0), we find from Eq. (9) dynamics generated by an
expression of the form α̇ = MR · α + bR , with

MR =
⎛
⎝−(�z − �y) 0 0

0 −�y −2BVR

0 B−1(2VR + λ3) −�z

⎞
⎠ , (16)

and bR = (−Bκx,0,0)T , where

�y = 2V 2γxx(0), (17)

�z = V 2[γyy(2VR) + γyy(−2VR)] + 2V 2γxx(0), (18)

λ3 = 2V 2[Syy(2VR) − Syy(−2VR)], (19)

κx = V 2[γyy(2VR) − γyy(−2VR)]. (20)

The rates and energy shifts are related to the response functions

Kii(ω) =
∫ ∞

0
dτeiωτ�ii(τ ) = 1

2
γii(ω) + iSii(ω), (21)

such that

γii(ω) = 2Re[Kii(ω)] =
∫ +∞

−∞
dτeiωτ�ii(τ ), (22)

and Sii(ω) = Im[Kii(ω)].
The resonant steady state is straightforwardly found to be

αx(∞) = −B tanh(βVR), (23)

while αy(∞) = αz(∞) = 0. Notice that while this is similar
in form to the steady state that would be obtained from a weak
system-bath coupling treatment,25,70 αx(∞) is determined here
by VR , rather than the original coupling V , and there is also an
extra factor of B suppressing its magnitude.

The eigenvalues of MR are given by q1 = �y − �z and q2 =
q∗

3 = −(1/2)(�y + �z + iξR). Thus, referring to Eq. (15), we
see that

ξR =
√

8VR(2VR + λ3) − (�z − �y)2, (24)

determines whether or not any coherence exists within the
energy transfer dynamics. Considering the initial state α(0) =
(0,0,1)T , corresponding to the excitation of the donor, ρ(0) =
|1〉〈1| = |XG〉〈XG|, we find analytical forms for the evolution
of the Bloch vector components

αx(t) = −B tanh(βVR)(1 − e−(�y−�z)t ), (25)

αy(t) = −2BVR

ξR

e−(�y+�z)t/2 sin

(
ξRt

2

)
, (26)

αz(t) = e−(�y+�z)t/2

[
cos

(
ξRt

2

)
+ �y − �z

ξR

sin

(
ξRt

2

)]
.

(27)

An inspection of Eqs. (24) and (27) allows us to identify a
crossover from coherent to incoherent motion in the energy
transfer dynamics as the point at which oscillations in the
population difference vanish11

(�z − �y)2 = 8VR(2VR + λ3). (28)

For (�z − �y)2 < 8VR(2VR + λ3), ξR is real and both the
population difference and coherence αy describe damped
oscillations, while for (�z − �y)2 � 8VR(2VR + λ3), ξR is
either zero or imaginary, with the resulting dynamics then
being entirely incoherent.
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To further analyze the behavior of αz(t), and the conditions
for which the boundary defined by Eq. (28) is crossed,
we now take a specific form for the system-bath spectral
density. For a large enough bath we may approximate J (ω) =∑

k |gk|2δ(ωk − ω) as a smooth function of ω. In this work we
consider a spectral density of the form

J (ω) = α
ω3

ω2
0

e−ω/ωc , (29)

where α is a dimensionless quantity capturing the strength
of the system-bath interaction, and ω0 is a typical frequency
of bosons in the bath, which sets an overall energy scale.
The cubic frequency dependence in Eq. (29) is typical, for
example, in describing dephasing due to coupling to acoustic
phonons,51,72 but can also be used to elucidate the behavior in
which we are interested in general.53 The cutoff frequency
ωc is needed to ensure that vacuum contributions remain
finite, and is related to parameters specific to the particular
physical system one wishes to model. The inverse cutoff
frequency also sets a typical relaxation time scale for the
bath.25

To illustrate the dynamics and crossover behavior in the
resonant case, in Fig. 1 we plot the population difference
(αz) as a function of the scaled time ω0t for a range
of temperatures, showing the transition from coherent to
incoherent transfer as the temperature is increased. In this plot,
and all the following, we consider three-dimensional coupling,
F3(ω,d) = sinc(ωd/c). The role of bath spatial correlations
in protecting coherence can be seen in Fig. 2, where we
again plot the evolution of the population difference (the
insets show the corresponding coherence αy), this time for
representative intermediate and high-temperature cases. The
different plots in Fig. 2 correspond to zero correlations, char-
acterized by μ = c/ω0d = 0 (d → ∞, top), weak correlations
μ = 0.5 (middle), and strong correlations μ = 2 (botttom).71

