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Chirality-dependent phonon-limited resistivity in multiple layers of graphene
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We develop a theory for the temperature and density dependence of phonon-limited resistivity ρ(T ) in bilayer
and multilayer graphene and compare with the corresponding monolayer result. For the unscreened case, we find
ρ ≈ CT with C ∝ v−2

F in the high-temperature limit, and ρ ≈ AT 4 with A ∝ v−2
F k−3

F in the low-temperature
Bloch-Grüneisen limit, where vF and kF are Fermi velocity and Fermi wave vector, respectively. If screening
effects are taken into account, ρ ≈ CT in the high-temperature limit with a renormalized C, which is a function
of the screening length, and ρ ≈ AT 6 in the low-temperature limit with A ∝ k−5

F but independent of vF. These
relations hold in general with vF and a chiral factor in C determined by the specific chiral band structure for a
given density.
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The hallmark, indeed the universally used definition,
of a metal is its phonon-scattering-induced resistivity with
increasing temperature. Understanding—and, if possible,
controlling—the electron-phonon interaction is thus one of
the most important fundamental physical problems in any
new electronic material. Since electron-phonon coupling
typically controls the room-temperature resistivity of all
metals (and doped semiconductors), the study of phonon-
limited resistivity is also crucial for technological applications.
In this Rapid Communication we study theoretically the
electron-phonon-interaction-induced resistivity in graphene of
arbitrary layer thickness (including monolayer, bilayer, and
multilayer graphene), finding a number of new experimentally
testable results of considerable importance. In particular, we
predict that the exponent a in phonon-induced graphene
resistivity, ρ ∼ T a , depends on the characteristic of screening
and at low-enough temperatures the resistivity eventually goes
as ρ ∼ T 6 for screened phonon scattering, and that chirality
has a subtle quantitative effect on the high-temperature linear-
in-T resistivity.

When the phonon energy (h̄ωq) is much lower than the
Fermi energy (εF), that is, h̄ωq � εF, the scattering of electrons
from acoustic phonons can be divided by two regimes:
T < TBG and T > TBG. The characteristic temperature TBG

is known as the Bloch-Grüneisen (BG) temperature and is de-
fined as kBTBG = 2h̄vphkF, where kF and vph are the Fermi wave
vector and the sound velocity, respectively.1 For T > TBG,
the number of phonons increases linearly with temperature,
and so does the resistivity limited by electron-phonon scat-
tering, ρ ∝ T . This behavior in graphene has been observed
experimentally.2–4 In theoretical work5 it is found that the
temperature-dependent resistivity of monolayer graphene in
the BG regime is given by ρ ∝ T 4 in the absence of screening.
In a recent careful measurement of the temperature-dependent
resistivity of a high-density graphene,6 a smooth transition of
the resistivity from a linear T dependence to a T 4 dependence
is observed as the temperature decreases below TBG. The
measured resistivity in Ref. 6 is the first explicit observation
of BG behavior in two-dimensional (2D) systems. Graphene
may be an ideal system to observe the BG behavior because
at relatively high densities (n > 1013 cm−2), TBG > 200 K
and the other extrinsic scatterings are severely suppressed.1

In our current work, we study a general multilayer graphene
system including screening effects of the electron-phonon
interaction, and demonstrate that the power-law dependence
could vary smoothly from a T 4 to T 6 power law depending on
the screening strength.

Motivated by the recent measurement of BG behavior
of phonon-limited resistivity,6 we investigate the intrinsic
transport properties of bilayer and multilayer graphene as
limited by phonon scattering using Boltzmann transport theory
in the case of kBT � εF, that is, high-density systems. In
this Rapid Communication, we consider only the longitudinal
acoustic phonons because other phonon modes are negligible
in the temperature range of our interest.5

From the Boltzmann transport theory, the energy-averaged
relaxation time in kBT � εF limit is given by7

1

〈τ 〉 = 2π

h̄
ν(εF)|C(kF)|2I, (1)

where ν(εF) is the density of states per spin and valley at
the Fermi energy εF, |C(kF)|2 = D2h̄kF

