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Electron-phonon interactions in bilayer graphene
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Using calculations from first principles, we demonstrate that intrinsic carrier-phonon scattering in bilayer
graphene is dominated by low-energy acoustic (and acousticlike) phonon modes in a framework that bears more
resemblance to bulk graphite than to monolayer graphene. The total scattering rate at low to moderate electron
energies can be described by a simple two-phonon model in the deformation potential approximation with
effective constants Dac ≈ 15 eV and Dop ≈ 2.8 × 108 eV/cm for acoustic and optical phonons, respectively.
With much enhanced acoustic phonon scattering, the mobility of intrinsic bilayer graphene is estimated to be
significantly smaller than that of the monolayer.
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Graphene, a two-dimensional sheet of carbon atoms in
a honeycomb lattice, has received wide attention due to its
unique properties.1 In addition to the significant interest in
fundamental physics, which stems in part from the relativis-
ticlike behavior of charge carriers, this material is considered
very promising in many applications. The possibility of
manipulating the band gap in a bilayer form2 offers an
additional control for nonlinear functionality.

While there has been a large number of reports (both exper-
imental and theoretical) on graphene and its derivatives,3–6

most of the studies on electron transport properties have
concentrated on monolayer graphene (MLG). Among the
properties requiring further investigation in bilayer graphene
(BLG), intrinsic carrier-phonon scattering is one of the most
crucial as it determines the ultimate limitations of any
electronic device. Due to the nonpolar nature of the material,
the deformation potential approximation is commonly used.
However, the deformation potential constant that quantifies
the strength of electron-phonon coupling must be determined
outside the developed formalism in the form of an empirical
fitting parameter. The experimental results lie in a broad range
(e.g., D = 10–50 eV),4–6 and further improvement of accuracy
is essential for reliable analysis of transport characteristics.
Ab initio numerical methods such as those based on density
functional theory provide an alternative approach in addressing
this problem as demonstrated successfully in MLG.7,8

In this work, we report a first-principles study of electron-
phonon interaction in BLG with AB (Bernal) stacking. The
phonon spectra and electron-phonon coupling matrix elements
are calculated in the entire first Brillouin zone (FBZ) for
all phonon branches based on density functional perturbation
theory (DFPT).9 The corresponding intrinsic scattering rates
are obtained for electrons in the two lowest conduction
bands by considering both intra- and interband transitions.
The calculation results clearly illustrate qualitative differences
from MLG, indicating significant discrepancies in transport
properties. In particular, the apparent dominance of acoustic
(and acousticlike) branches, together with negligibly small
contributions of optical modes in a wide energy range,
reveal more resemblance to bulk graphite and conventional
semiconductors such as silicon. We show that the nonzero
density of states near the Dirac points in BLG substantially

enhances the scattering rates, which leads to a reduced electron
mobility, if compared to MLG.

Figure 1 shows the calculated phonon dispersion ων
q along

the �-K direction. Since there are four carbon atoms in the
unit cell, BLG has 12 phonon branches. But only six lines
are distinguishable across the FBZ as each of them is doubly
degenerate due to the weak van der Waals coupling between
the two carbon layers. The only exception, when the splitting
has an appreciable magnitude, is the case of ZA (acoustic
out-of-plane) and ZO′ (“layer breathing”) modes near the FBZ
center. In addition, two other branches deviate from the pure
acoustic behavior with very small nonzero frequencies at the
� point as shown in Fig. 1(b) (denoted as TA2 and LA2).
Hence, only three branches are truly acoustic (ZA,TA1,LA1),
while we will use the term “antisymmetric acoustic” to refer to
the three branches with acousticlike behavior (ZO′,TA2,LA2).
Their polarization eigenvectors are akin to those of the acoustic
modes in MLG, with the atomic displacements in the two
layers having opposite phase (hence “antisymmetric”). The
same terminology has been used in Raman spectroscopy
studies.10

The electron spectrum Ei
k of BLG has two close conduction

bands (π∗
1 and π∗

2 ); the energy gap between the bottoms of
the π∗

1 (the first and lowest) and π∗
2 (the second) bands is

found to be in the range 0.35–0.4 eV.10–12 Accurate estimate
of intrinsic electron scattering in BLG requires taking into
account all four possible scattering scenarios: intraband (π∗