Progressing from the uppermost plot to the lowest, we clearly
see that an increase in correlation strength prolongs the time
scale over which oscillations in both the population difference
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FIG. 1. (Color online) Population difference as a function of
scaled time ω0t for temperatures of kBT /ω0 = 1 (blue dashed curve),
kBT /ω0 = 5 (green dotted curve), kBT /ω0 = 12 (orange solid curve),
and kBT /ω0 = 20 (red dot-dashed curve). Parameters: α = 0.05,
V/ω0 = 0.5, ωc/ω0 = 4, ε = 0, and μ = c/ω0d = 0.5.
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FIG. 2. (Color online) Population difference as a function of
scaled time ω0t for temperatures of kBT /ω0 = 5 (blue dashed curves)
and kBT /ω0 = 10 (red dotted curves), and for separations corre-
sponding to no correlation, μ = c/ω0d = 0 (top), weak correlations,
μ = 0.5 (middle), and strong correlations μ = 2 (bottom). The insets
show the evolution of the corresponding coherence αy . Parameters:
α = 0.05, V/ω0 = 0.5, and ωc/ω0 = 4.

and coherence persist. Moreover, by looking at the curves
corresponding to the higher temperature (red, dotted), we can
see that as the degree of correlation is increased from zero,
the dynamics moves from a regime showing purely incoherent
relaxation, to a regime which displays coherent oscillations
at the same temperature. The increase in correlations is thus
able to extend the region of parameter space which permits
coherence,11 as we shall now explore in greater detail.
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A. Coherent to incoherent transition

We now return our attention to the crossover from coherent
to incoherent transfer, defined by Eq. (28). Intuitively, we
might expect the dynamics in the low-temperature (or weak-
coupling) regime to be coherent; for example, in Fig. 1
incoherent relaxation only occurs in the high-temperature
limit. If we therefore assume that the crossover itself occurs
in the high-temperature regime, it is possible to derive an
analytic expression governing the crossover temperature by
approximating the rates �y and �z. Details of this approx-
imation, and its range of validity, can be found in the
Appendix. Generally, for high enough temperatures and/or
strong enough system-bath coupling (such that βVR � 1)
we can approximate γxx(η) ≈ γyy(η) ≈ γyy(0) in �y and �z,
where

γyy(0) ≈ βB2eφ0C0(x,y)

2
√

πC2(x,y)φ0
, (30)

with φ0 = 2π2α/ω2
0β

2, x = πd/cβ and y = ωcβ. The func-
tions C0(x,y) and C2(x,y) are given by Eqs. (A7) and (A8),
and the renormalization factor B by the product of Eqs. (A14)
and (A15). If we further assume that the energy shift λ3

vanishes in the high-temperature limit, Eq. (28) reduces to

(�z − �y) = 4VR, (31)

and we arrive at the expression(
kBT

ω0

)2

= V

ω0

Beφ0C0(x,y)

4
√

2π3αC2(x,y)
, (32)

with solution, Tc, giving the crossover temperature separating
the coherent and incoherent regimes.

The dependence of Tc on the various parameters involved
in the problem is not straightforward, owing to the temperature
dependence in the renormalization factor B, in the functions C0

and C2, and in φ0. In fact, there are three distinct and important
temperature scales which determine when coherent or incoher-
ent processes dominate: T0 = ω0/(

√
2απkB), which depends

upon the system-bath coupling strength; Tx = c/dπkB , which
arises due to the fluctuation correlations and becomes unim-
portant in the uncorrelated case (Tx → 0 as d → ∞); and Ty =
ωc/kB , dependent upon the cutoff frequency, and irrelevant in
the scaling limit (y → ∞). Hence, changes in any of α, d, or ωc

can have an effect on the crossover temperature. For example,
the main part of Fig. 3 shows the solution to Eq. (32) (i.e., the
crossover temperature Tc) as a function of the dimensionless
cutoff frequency ωc/ω0. A calculation using Eq. (28) with the
full rates, and including λ3, is also shown for comparison.
The three pairs of curves correspond to increasing levels
of correlation, ordered as indicated. We see that, except for
small ωc/ω0 in the case μ = 0 where λ3 becomes important,
solutions to Eq. (32) give an excellent approximation to the
crossover temperature calculated using the full rates. This
confirms that the coherent-incoherent crossover does indeed
occur in the high-temperature (multiphonon) regime, and
consequently could not be captured by a weak system-bath
coupling treatment.

As the cutoff frequency is increased from its minimum
value, the crossover temperature begins to decrease. This
behavior can be understood qualitatively by examining
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FIG. 3. (Color online) Crossover temperature separating the
coherent and incoherent regimes against cutoff frequency, for levels of
correlation given by μ = c/ω0d = 0, μ = 0.5 and μ = 1, increasing
as shown. The solid blue curves have been calculated from Eq. (28)
(using the full rates), while the dashed red curves are solutions to
the high-temperature approximation, Eq. (32). The inset shows the
dependence on the level of correlation (1/μ = ω0d/c) for different
cutoffs, ωc/ω0 = 2, ωc/ω0 = 3, and ωc/ω0 = 4, again increasing as
shown. Parameters: α = 0.05 and V/ω0 = 0.5.