2ρmvph
is the squared matrix

element for acoustic phonon scattering at the Fermi wave
vector kF, D is the acoustic phonon deformation potential, ρm

is the graphene mass density, and vph is the phonon velocity.
The integration factor I in Eq. (1) is given by

I =
∫

dφ

2π

F (q)(1 − cos φ)

ε2(q)

2q

kF
βh̄ωqNq(Nq + 1), (2)

where q = 2kF sin(φ/2) is the magnitude of an acoustic
phonon wave vector, F (q) is the chiral factor defined by the
square of the wave function projection between incoming and
scattered states, Nq = (eβh̄ωq − 1)−1 is the phonon occupation
number, ωq = vphq is the acoustic phonon angular frequency,
ε(q) is a dielectric function, and β = 1/(kBT ).

Then, the conductivity in a 2D system is given by

σ = gsgve
2ν(εF)

v2
F

2
〈τ 〉 = gsgv

(
e2

h

) (
h̄ρmvphv

2
F

D2kFI

)
, (3)

and the corresponding resistivity is ρ = σ−1, where vF is
the Fermi velocity defined by vF = dε

h̄dk
|ε=εF , and gs and gv

are spin and valley degeneracy factors, respectively. When
several bands cross the Fermi energy, we add conductivity
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contributions from each crossing band (with the same screen-
ing wave vector determined from the total density of states).

The dielectric function ε(q) takes into account the screening
effect at wave vector q. Within random-phase approximation,
ε(q) = 1 + qs(q)/q, where qs(q) is the screening wavelength.8

In our temperature range, we can approximate qs(q) ≈ qTF

where qTF is the 2D Thomas-Fermi screening wave vector
defined by qTF = gsgvαgr(v/vF)kF, where αgr = e2/(εh̄v), ε

is the effective dielectric constant, and v is the monolayer
in-plane velocity.8 In 2D, the strength of screening is deter-
mined by the parameter q0 = qTF/kF ∝ αgr (Ref. 1); thus, the
unscreened (strong screening) limit corresponds to q0,αgr → 0
(q0,αgr 	 1).

By setting x = q/(2kF) = sin(φ/2), Eq. (2) can be reduced
to

I = 16

π

∫ 1

0
dx

F (2kFx)√
1 − x2

zBGx4ezBGx

(1 + xTF/x)2(ezBGx − 1)2
, (4)

where xTF = qTF/(2kF) and zBG = TBG/T .
In the high-temperature limit (T 	 TBG), Eq. (4) becomes

I ≈ z∞/zBG, where

z∞ = 16

π

∫ 1

0
dx

x4F (2kFx)√
1 − x2(x + xTF)2

; (5)

thus, the resistivity becomes ρ ≈ CT , where

C = πD2kBz∞
gsgve2h̄ρmv2

phv
2
F

. (6)

Note that in the high-temperature limit, all phonons are
thermally excited, giving the linear T dependence of the
resistivity. Equation (5) contains the chiral factor F ; thus,
C depends on the chiral properties of wave functions. The
screening effect enters only in the integration factor of z∞,
thus does not change the temperature dependence qualitatively.
Note that in the unscreened case (αgr = 0), C ∝ v−2

F , while in
the strong screening limit (αgr 	 1), z∞ ∝ v2

F ; thus, C ∝ v0
F,

independent of vF and density.
Next, we consider the low-temperature limit (T � TBG). In

the unscreened case, after setting y = zBGx, Eq. (4) becomes

I ≈ 16

πz4
BG

∫ ∞

0
dy

y4ey

(ey − 1)2
= 16 × 4!ζ (4)

πz4
BG

, (7)

where ζ (s) is the Riemann-ζ function and F (0) = 1 was used.
Thus, the resistivity becomes ρ ≈ AT 4, where

A = 2 × 4!ζ (4)D2k4
B

gsgve2h̄4ρmv5
phv

2
Fk

3
F

∝ v−2
F k−3

F . (8)

Note that A is independent of the chiral factor F due to the
small-angle electron-phonon scattering. The T 4 dependence of
the resistivity arises from phase space limitations for electron-
phonon scattering as phonons of wave vector 2kF are no longer
thermally excited. The transition from T and T 4 dependence
occurs around T ≈ TBG.

