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Observation of intrinsic intraband π-plasmon excitation of a single-layer graphene
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We report the energy-momentum dispersion ω(q) of a low-energy intraband π plasmon arising from Dirac
fermions in the conduction band of a single-layer graphene (SLG), not complicated by couplings with other
excitations. For a wide range of q (0.39 � q/kF � 2.36), where kF = 0.061 Å−1 is the Fermi wave vector, the
intraband plasmon survives through the interband single-particle excitation (SPE) region, and linearly disperses
beyond the Landau damping qc = 0.90 kF asymptotically approaching the boundary of the interband SPE
without ever entering the intraband SPE. Such a unique feature is completely distinct from the plasmon of either
a multilayer graphene or a normal two-dimensional electron gas, and hence demonstrates another intrinsic nature
of Dirac fermions in SLG.
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A single-layer graphene (SLG) has many unique and
exotic properties that have no counterpart in conventional
two-dimensional (2D) electrons systems.1 The characteristic
conical Dirac bands of SLG near the K point of the hexagonal
brillouin zone1,2 cause such peculiar features, for example,
the anomalous quantum Hall effect (QHE).1 The intrinsic
nature of SLG, however, is found to vary sensitively with
a disturbing environment through additional interactions of
Dirac fermions with other low-energy excitations. Added
adsorbates on SLG often modify the conical bands near the
Dirac point,3,4 and the anomalous half-integer QHE of SLG
returns back to a normal integer QHE on the bilayer graphene.1

Similarly, the characteristic Raman peaks, G and 2D, of
graphene shift in a delicate fashion with an increasing number
of graphene layers.5,6 Here, we report another intrinsic nature
of SLG, the energy-momentum dispersion ω(q) of intraband
π plasmon, which is a collective excitation of Dirac electrons
in the conduction band. We also show its subtle evolution
upon increasing the number of graphene layers. As predicted
earlier by theory,7,8 our measured ω(q) using high-resolution
electron-energy-loss spectroscopy (HREELS) reveals a totally
different behavior from that of a typical 2D electrons system.
The dispersion changes sensitively with the presence of small
fractions of few-layer graphene (FLG). The characteristic
linear Dirac bands of SLG thus not only bring forth the linear
behavior of the interband π plasmon observed above 4.5 eV in
SLG9 or in the individualized single-wall carbon nanotubes,10

but also the intrinsic ω(q) of the intraband π plasmon from
SLG, far different from a parabolic dispersion of FLG or
graphite.9,10

Although the dynamical dielectric function ε(q,ω) of a
doped graphene calculated within the random phase ap-
proximation (RPA) has been predicted to be quite different
from the one in normal 2D electrons systems,7,8 most earlier
HREELS data from SLG,11–14 however, have been described
in terms of the Stern’s RPA formula derived for a normal
2D electrons system.15 Since the formation of a large-scale
SLG comparable to the size of the incoming probe, typically
about 1 mm in diameter, has not yet been available, most SLG
samples are likely to contain randomly distributed micron-

sized SLG domains. Moreover a minor fraction of multilayer
graphenes inevitably coexisting with SLG often complicates
the interpretation of such data intended for SLG. Additional
mechanisms, therefore, have been invoked to explain any
deviation from the Stern’s RPA formula.12–14 We show that the
intraband π plasmon measured from a SLG-abundant sample,
not complicated by the multilayer effects, is best described by
the theoretical ε(q,ω) devised solely for a doped SLG.

We prepared a SLG-abundant sample by removing silicon
atoms from an n-type 6H-SiC(0001) surface through annealing
under UHV as well documented earlier to form a good quality
SLG.16,17 The formation of SLG was monitored by a combina-
tion of several probing tools including a high spatial resolution
low-energy electron diffraction (LEED),18 angle-resolved
photoemission spectroscopy (ARPES),2,4,17,19 and HREELS
with a Leybold-Heraeus ELS-22 spectrometer. In order to
avoid the sample complicated by a small fraction of graphene
multilayers, we have intentionally selected an initial stage
of forming SLG onto the insulating 6

√
3 × 6

√
3-R30◦ (6

√
3

for short) buffer layer. We confirmed this early stage of
SLG by deliberately monitoring the change in Fuchs-Kliewer
(F-K) phonon energy, which sensitively changes during the
graphitization process. The optimum energy resolution and the
half-acceptance angle of the HREELS detector were 19 meV
and 2◦, respectively. The annealing temperature Ta was
measured by an optical pyrometer.20 The well-characterized
evolution of the LEED pattern upon forming graphene layers
on the 6H-SiC(0001) surface begins with a Si-rich 3 × 3
phase formed at Ta = 830 ◦C under Si flux, which develops
into the

√
3 × √

3-R30◦ (
√

3 for short) phase when annealed
at Ta = 980◦C. Upon annealing further at Ta = 1150 ◦C, the
carbon-rich insulating 6