Eq. (31), and considering the competition this condition
captures between the rate �z − �y and the coherent interaction
VR in defining the nature of the dynamics. Larger values
of the cutoff frequency correspond to smaller values of the
renormalized interaction strength VR [see, e.g., Eq. (A14)],
while the rates �y and �z vary less strongly with ωc in
this regime. Thus, increasing ωc from its minimum value
decreases VR , and therefore reduces the range of temperatures
for which 4VR > �z − �y and coherent transfer can take place.
Thus, the crossover temperature falls. Physically, this can be
understood by noting that as the cutoff frequency is increased,
so too is the effective frequency range and peak magnitude
of the system-bath interaction, characterized by the spectral
density [Eq. (29)]. Hence, increasing from small ωc/ω0, the
environment begins to exert an enhanced influence on the
system behavior, and so coherent dynamics no longer survives
to such high temperatures. As ωc continues to increase,
however, we see the crossover temperature then begins to rise.
The renormalization factor B tends to zero with increasing ωc

and here becomes the dominating quantity, thus causing the
rate �z − �y ∼ O(B2) to vanish faster than the renormalized
donor-acceptor coupling VR = BV .

The interplay between the size of ωc and the level of spatial
correlation is best understood by considering the inset of Fig. 3.
For all curves shown the crossover temperature increases as the
distance d is reduced since the level of correlation μ increases
correspondingly. As we have seen previously in Fig. 2, stronger
correlations allow coherent dynamics to be observed at higher
temperatures; since environmental effects are suppressed, so
the crossover temperature Tc must rise. This behavior can
be attributed to an increase in the renormalized interaction
strength, VR , in relation to the rate �z − �y , this time with
variations in the correlation level μ. Interestingly, as the cutoff
frequency is increased up to ωc/ω0 = 4 (lowest curve), we see
that not only does the crossover temperature decrease, but also
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that the degree of correlation necessary to show a marked rise
in Tc increases. As can be seen by comparing the separation
between the different curves in the main part of the figure,
increasing the cutoff frequency tends to suppress the extent to
which correlations are able to protect coherence in the system.
This tallies with the dynamics shown in Fig. 2, for which
ωc/ω0 = 4, and correlations as high as μ = 2 were needed
before a significant change in behavior was seen. Finally, since
the renormalization factor B tends to a constant nonzero value
as the correlations vanish at large d (as opposed to B → 0 as
ωc → ∞), the dependence of the crossover temperature on μ

is monotonic, in contrast to its dependence on ωc.

IV. OFF RESONANCE

It is often the case, in practice, that the donor and acceptor
will have different excited state energies, ε1 − ε2 = ε �= 0, and
so we now turn our attention to energy transfer dynamics under
off-resonant conditions. Regarding the coherent to incoherent
transition, in the resonant case we were able to identify this
point with a pair of conjugate eigenvalues converging on
the real axis, thus changing oscillatory terms into relaxation.
We might hope that in the off-resonant case we are able
to establish a similar crossover criterion, and again use this
to investigate the effects of bath correlations and the cutoff
frequency. However, we shall see that such an identification is
less straightforward in the off-resonant regime.

We first present the full Bloch equations describing the
evolution of our donor-acceptor pair for arbitrary energy
mismatch. As in the resonant case, we have an equation of
motion of the form α̇ = M · α + b, but now the matrix M is
given by

M =
⎛
⎝ −�x −(ε + λ1) 0

(ε + λ2) −�y −2BVR

B−1ζ B−1(2VR + λ3) −�z

⎞
⎠ , (33)

with b = (−Bκx, − Bκy, − κz)T . The rates become

�x = V 2[γyy(η) + γyy(−η)], (34)

�y = 2V 2

(
4V 2

R

η2
γxx(0) + ε2

2η2
[γxx(η) + γxx(−η)]

)
, (35)

with �z = �x + �y , and the energy shifts

λ1 = 2V 2ε

η
[Syy(η) − Syy(−η)], (36)

λ2 = 2V 2ε

η
[Sxx(η) − Sxx(−η)], (37)

λ3 = 4V 2VR

η
[Syy(η) − Syy(−η)]. (38)

The remaining quantities are

ζ = 4V 2VRε

η2

(
γxx(0) − 1

2
[γxx(η) + γxx(−η)]

)
, (39)

κx = 2V 2VR

η
[γyy(η) − γyy(−η)], (40)
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FIG. 4. (Color online) Population difference for an off-resonant
donor-acceptor pair as a function of scaled time ω0t . Temperatures
kBT /ω0 = 1 (blue dashed curve), kBT /ω0 = 5 (green dotted curve),
kBT /ω0 = 12 (orange solid curve), and kBT /ω0 = 20 (red dot-
dashed curve) are shown. Parameters: α = 0.05, V/ω0 = 0.5, ε/ω0 =
1, ωc/ω0 = 4, and μ = 0.5.