In the screened case, Eq. (4) becomes

I ≈ 16

πx2
TFz

6
BG

∫ ∞

0
dy

y6ey

(ey − 1)2
= 16 × 6!ζ (6)

πx2
TFz

6
BG

; (9)

thus, the resistivity in the low-temperature limit becomes ρ ≈
AT 6, where

A = 2 × 6!ζ (6)D2k6
B

(gsgv)3e6h̄4ρmv7
phk

5
F

∝ k−5
F . (10)

Note that compared to the unscreened case in Eq. (8), A

depends on kF but not on vF, and is thus independent of a
specific band structure for a given kF or density.

The theory developed so far is valid for a general 2D
electron system in the case of kBT � εF; thus, if we know the
Fermi velocity vF and the chiral factor F (q), analytic expres-
sions of the coefficients A and C can be obtained from Eqs. (6),
(8), and (10). Note that for monolayer graphene, vF = v

and F (q) = (1 + cos φ)/2 with q = 2kF sin(φ/2), whereas for
bilayer graphene,

vF = v
h̄vkF√

(t⊥/2)2 + (h̄vkF)2
= v

√
1 − η2, (11)

and the chiral factor for low energy band is9

F (q) = 1
4 [1 − η + (1 + η) cos φ]2 , (12)

where η = 1/
√

1 + n/n0, n = k2
F/π , n0 = k2

0/π , and h̄vk0 =
t⊥/2.

Thus, for monolayer graphene, we get

CMLG(αgr = 0) = πD2kB

gsgve2h̄ρmv2
phv

2
∝ n0,

CMLG(αgr 	 1) = 2πh̄D2kB

(gsgv)3e6ρmv2
ph

∝ n0,

(13)

AMLG(αgr = 0) = 2 · 4!ζ (4)D2k4
B

gsgve2h̄4ρmv5
phv

2k3
F

∝ n−3/2,

AMLG(αgr 
= 0) = 2 · 6!ζ (6)D2k6
B

(gsgv)3e6h̄4ρmv7
phk

5
F

∝ n−5/2

and for bilayer graphene,

CBLG(αgr = 0) = 1 − 2η + 5η2

2(1 − η2)
CMLG(αgr = 0),

CBLG(αgr 	 1) = 3 − 10η + 35η2

8
CMLG(αgr 	 1),

(14)

ABLG(αgr = 0) = 1

1 − η2
AMLG(αgr = 0),

ABLG(αgr 
= 0) = AMLG(αgr 
= 0),

where MLG and BLG stand for monolayer graphene and
bilayer graphene, respectively.

Note that in the low-density limit (n � n0 or η ≈ 1), it
can be shown that the four-band bilayer results obtained
here approach the two-band low-energy bilayer results. In the
high-density limit (n 	 n0 or η ≈ 0), four-band bilayer ABLG

approaches the monolayer AMLG, while the corresponding
CBLG does not approach the monolayer CMLG.

The reason for the discrepancy in C between monolayer
and four-band bilayer results in the high-density limit is that in
bilayer graphene, the chiral factor with the interlayer hopping
t⊥ = 0 cannot be obtained from the limit t⊥ → 0 because
wave functions involved in the two cases are different, though
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FIG. 1. (Color online) Acoustic phonon-limited resistivity of
monolayer graphene as a function of temperature for (a) αgr = 0 with
several densities, (b) αgr = 1 with several densities, (c) n = 1013 cm−2

with several αgr, and (d) the logarithmic derivatives of (c).

the energy spectra become similar. Note that the coefficient
A is independent of the chiral factor due to the small-angle
scattering; thus, monolayer and bilayer results converge in
high-enough density.