1 →
π∗

1 , π∗
2 → π∗

2 ), and interband (π∗
1 � π∗

2 ). Correspondingly,
we calculate four sets of matrix elements |g(i,j )ν

k+q,k| that represent
the probability of electron transition from the state (i,k) to
(j,k + q), where i and j are the initial and final energy bands,
respectively. The matrix elements are calculated only for wave
vectors q in the irreducible Brillouin zone; the rest of the
FBZ can be restored by applying the symmetry operations to
vectors q and k simultaneously. The result of this calculation
for intraband scattering (π∗

1 → π∗
1 ) of the electron at the

bottom of the conduction band, e.g., k = K = [2/3,0](2π/a),
is shown in Fig. 2. It is not surprising that MLG-like
phonon modes (ZA,TA1,LA1,ZO1,TO1,LO1) and their BLG
counterparts in the doublets (ZO′,TA2,LA2,ZO2,TO2,LO2)
have very similar electron-phonon matrix elements throughout
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FIG. 1. (Color online) (a) Phonon spectrum of BLG along the
�-K direction. The weak interlayer coupling results in effective
double degeneracy of 12 branches in BLG, everywhere in the FBZ
except near the � point. (b) Magnified view of first six branches near
the � point. All six lines are clearly separable. The largest splitting
occurs between two out-of-plane branches: ZA and ZO′ (“breathing”
mode).

the FBZ. This similarity can be explained by the relatively
weak interlayer coupling in BLG, while the subtle differences
between symmetric and antisymmetric modes stem from
the fact that the coupling energy is finite. Strong electron
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FIG. 2. (Color online) Intraband (π∗
1 ) matrix elements |g(π∗

1 ,π∗
1 )ν

k+q,k |
(in units of eV) for k = [2/3,0](2π/a) (i.e., one of the Dirac points)
as a function of phonon wave vector q and branch number ν.
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FIG. 3. (Color online) Interband matrix elements (π∗
1 → π∗

2 ) (in
units of eV) for phonon branches TO1 and TO2 (k = K). The Kohn
anomalies are clearly visible in the form of sharp peaks (at q = 0
and K for TO1 and at q = 0 for TO2). LO1 and LO2 also exhibit a
similar peak at q = 0 (not shown). The obtained result agrees with the
selection rules for the electron-phonon interaction in BLG (Ref. 13).

coupling with the out-of-plane modes near the FBZ corner
q = K′ = [1/3,1/

√
3](2π/a) indicates that the equivalence of

the two sublattices in both layers is broken as atoms A and B
are displaced with an opposite phase. However, it is important
to note that the corresponding electron transitions (K→ �) are
irrelevant to the electron-phonon scattering due to the energy
conservation. As compared to MLG, the matrix elements of
Fig. 2 have the same order of magnitude for the most part. One
essential difference is that none of the in-plane optical phonon
branches of BLG reveal Kohn anomalies at q = K or q = 0
that were prominent in MLG.7,8

However, further calculations show that strong peaks
similar to those found in MLG do occur in the corresponding
matrix elements of interband scattering π∗

1 → π∗
2 . Figure 3

shows the matrix element of interband scattering π∗
1 → π∗

2
due to the phonons of branches 9 and 10 (TO1 and TO2).
Pronounced maxima of electron-phonon coupling are clearly
visible near the points of high symmetry (Fig. 3). Interestingly,
the sharp peaks at q = K are observed only in one of the TO
modes (i.e., TO1), which agrees with the symmetry analysis.13

At the same time, the Kohn anomaly at the � point is
present in matrix elements of all four in-plane optical branches
(TO1,TO2,LO1,LO2).

Based on the obtained matrix elements, the electron
scattering rates are calculated using Fermi’s golden rule,

(
1

τ

)(i,j )ν

k
= 2π

h̄

∑
q

∣∣g(i,j )ν
k+q,k

∣∣2
�

(i,j )ν
k,q , (1)

where �
(i,j )ν
k,q = (Nν

q + 1
2 ± 1

2 )δ(Ej

k+q − Ei
k ± h̄ων

q), Nν
q is the

phonon population factor, and the plus (minus) sign corre-
sponds to the emission (absorption) of a phonon ων

q. As we
are interested in the intrinsic scattering probability that is not
limited to a specific carrier distribution (and thus, the Fermi
level), our formulation assumes that all final electronic states
are available for transition in the bands under consideration
(i.e., π∗