κy = 8V 2VRε

η2

(
Sxx(0) − 1

2
[Sxx(η) + Sxx(−η)]

)
, (41)

κz = V 2ε

η
{[γxx(η) − γxx(−η)] + [γyy(η) − γyy(−η)]}. (42)

Here, η =
√

ε2 + 4V 2
R is the system Hamiltonian eigenstate

splitting in the polaron frame.
To exemplify the dynamics generated by the full off-

resonant Bloch equations, in Fig. 4 we plot the evolution
of the population difference in the case of donor-acceptor
energy mismatch, ε = 2V . By comparison of Fig. 1 (plotted
in the resonant case) and Fig. 4, we see that the presence
of a substantial energy mismatch causes the low-temperature
population oscillations to increase in frequency but decrease
markedly in amplitude, such that for kBT /ω0 = 5 oscillations
are now almost imperceptible. We also see that the population
difference tends to a nonzero steady state at low temperatures,
as we might expect from simple thermodynamic arguments,
since the states αz = 1 and αz = −1 now have different
energies. As the temperature is raised, however, the dynamics
still looks to be approaching that shown in the resonant case
of Fig. 1.

A. Correlated fluctuations

Let us now look at the effect of correlated fluctuations in
the off-resonant dynamics. Though analysis of the full Bloch
equations is now more complicated than in the resonant limit,
we should still expect changes in the level of donor-acceptor
fluctuation correlation to have a qualitatively similar effect on
the transfer process as outlined in Sec. III. To illustrate that
this is indeed the case, in Fig. 5 we plot the donor-acceptor
population dynamics under off-resonant conditions for three
different levels of fluctuation correlation (increasing from top
to bottom). Just as we found in the resonant case of Fig. 2,
an increase in correlations enhances the lifetime of coherence
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FIG. 5. (Color online) Population difference as a function of
scaled time ω0t for temperatures of kBT /ω0 = 5 (blue dashed
curve) and kBT /ω0 = 10 (red dotted curve), and for separations
corresponding to no fluctuation correlations, μ = c/ω0d = 0 (top),
weak correlations, μ = 0.5 (middle), and strong correlations μ = 2
(bottom). The insets show the evolution of the corresponding
coherence αy . Parameters: α = 0.05, V/ω0 = 0.5, ε/ω0 = 0.5, and
ωc/ω0 = 4.

present in the energy transfer process, and can even move the
dynamics from a high temperature (or strong-coupling) pre-
dominantly incoherent regime to an effective low temperature
(or weak-coupling) regime displaying pronounced coherent
oscillations. In addition, in the off-resonant case stronger
correlations also serve to amplify the coherent contribution
to the full energy transfer dynamics (made up of distinct
coherent and incoherent parts, as we shall show below) since

the renormalized interaction strength VR increases in relation
to the energy mismatch ε.

In an effort to put these qualitative observations on a
more quantitive footing we could analyze the eigensystem
of the full off-resonant M [Eq. (33)], in a similar manner
to the resonant case. However, finding the eigensystem
of M is now far less straightforward and analytical solu-
tions to the full Bloch equations are consequently lengthy,
and therefore of little direct use in gaining an understanding of
the behavior seen in Figs. 4 and 5. The rest of this section
is thus devoted to deriving simplified expressions for the
energy transfer dynamics in two important limits: (i) weak-
coupling, or strong correlations, where coherent dynamics can
dominate, and (ii) high temperatures (and weak correlations),
where the dynamics is similar in both the resonant and
off-resonant cases. These expressions not only provide insight
into the off-resonant behavior of the system and the effect
of correlated fluctuations, but also serve to highlight the
difficultly in now defining a simple crossover criterion, as
was possible in the resonant case.

B. Weak-coupling (or strong correlation) limit

We begin by considering the weak system-bath coupling
limit, which we obtain by expanding all relevant quantities
to first order in J (ω). In fact, for strong enough fluctuation
correlations this limit is attainable even if the system-bath
coupling is not weak and/or the temperature not low due
to the factor [1 − FD(ω,d)] appearing in Eqs. (7) and (12).
With reference to our expressions for the correlation functions
[Eqs. (10) and (11)], we see that within this approximation
�xx(τ ) → 0 while �yy(τ ) remains finite. We may then set to
zero all rates and energy shifts which are functions of �xx(τ )
only in Eq. (33). This results in the far simpler form