For numerical calculations, we use ρm = 7.6 ×
10−8 g/cm2, vph = 2.6 × 106 cm/s, and D = 25 eV for
phonons, and the nearest-intralayer hopping t = 3 eV and
nearest-interlayer hopping t⊥ = 0.3 eV. For simplicity, other
remote hopping terms are neglected keeping rotational
symmetry in the energy spectrum.

Figures 1(a) and 1(b) show the longitudinal acoustic
phonon-limited resistivity of monolayer graphene as a function
of temperature for the unscreened case (αgr = 0) and the
screened case with αgr = 1, respectively, for several densities.
For the unscreened case, the resistivity increases as ρ ∼ T 4 at
low temperatures and ρ ∼ T at high temperatures, while for
the screened case, ρ ∼ T 6 at low temperatures and ρ ∼ T at
high temperatures. The transition occurs around TBG, which
is given by 70.4, 222.6, and 583.6 K for n = 1012,1013,
and 1014 cm−2, respectively. Figures 1(c) and 1(d) show
the temperature dependence of resistivity at n = 1013 cm−2

for different αgr values and their logarithmic derivatives,
respectively. As αgr increases from 0, the low-temperature
power changes from 4 and approaches to 6, as shown in
Fig. 1(d). Bilayer graphene results show very similar behavior,
as illustrated in Fig. 2, except that the density dependence of
the coefficients A and C are qualitatively different from the
monolayer case, as expected from Eq. (14).

Let us now consider the density dependence of the coef-
ficients A and C in a general multilayer graphene system.
At low energies or equivalently at low densities, arbitrarily
stacked multilayer graphene is described by a superposition
of pseudospin doublets,10 as summarized in Table I. Thus,
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FIG. 2. (Color online) Acoustic phonon-limited resistivity of
bilayer graphene as a function of temperature for (a) αgr = 0 with
several densities, (b) αgr = 1 with several densities, (c) n = 1013 cm−2

with several αgr, and (d) the logarithmic derivatives of (c).

each pseudospin doublet contributes to the density dependence
of the coefficients at low densities. At high energies or
equivalently at high densities, interlayer coupling becomes
negligible and energy band structure looks like that of
monolayer graphene; thus, the density dependence will follow
that of monolayer graphene.

First, consider the density dependence of A at low densities
(but still assuming in kBT � εF limit). Note that for the J -
chiral system, εk ∝ kJ ; thus, vF ∝ kJ−1

F . From Eq. (8) and
Eq. (10),

A(αgr = 0) ∝ v−2
F k−3

F ∝ n−(J+1/2),
(15)

A(αgr 
= 0) ∝ k−5
F ∝ n−5/2.

Thus, at low densities, for the unscreened case (αgr = 0), A

has different density dependence depending on the chirality,
while for the screened case (αgr 
= 0), A has the same density
dependence, irrespective of the chirality.

Figures 3(a) and 3(b) show the density dependence of
the coefficient A for the unscreened case and screened case
with αgr = 1, respectively, for periodic stackings up to N = 4
layer stacks. The numerical results agree with the preceding
analysis.

TABLE I. Chirality decomposition for periodic AB and ABC

stacking up to N = 4 layer stacks (Ref. 10). Here we have arbitrarily
labeled the first two layers starting from the bottom as A and B.

Stacking Chirality Stacking Chirality Stacking Chirality

A 1 ABA 1 ⊕ 2 ABAB 2 ⊕ 2
AB 2 ABC 3 ABCA 4
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FIG. 3. (Color online) Density dependence of (a) A for αgr = 0,
(b) A for αgr = 1, (c) C for αgr = 0, and (d) C for αgr = 1 with
different stacking sequences.

Next, consider the density dependence of C. From Eq. (6),

C(αgr = 0) ∝ v−2
F ∝ n−(J−1),

(16)
C(αgr 	 1) ∝ v0

F ∝ n0.