1 and π∗
2 ). The temperature dependence of the scattering

rate, therefore, stems only from the the phonon occupation
number. Preliminary estimates confirm that the scattering rate,
as a function of the initial electron state k in the vicinity
of the Dirac point K (or K ′), is isotropic at low energies.
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FIG. 4. (Color online) Electron-phonon scattering rates in BLG
at T = 300 K as a function of electron energy. The initial electron
state is in the (a) π∗

1 and (b) π∗
2 conduction bands, respectively. Both

intra- (π∗
i ) and interband (π∗

i →π∗
j ) transitions are considered. The

π∗
1 -π∗

2 band offset is 0.4 eV. ABS (EM) stands for phonon absorption
(emission). TOT represents the sum of all possible interactions. In (a),
the corresponding results for MLG are also plotted for comparison
(Ref. 8). The reference for energy (zero) is set at the bottom of the
π∗

1 band.

Accordingly, we only consider the K-� direction in the k
space representing τ−1 as a function of electron energy.

In the integration over the FBZ, an analytical expression
from the tight-binding approximation is used to describe
the BLG electron energy spectra in the FBZ,2 instead of
the discrete dispersion data obtained from the first-principles

calculation: Ei
k =

√
ε2

k + γ 2
1
2 + (−1)i[ γ 4

1
4 + (γ1εk)2]1/2, where

εk is the electron energy dispersion of MLG (as given in Ref. 2)
and i = 1,2 for π∗

1 and π∗
2 , respectively. The largest interlayer

hopping integral γ1 determines the separation between the π∗
1

and π∗
2 bands. We adopt γ1 = 0.4 eV following recent resonant

Raman studies.11,12 Parabolic in the close vicinity of k = K
and quasilinear in a wide range beyond that, this description
appears sufficient in most calculations, providing a good match
to ab initio results at relevant electron energies.

Figure 4 shows the total scattering rates associated with
all four possible scenarios involving two conduction bands.
For comparison, the corresponding results of MLG from
Ref. 8 are also plotted in the left panel, where initial electron
states are assumed to be in the lowest conduction band. The
qualitative difference between the two cases is apparent even
from a cursory observation. For instance, the curves for BLG
(particularly the total scattering rate) vary smoothly as a
function of electron energy without any characteristic features
of onset behavior. On the other hand, MLG experiences a rapid
increase near 200 meV that is associated with the dominance
of optical phonon emission.8 Since BLG is also shown to
exhibit Kohn anomalies at high-symmetry points (see Fig. 3),
one would expect a similar effect in the overall picture of
electron-phonon scattering due to the strong coupling with
optical phonons. However, a detailed analysis of individual
phonon branches in BLG paints a very disparate picture.

In case of intraband scattering in the band π∗
1 , the scat-

tering rate due to absorption or emission of optical phonons

(ZO1,ZO2,TO1,TO2,LO1,LO2) is negligibly small in a wide
range of energies (E < 0.7 eV). This is a direct consequence
of intraband scattering matrix elements that lack strong peaks
near the symmetry points as discussed earlier in reference
to Fig. 2. The Kohn anomalies similar to those in MLG are
observed instead in the interband scattering π∗

1 → π∗
2 in BLG

(see Fig. 3). However, the corresponding transition rates have
proven to be negligibly low. This result can be understood
if one compares electron dispersions in MLG (π∗) and BLG
(π∗

1 and π∗
2 ). A simple analysis demonstrates that electron

transitions π∗
1 → π∗

2 involving phonons q = 0 and q = K
(where the anomalies occur) are prohibited by the energy and
momentum conservation laws. In other words, the contour
of integration from Eq. (1) never crosses (or comes close
to) the peaks at the points � and K observed in the matrix
element of BLG. The estimated minimal distance between
this curve (which can be approximated by a circle) and the
point q = K is 0.034(2π/a) for emission and 0.014(2π/a)
for absorption. For comparison, the analogous distance in
case of intervalley scattering due to TO phonons in MLG
is much smaller, ∼ 10−7(2π/a), which ensures its dominant
role in electron scattering. The same consideration shows that
the TO1 phonon with q = 0 cannot influence the interband
scattering in BLG. As a result, the total scattering rate in BLG,
when the electron is initially in π∗