MW =
⎛
⎝−�W −(ε + λ1) 0

ε 0 −2BVR

0 B−1(2VR + λ3) −�W

⎞
⎠ , (43)

where the weak-coupling rate is given by73

�W = 4π

(
VR

η

)2

J (η)[1 − FD(η,d)] coth(βη/2), (44)

and the two energy shifts may be written λ1 = (ε/η)� and
λ3 = (2VR/η)�, with � = 2V 2[Syy(η) − Syy(−η)]. The
inhomogeneous term becomes bW = {−Bκx,0, −
(ε/2VR)κx}T in the same limit, which leads to the
weak-coupling steady state values of

αx(∞) = −2BVR

η
tanh(βη/2), (45)

αz(∞) = − ε

η
tanh(βη/2), (46)

and αy(∞) = 0. As in the resonant case (in which there was
no weak-coupling approximation), this steady state has the
same form as that expected from a standard weak-coupling
approach, though with the replacement V → VR , and the
extra factor of B suppressing the coherence αx(∞). As the
energy mismatch increases in relation to V , the weak-coupling
steady state therefore becomes increasingly localized in the
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lower energy state |2〉 ≡ |GX〉. Interestingly, this contrasts
with the qualitatively incorrect form (at low temperatures
at least) given by the noninteracting blip approximation
(NIBA), αNIBA

z (∞) = − tanh (βε/2) (Refs. 70,74), which pre-
dicts complete localization in the lower energy state at zero
temperature, regardless of the size of ε/V . We should thus
expect the present theory to fair far better than the NIBA
for low temperatures (or weak coupling) in the off-resonant
case, ε �= 0. The rate �W given in Eq. (44) is also of the
form expected from a weak-coupling treatment, though once
more with the renormalization V → VR . In fact, such a
replacement is sometimes made by hand in weak-coupling
theories to provide agreement with numerics over a larger
range of parameters,73 though it arises naturally in the polaron
formalism here. We can therefore conclude that, in addition to
allowing for the exploration of multiphonon effects,11,12,51,55

the polaron master equation provides a rigorous way to
explore the (single-phonon) weak-coupling regime for spectral
densities of the type in Eq. (29).51

As before, to find the time evolution of α we evaluate the
eigensystem of MW and use Eq. (15). For the initial state
α(0) = {0,0,1}T we find population dynamics

αz(t) = ε

η

(
ε

η
e−�W t − (1 − e−�W t ) tanh(βη/2)

)

+ 4V 2
R

η2
e− �W t

2

[
cos

(
ξWt

2

)
− �W

ξW
sin

(
ξWt

2

)]
, (47)

where the weak coupling oscillation frequency is given by

ξW =
√

4η(η + �) − �2
W, (48)

which we expect to be real to be consistent with our original
expansion. The first term in Eq. (47), proportional to (ε/η)
and present nowhere in the resonant case, describes incoherent
relaxation toward the steady state value given by Eq. (46). The
second term, proportional to (VR/η)2 and having a similar form
to the resonant dynamics, describes damped oscillations with
frequency ξW . Importantly, these oscillations have a temporal
maximum amplitude of 4V 2

R/η2 � 1, compared to 1 in the
resonant case. The effect of the energy mismatch in this limit
is thus to suppress the amplitude of any oscillations in the
population difference, while increasing their frequency due to
the dependence of ξW on η in Eq. (48), exactly as seen in Fig. 4.

C. High temperature (or far from resonance) limit

At high temperatures and weak correlations, we find that
the population dynamics appears to be relatively insensitive
to the size of the energy mismatch. To investigate this effect
in more detail, we shall now make a high-temperature (or
strong system-bath coupling) approximation to the full energy
transfer dynamics.

Specifically, we consider the regime VR/ε � 1. This limit
can, in fact, be achieved in two possible ways. First, recalling
that VR = BV , we see that VR can be made small by increasing
the system-bath coupling strength or temperature, such that
B � 1. Alternatively, if the donor-acceptor pair are far from
resonance, the ratio V/ε will be small, and hence VR/ε

smaller still. Observing that the correlation functions given by
Eqs. (10) and (11) are both proportional to B2, we can see that

all dissipative terms in the equation of motion, α̇ = M · α + b,
are at least of order V 2

R . We proceed by keeping only terms up
to order (VR/ε)2 in the full off-resonant M and b. This allows
us to set λ3, ζ , κx and κy to zero, while the remaining quantities
reduce to

�y = V 2[γxx(η) + γxx(−η)], (49)

�z = V 2[γxx(η) + γxx(−η) + γyy(η) + γyy(−η)], (50)

λ1 = 2V 2[Syy(η) − Syy(−η)], (51)

λ2 = 2V 2[Sxx(η) − Sxx(−η)], (52)

κz = V 2[γxx(η) − γxx(−η) + γyy(η) − γyy(−η)]. (53)