√
3 buffer layer appears. SLG begins

to form on the buffer layer when annealed at slightly higher
temperature with the LEED pattern maintaining nearly the
same symmetry.18 Although there is a subtle but discernible
change in the LEED pattern indicating the formation of SLG,
we find the most convincing evidence from the change in
HREELS spectra as shown in Fig. 1. Note that each interme-
diate phase during the graphitization process in Fig. 1(a) has
its own characteristic loss peak.
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FIG. 1. (Color online) (a) HREELS spectra revealing its charac-
teristic loss peak for the

√
3 phase, the 6

√
3 phase, and SLG obtained

with the energy of probing electrons Ep = 4.70 eV at a specular
geometry. (b) Spectral change of F-K phonon peak identifying each
intermediate phase with its characteristic loss energy; at 117 meV for
the 6

√
3 phase, 120 ± 1.0 meV for SLG, gradually increasing up to

150 meV for FLG. Ep = 8.02 eV.

The L1 loss peak at about 2.30 eV from the
√

3 phase
disappears when the 6

√
3 phase is formed with its unique

loss peak L2 at 1.70 eV. As SLG begins to form on the
buffer layer, the L2 loses its spectral weight and eventually
almost disappears when SLG is covered most of the underlying
surface area. The much-enhanced Drude tail from the metallic
SLG is another signature for SLG. The L1 peak indicates an
inter-Hubbard band transition.21 Since the buffer layer with the
linear Dirac bands not yet formed has four major flat surface
bands, at 0.5 and 1.6 eV below Fermi level,19 and at 1.0 and
2.4 eV above Fermi level, respectively,22 the L2 can be safely
ascribed to an interband transition from −0.5 to 1.0 eV.

Although SLG can be readily identified by the spectral
features described above, the early stage of forming SLG
not complicated by any coexisting FLG demands further
experimental evidence. Figure 1(b) shows the change of F-K
phonon energy h̄ωFK during the graphitization process as also
seen for Raman peaks G and 2D.5,6 The loss energy h̄ωFK =
117 meV (bottom curve) well identified as the F-K phonon
from the buffer layer9 upshifts to h̄ωFK = 120 ± 1.0 meV
showing an asymmetric line shape due to the nearby weak
loss peak from SLG. As SLG develops further, the F-K peak
weakens quickly while broadening at the same time until
its energy reaches up to h̄ωFK = 150 meV when FLG is
developed.11,12,23 The early stage of SLG, therefore, can be
determined unambiguously and in situ by carefully monitoring
the change in energy of the F-K loss peak.

We show the change of its characteristic loss peak L3

of SLG thus prepared with increasing the scattering angle
�θ in Fig. 2(a). We identify L3 as a low-energy intraband
π plasmon of SLG,11 which is distinct from the interband
plasmon observed above 4.5 eV. The energy range and broad
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FIG. 2. (Color online) Variation of L3 loss peak with increasing
scattering angle (θ ) measured from (a) SLG and (b) FLG. The angle
�θ represents the off-angle from the specular geometry and the arrow
indicates qc of Landau damping. All spectra are vertically shifted and
magnified to make L3 visible. One notes that L3 shifts toward the
higher loss energy side and becomes split into two peaks in FLG.
Inset shows the details of subpeaks used in the fitting (�θ = 1.5◦).

linewidth of L3 simply exclude the possibility of a local
vibrational origin. Furthermore, it may not be an interband
electronic transition since the dispersion extends down to a
small momentum region, far below qc in Fig. 3, where no
relevant electronic states are available. It is also different from
the loss peak arising from FLG as shown in Fig. 2(b), which
exhibits quite a different dispersion.

We now confirm that the SLG of h̄ωFK = 120 meV shown
in Fig. 2(a) represents the early stage formed on the insulating
buffer layer so that the SLG is neither electrically mixed with
its substrate nor complicated by any significant portion of FLG,
if any. The dispersion ω(q) extracted from Fig. 2(a) should,
therefore, represent another intrinsic feature of a pure SLG,
that is, to be compared with theory derived for SLG. As shown
in inset of Fig. 2(b), we have fitted the spectra in Fig. 2(a) with
two Gaussian functions representing the contributions from the
F-K phonon and plasmon after subtracting the background.24

The data from the fits are presented in Fig. 3. Notice that we
have no complication in the distribution of the data points
indicating the coupling with F-K phonons,12 defects,13 or any
resonance effect of electron-hole pairs14 as reported earlier
based on the Stern’s formula. We have thus compared our
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FIG. 3. (Color online) The calculated dispersion (blue solid
curve) of the intraband π -plasmon best describing the measured
data (filled symbols) obtained from SLG. Grey regions show the
two single-particle excitations (SPE) by intra (right) and interband
(left) electron-hole pair productions. Inset shows that the plasmon
continues to broaden its line-width with increasing q, surviving even
after qc (Landau damping). The light red curve and the dotted curve
represent a calculated plasmon dispersion and SPE of 2D normal
electrons (2DN).