Thus, at low densities, for the unscreened case (αgr = 0), C has
different density dependence depending on the chirality while
in the strong screening limit (αgr 	 1), C is independent of
density, irrespective of the chirality. Note that for monolayer
graphene, C remains constant with density for both unscreened
and screened cases because vF = v is constant in Eq. (6).

Figures 3(c) and 3(d) show the density dependence of
the coefficient C for the unscreened case and screened
case with αgr = 1, respectively, for periodic stackings up to
N = 4 layer stacks. The numerical results agree with the
preceding analysis, and at high densities density dependence
of C becomes weaker following the density dependence of
monolayer, even though αgr is not in the strong screening

limit. Note kink structures appear at a density when multiple
bands begin to contribute in a multilayer stack. Also note that
for ABA and ABAB stackings, multiple bands contribute to
the resistivity even at low densities; thus, they show relatively
different behavior compared with other stackings due to the
combined effects of the chirality and multiband screening.

Even though the phonon parameters of graphene are well
defined, there is uncertainty about the value of the deformation
potential D (Refs. 3,6 and 11). The results of this Rapid
Communication can be applied to extract the proper value of
the graphene deformation potential. To get the correct value,
however, it is crucial to know the significance of screening
in electron-phonon scattering. Once screening is included, the
larger value for D is required to match the result compared
with that without screening. Since two approaches give rise to
the same linear-in-T resistivity at high temperatures, it is hard
to get the correct value of deformation potential by considering
only the high-temperature result.

At low temperatures (BG regime), however, the temperature
dependence of the resistivity strongly depends on screening,
that is, αgr, and the inclusion of screening modifies the
behavior of ρ(T ) from T 4 to T 6. In this sense, the recent
experimental observation of resistivity at BG regime, ρ ∝ T 4

around 10 K6 indicates superficially that screening in the
effective electron-phonon interaction is not strong enough to
show ρ ∝ T 6 dependence. It is possible, however, that at lower
temperatures the power-law behavior eventually becomes
ρ ∼ T 6, as demonstrated in Figs. 1(d) or 2(d), since the
screened coupling should be the appropriate interaction in an
electron liquid. We suggest that the observed BG temperature
exponent of 4 in Ref. 6 is simply an effective exponent which
will increase to an exponent of 6 in the asymptotic T � TBG

temperature regime. For the experimental observation of this
prediction, it is important to work in a regime where the
graphene temperature dependence from non-acoustic-phonon
mechanisms12 is quantitatively unimportant or can be sub-
tracted out in an unambiguous manner, which may necessitate
working at high carrier density and on special substrates, as
has been done in Ref. 6.
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Phys. Rev. B 81, 245404 (2010).

161404-4

http://arXiv.org/abs/arXiv:1003.4731
http://dx.doi.org/10.1209/epl/i1998-00214-6
http://dx.doi.org/10.1038/nnano.2008.58
http://dx.doi.org/10.1103/PhysRevLett.105.126601
http://dx.doi.org/10.1103/PhysRevLett.105.126601
http://dx.doi.org/10.1103/PhysRevB.77.115449
http://dx.doi.org/10.1103/PhysRevLett.105.256805
http://dx.doi.org/10.1103/PhysRevLett.105.256805
http://dx.doi.org/10.1209/0295-5075/92/27001
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.82.041406
http://dx.doi.org/10.1103/PhysRevB.77.155416
http://dx.doi.org/10.1103/PhysRevB.77.155416
http://dx.doi.org/10.1103/PhysRevB.68.045426
http://dx.doi.org/10.1103/PhysRevB.79.165404
http://dx.doi.org/10.1103/PhysRevB.81.161407
http://dx.doi.org/10.1103/PhysRevB.81.161407
http://dx.doi.org/10.1103/PhysRevB.82.081409
http://dx.doi.org/10.1103/PhysRevB.77.195415
http://dx.doi.org/10.1103/PhysRevLett.100.076801
http://dx.doi.org/10.1103/PhysRevB.81.245404