Hence, in the high-temperature limit, Eq. (33) takes on the
simpler form

MHT =
⎛
⎝−(�z − �y) −(ε + λ1) 0

(ε + λ2) −�y −2BVR

0 2B−1VR −�z

⎞
⎠ , (54)

while the inhomogeneous term reduces to bHT = {0,0, −
κz}T . We then find the approximate steady-state population
difference

αz(∞) = −
[

1 + 4V 2
R

ε2

(
�y

�z

− 1

)]
tanh(βη/2), (55)

valid up to second order in VR/ε. For VR � ε, this steady-state
is strongly localized in the low energy state [αz(∞) ≈ −1] if
ε � kBT , though for ε � kBT thermal effects dominate and
αz(∞) ≈ 0 as in the resonant case. Again, this behavior tallies
with Fig. 4.

To obtain the corresponding population dynamics, we note
in reference to Eq. (15) that the coefficients ai , the eigenvectors
mi , and the eigenvalues qi will contain powers of our expansion
parameter VR/ε. Expanding both qi and the products aimi to
second order, we find

αz(t) = e−�zt

(
1 − 4V 2

R

ε2

)
+ 4V 2

R

ε2
e−�zt/2 cos(ε̄t)

− (1 − e−�zt ) tanh

(
βη

2

) [
1 + 4V 2

R

ε2

(
�y

�z

− 1

)]
,

(56)

where the shifted oscillation frequency is

ε̄ = ε + (1/2)(λ1 + λ2) + 2ε(VR/ε)2. (57)

As in the weak-coupling case [Eq. (47)] the evolution of
the donor-acceptor population difference consists of two
contributions; incoherent relaxation toward the steady-state,
and an oscillatory component with vanishing amplitude as
VR/ε → 0. The energy mismatch again serves to suppress
oscillations in the population difference.

The most striking feature, however, of Eq. (56) is that
there is an oscillatory component at frequency ε̄ at all. In the
high-temperature limit, we might expect that this frequency
would reach a point where it becomes imaginary and αz(t)
displays purely incoherent relaxation, as in the equivalent
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resonant case. However, we can see that this is not the case
since ε̄ is always real by definition. Furthermore, at very
high temperatures ε̄ → ε, and it therefore also remains finite.
Eq. (56) thus highlights an important difference between
the energy transfer dynamics in resonant and off-resonant
situations. In the resonant case, as temperature is increased,
the energy transfer process becomes less coherent through a
reduction in oscillation frequency (i.e., VR becomes small in
comparison to �z − �y), eventually reaching a point at which
population relaxes incoherently toward the steady state. In the
off-resonant case, the transfer process becomes less coherent
predominately through a reduction in oscillation amplitude.
For high temperatures, an oscillatory component is still (in
theory) present in the system, although it becomes ever more
dominated by incoherent relaxation toward the steady-state
population distribution, which depends upon the ratio ε/kBT .
These features are clearly seen in Fig. 4.

Only to first order in VR/ε do our expressions predict purely
incoherent off-resonant population transfer:

αz(t) = e−�zt − (1 − e−�zt ) tanh(βη/2). (58)

Let us also consider the evolution of αy in the same limit:

αy(t) = −2BVR

ε
e−(1/2)�zt sin(ε̄t). (59)

Hence, although the donor-acceptor population itself evolves
entirely incoherently in this limit, the coherences may still
perform oscillations due to the energy mismatch. To illustrate
the difference in the transition to incoherent population transfer
on- and off-resonance, in the main part of Fig. 6 we plot the
evolution of the coherence αy(t) in both cases. The parameters
have been chosen such that the resonant dynamics is in the
incoherent regime (T > Tc), hence the resonant αy displays
no oscillations [see Eq. (26)]. In accordance with Eq. (59),
however, the introduction of an energy mismatch induces
oscillations in the donor-acceptor coherence. While these
oscillations have an almost negligible amplitude, this behavior
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FIG. 6. Coherence (αy) as a function of scaled time ω0t for
resonant (ε = 0, solid curve) and off-resonant (ε/ω0 = 0.2, dashed
curve) cases. The temperature, kBT /ω0 = 13, is chosen to be
above the relevant crossover Tc in the resonant case, such that
the resonant dynamics is guaranteed to be incoherent. Parameters:
α = 0.05, V/ω0 = 0.5, ωc/ω0 = 4, and μ = 0.5. The inset shows
the corresponding population dynamics.
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FIG. 7. (Color online) Coherence (αy) as a function of scaled
time ω0t for temperatures of kBT /ω0 = 1 (blue dashed curve),
kBT /ω0 = 5 (green dotted curve), kBT /ω0 = 12 (orange solid curve),
and kBT /ω0 = 20 (red dot-dashed curve). Parameters: α = 0.05,
V/ω0 = 0.5, ωc/ω0 = 4, ε/ω0 = 2, and μ = 0.5. The inset shows
the corresponding population dynamics.

serves to illustrate the subtlety in defining a strict crossover
from coherent to incoherent dynamics in the off-resonant case.
In particular, despite the different forms of coherence behavior,
the corresponding (essentially incoherent) population dynam-
ics shown in the inset is almost indistinguishable in the two
cases, even though there should still be a strongly suppressed
coherent contribution in the off-resonant curve.