data with theory developed for SLG.7,8 The collective plasmon
mode within RPA is given by the zeros of dynamical dielectric
function,

ε(q,ω) = 1 + v(q)�(q,ω) = 0, (1)

where v(q) = 2πe2/κq is the 2D Coulomb interaction in the
q space. The 2D polarizability �(q,ω) includes contributions
from both conduction band �+(q,ω) and valence band
�−(q,ω) for a doped graphene with the nonzero Fermi level.7,8

As discussed by Hwang and Sarma, although plasmons from
both graphene and normal 2D electrons commonly show
the q1/2 dependence in the long wave length limit, the
dispersions calculated within RPA including the finite wave-
vector nonlocal effects appear to be quite different. Although
the nonlocal correction for finite q causes a linearly decreasing
ω(q) for graphene with increasing q, it produces increasing
ω(q) for normal 2D systems.7 Since our measured dispersion in
Fig. 3 contains data with a wide range of q (0.024 Å

−1 � q �
0.144 Å

−1
), we compare our dispersion with a calculated

one using the full expression for polarizability including both
�+(q,ω) and �−(q,ω) as described in Refs. 7 and 8.

As presented in Fig. 3, the measured dispersion of the
intraband π plasmon from SLG is well described by this
full polarizability (blue solid curve). For the calculated
dispersion, we have fitted the data with an electron density
n as the only fit parameter with reasonable values for other

SPEinter

SPEintra

FIG. 4. (Color online) The measured data (colored circles)
showing the dispersions of plasmon excitations from FLG. Our data
obtained from two different layers of graphene agree with those in
previous work (black symbols). Inset shows the two FK phonons to
identify different layers of graphene.

variables of a doped graphene, that is, a background dielectric
constant κ = (1 + κSiC)/2 ≈ 5.5 7 and the Fermi velocity
vF = 1.1 × 106 m/s.2,4,19 We find n = 1.2 × 1013 cm−2 as
the best fit value, which agrees well with those reported.4,19

Furthermore, the Fermi energy and the Fermi wave vector
obtained from n, EF = h̄vF kF = 0.44 eV and kF = √

nπ =
0.061 Å

−1
, agree quite well with previous estimations.2,4,19

Here, we notice two distinct features of the intraband plasmon
excitation from SLG: (1) It survives even in the interband
SPE region for q � qc, not significantly damped in intensity,
and (2) its dispersion follows the linearly increasing boundary
with q of the interband SPE region without ever penetrating
into the intraband SPE. These peculiar features from SLG are
completely different from the plasmon of a typical normal
2D electrons system.15 One also notices that the plasmon from
SLG decays, even for q � qc, showing the increasing linewidth
with q (see inset in Fig. 3). Such a damping may be caused
by interacting with its own phonon of energy 200 meV as also
seen in the Dirac band.4,26

In Fig. 3, we also compare our calculated dispersion (blue
solid curve) with the Stern’s full formula (light red curve),
which entirely fails to reproduce our data even with the same
values of electron density n = 1.2 × 1013 cm−2 and effective
mass m = 0.070 me.14 Since plasmon is completely decayed
for q beyond qc due to the intraband SPE (Landau damping)
for normal 2D electrons,15,25 the Stern’s formula is far from
explaining the plasmon dispersion of SLG in Fig. 3. We also
note that the dispersion of SLG in Fig. 3 having a ω ∼ n1/4

dependence, especially for small q as predicted by theory,
locates below the red curve having a ω ∼ n1/2 dependence of
a normal 2D system.7
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As presented in Fig. 2(b), the loss peak L3 upshifts in energy
and splits into two peaks as FLG develops (see inset for fit
details). The data points are for the two dispersions of intraband
π plasmons from the two different FLGs in Fig. 4. The FLGs
of h̄ωFK = 141 meV and 149 meV are more than bilayer
graphene, when compared with previous work.12,13,23 Note
that the dispersions tend to move away from the boundary
between the inter- and intraband SPE regions with increasing
q for q � qc, unlike that of SLG. Such deviation in the plasmon
dispersion for FLG may be produced by the presence of both
optical as well as acoustical modes of excitations,27 and also
by the quasiparticles of finite mass from the parabolic π bands
near the Dirac point.2,27

In summary, we have prepared a SLG-abundant sample
formed on the insulating buffer phase in its early stage, and the
dispersion of the low-energy intraband π plasmon measured
from the sample appears to be quite distinct from that of normal

2D electrons or of FLG. The plasmon dispersion obtained
from SLG with no multilayer effects is best described by
a theoretical one derived for a doped SLG. We thus report
another intrinsic feature of Dirac fermions in SLG stemming
from its unique quantum relativistic character. We also identify
several loss peaks characteristic to the intermediate phases
during the graphitization process on SiC substrate, which may
be used as a convenient in situ probe to sensitively identify the
formation of SLG.
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