1 (π∗
1 →{π∗

1 , π∗
2 }), does not

get a significant boost from optical phonons even at higher
energies (Ek � 200 meV) and becomes somewhat smaller
than the total rate in MLG. The fact that the Kohn anomalies
do not play an important role in the intrinsic scattering in
BLG also justifies the adequacy of the DFPT calculation
when compared to the more computationally demanding GW
approach.7

The situation is reversed at low energies as the curves of
BLG in Fig. 4(a) reveal substantially stronger scattering rates
than in MLG. This can be explained by the differences in the
density of states as k → K. More specifically, the density of
states tends to zero linearly for the massless Dirac fermions
of MLG while it is a constant in BLG, leading to a peculiar
effect. In MLG, the intravalley scattering via acoustic phonons
can be treated as quasielastic.14,15 Consequently, the scattering
rate is a linear function of energy that vanishes as Ek → 0.
In BLG, however, intravalley scattering with absorption of an
acoustic phonon (LA1, TA1, or ZA) shows a different behavior.
Aside from q = 0, the energy and momentum conservation
in the electron scattering allows an additional solution—a
circle with radius |q| = qc1 = vsγ1/h̄v2

F , where vs is the sound
velocity. In the case of antisymmetric acoustic modes (LA2,
TA2, or ZO′), an equivalent solution exists—a circle of radius
qc2 =

√
γ1ω�/h̄v2

F , where ω� is the nonzero frequency of an
antisymmetric acoustic mode at the � point. This leads to a
nonzero absorption rate even at zero electron energy. Note that
a similar analysis also holds for phonon emission if electron
transition to the valence band (π1) is allowed. The impact of
processes involving the π1 band is limited only to the initial
states at the bottom of π∗

1 (Ek � kBT ) and, as mentioned
earlier, not included in the current calculation.

For practical application, it would be convenient to ap-
proximate the ab initio results for electron-phonon coupling
by a simple analytical model. The deformation potential
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approximation can be used to describe interaction with
acoustic phonons in BLG:6

∣∣g(π∗
1 ,π∗

1 )(ac)
k,k′

∣∣2
DPA = D2

ach̄q

2Aρvs

(
1 + cos 2θkk′

2

)
δk′,k+q , (2)

where Dac is a deformation potential constant, A is the area
of the sample, ρ is the mass density of BLG, and θkk′ is the
scattering angle. Note that the intravalley scattering in BLG
cannot be treated quasielastically due to the additional solution
with q 	= 0. In fact, if only the quasielastic scattering with
long-wave acoustic phonons is taken into account,14,15 Eq. (2)

leads to τ−1 = D2
ackBT

2ρv2
s v

2
F h̄3 ( γ1

2 ) = const for k < γ1/2h̄2v2
F (i.e.,

Ek � 200 meV), which clearly disagrees with our calculation
(see Fig. 4). Once inelastic processes are included, an excellent
match to the first-principles results can be achieved with a
choice of Dac ≈ 15 eV when a single branch “effectively”
accounts for the contributions of all six acoustic (including
antisymmetric) phonons.16 This is much closer to the value ob-
tained for graphite (Dac ≈ 16 eV)17 than that for MLG (Dac ≈
4.5 − 5 eV).8 The scattering rates in BLG and graphite18 turn
out to be quite similar as well. The dominant intrinsic scattering
mechanism in both graphite and BLG is intravalley transitions
due to absorption and emission of acoustic phonons, while the

contribution of the optical phonons is of secondary importance.
In particular, an estimated value Dop ≈ 2.8 × 108 eV/cm is
obtained for optical phonons in BLG using a simple model

|g(π∗
1 ,π∗

2 )(op)
k,k+q |2 
 D2

oph̄

2Aρωq
;16 this is almost one order of magnitude

smaller than in MLG.8 With substantially enhanced acoustic
phonon scattering at low energies (by nearly an order of magni-
tude), the intrinsic mobility of BLG estimated with a full-band
Monte Carlo simulation is μ ≈ 1.7 × 105 cm2/V s (at very
low or zero electron densities), which is much smaller than
the corresponding quantity in MLG (≈ 9.5 × 105 cm2/V s).8

The saturation velocity is also reduced by more than a
factor of 2: vsat ≈ 1.8 × 107 cm/s (BLG) vs 4.2 × 107 cm/s
(MLG). These values provide ideal upper bounds to experi-
mental data that are frequently affected by individual sample
conditions.
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