An alternative way to obtain oscillations of the coherence
αy in a regime of predominantly incoherent population transfer
is to introduce a large energy mismatch (i.e., make V/ε

small) at low temperature, as shown in Fig. 7. Here, for
the lowest temperature considered the population relaxes
toward its steady-state value with little sign of oscillation,
while the coherence performs oscillations with a significant
amplitude and considerable lifetime. This behavior is strongly
suppressed, however, as temperature increases, such that
kBT > ε.

V. SUMMARY

Motivated by recent experiments which suggest that quan-
tum coherence can survive in energy transfer processes even
under potentially adverse environmental conditions,1–9 we
have investigated various factors that determine the nature
of the energy transfer dynamics in a model donor-acceptor
pair. To do so, we used a polaron transform, Markovian
master equation technique.11 This formalism is attractive as it
allows for exploration of both the low-temperature (or weak-
coupling) and high-temperature (or strong-coupling) regimes,
as well as reliable interpolation between these two limits,
provided the ratio V/ωc does not become too large.13,51,55

We are also able to consistently describe off-resonant ef-
fects, unlike in the NIBA,70,74 and the influence of bath
correlations.

In the resonant case we identified a crossover temperature
separating coherent and incoherent energy transfer. We found
a nontrivial dependence of this temperature on both the degree
of spatial correlation within the bath-induced fluctuations,
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and also on the cutoff frequency of the bath spectral density.
Smaller cutoff frequencies were found to enhance the extent
to which bath spatial correlations are able to protect coherence
in the system. The crossover generally occurs in a high-
temperature limit where multiphonon effects dominate, and
so could not be captured by a standard perturbative treatment
of the system-bath interaction.

In the off-resonant case we found that coherent and
incoherent regimes are less easily defined. In particular, for
a sufficiently large energy mismatch between the donor and
acceptor, coherence can, in theory, be present at all but
infinite temperatures, albeit with an ever decreasing amplitude.
However, using analytic expressions derived in various limits,
we were able to characterize the off-resonant energy transfer
process over much of the parameter space, illustrating the
suppression of coherence in the population dynamics with
increasing temperature or energy mismatch. We also showed
that strong correlations have a qualitatively similar effect
to the resonant case, protecting coherence in the transfer
process.

While we have concentrated in this work on elucidating
general features of donor-acceptor energy transfer dynamics
using a simple model system, the insight we have gained could
be relevant to a variety of systems. In addition to those already
mentioned,1–9 closely spaced pairs of semiconductor quantum
dots could provide a solid-state implementation of the model
studied here.75 In particular, our polaron master equation
theory provides a bridge between the weak73 and strong76

system-bath coupling approximations already explored in this
context. It would also be interesting to analyze the energy
transfer dynamics of larger donor-acceptor complexes within
the polaron formalism77 to see if further understanding of the
interplay between coherent and incoherent processes in such
systems could be obtained. Finally, it would be desirable to
perform a thorough investigation of the regime of validity
of the polaron approach by comparison to numerically exact
techniques.78
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APPENDIX : HIGH-TEMPERATURE RATES

Here we show how to obtain analytic approximations for
the decoherence rates at high temperatures by use of a saddle
point integration. Within our formalism there are two rates
which need to be evaluated:

γxx(η) = B2

2

∫ +∞

−∞
dτeiτη(eφ(τ ) + e−φ(τ ) − 2), (A1)

γyy(η) = B2

2

∫ +∞

−∞
dτeiτη(eφ(τ ) − e−φ(τ )), (A2)

where φ(τ ) is given by Eq. (12). With the appropriate
manipulations51 it is possible to show that

γxx(η) = B2

2
eβη/2

∫ +∞

−∞
dτeiτη(eφ̃(τ ) + e−φ̃(τ ) − 2), (A3)

γyy(η) = B2

2
eβη/2

∫ +∞

−∞
dτeiτη(eφ̃(τ ) − e−φ̃(τ )), (A4)

where now φ̃(τ ) = φ̃(−τ ) = φ(τ − iβ/2), and is given explic-
itly in integral form by

φ̃(τ ) = 2
∫ ∞

0
dω

J (ω)

ω2
[1 − FD(ω,d)]

cos(ωτ )

sinh(βω/2)
. (A5)

Using a super-Ohmic form of spectral density, J (ω) =
αω3ω−2

0 e−ω/ωc , and assuming system-bath coupling in three
dimensions such that FD(ω,d) = sinc(ωd/c), allows φ̃(τ ) to
be found analytically. We find φ̃(τ ) = φ0C(x,y,τ ′), where

C(x,y,τ ′) = −i

2πx

[
ψ

(
1

2
+ 1

y
− i

π
(τ ′ + x)

)

−ψ

(
1

2
+ 1

y
− i

π
(τ ′ − x)

)

+ψ

(
1

2
+ 1

y
+ i

π
(τ ′ − x)

)

−ψ

(
1

2
+ 1

y
+ i

π
(τ ′ + x)

) ]

+ 1

π2

[
ψ ′

(
1

2
+ 1

y
− i

π
τ ′

)

−ψ ′
(

1

2
+ 1

y
+ i

π
τ ′

) ]
.

Here, φ0 = 2π2α/(ω2
0β

2), x = πd/cβ, y = ωcβ, τ ′ = πτ/β,
ψ(z) is the the digamma function, and ψ ′(z) its first derivative.

To proceed, we assume a high-temperature or strong-
coupling regime, such that the dominant contributions to the
integrals in Eqs. (A3) and (A4) will come from the peak
in φ̃(τ ) at τ = 0. More specifically, inspection of C(x,y,τ ′)
reveals that for y � 1 (the scaling limit of large ωc), we
require φ0 � 1 for large x (weak correlations), or φ0x

2 � 1
for small x (strong correlations), in order for an expansion
of φ̃(τ ) around τ = 0 to be valid. These definitions of the
high-temperature (or strong-coupling) regime tally with the
expansion parameters identified in Ref. 11. In the opposite
limit, y � 1, we generally need φ0x

2y3/π4 � 1, except in
the limit of very large separations (vanishing correlations),
x → ∞, where φ0y � 1 is the relevant condition.

With these conditions in mind, we therefore expand φ̃(τ )
to second order in τ ′ = πτ/β, which gives

φ̃(τ ) ≈ φ0[C0(x,y) − τ ′2C2(x,y)], (A6)

where

C0(x,y) = i

πx

[
ψ

(
1

2
+ 1

y
+ ix

π

)
− ψ

(
1

2
+ 1

y
− ix

π

)]

+ 2

π2
ψ ′

(
1

2
+ 1

y

)
, (A7)
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and

C2(x,y) = i

2π3x

[
ψ ′′

(
1

2
+ 1

y
+ ix

π

)
−ψ ′′

(
1

2
+ 1

y
− ix

π

)]

+ 1

π4
ψ ′′′

(
1

2
+ 1

y

)
. (A8)

In this limit, Eqs. (A3) and (A4) are dominated by the terms
containing a factor of exp[φ̃(τ )], allowing us to write

γll(η) ≈ B2eβη/2β

2π
eφ0C0

∫ +∞

−∞
dτ ′eiτ ′ηβ/πe−τ ′2φ0C2 . (A9)

The integral is Gaussian and we arrive at the result

γll(η) = βB2eφ0C0(x,y)

2
√

πC2(x,y)φ0
eβη/2e−β2η2/[4π2C2(x,y)φ0], (A10)

which reduces to

γll(η) ≈ γll(0) = βB2eφ0C0(x,y)

2
√

πC2(x,y)φ0
, (A11)

if the temperature is high enough such that 1/ηβ � 1.
It remains now to determine the bath renormalization factor

B, given by Eq. (7). To do so it is helpful to separate vacuum
and thermal contributions. We write B = B0Bth, where

B0 = exp

{
−

∫ ∞

0
dω

J (ω)

ω2
[1 − FD(ω,d)]

}
, (A12)

and

Bth = exp

{
−

∫ ∞

0
dω

J (ω)

ω2
[1−FD(ω,d)][coth(βω/2)−1]

}
.

(A13)

Inserting the spectral density, and again assuming system-bath
coupling in three dimensions, we find

B0 = exp

[
−α

ω2
c

ω2
0

(
(dωc/c)2

1 + (dωc/c)2

)]
, (A14)

and

Bth = exp

[
φ0

2π2

(
iπ

x
[H (y−1 − ix/π ) − H (y−1 + ix/π )]

− 2ψ ′(1 + y−1)

)]
, (A15)

where H (m) = ∑m
i=1(1/i) is the mth harmonic number. We

note that in the infinite separation (uncorrelated) limit, one
finds B0(d → ∞) = exp[−α(ω2

c/ω
2
0)], and

Bth = exp
(
α
(
ω2

c

/
ω2

0

){1 − y−2[ζ (2,1 + y−1) + ζ (2,y−1)]}),
(A16)

where ζ (s,a) is the generalized Riemann zeta function.
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