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Coulomb drag of massless fermions in graphene
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Using a structure consisting of two, independently contacted graphene single layers separated by an ultrathin
dielectric, we experimentally measure the Coulomb drag of massless fermions in graphene. At temperatures
higher than 50 K, the Coulomb drag follows a temperature and carrier density dependence consistent with
the Fermi liquid regime. As the temperature is reduced, the Coulomb drag exhibits giant fluctuations with an
increasing amplitude, thanks to the interplay between coherent transport in the graphene layer and interaction
between the two layers.
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Bilayer systems formed by two layers of carriers in close
proximity are a fascinating test ground for electron physics. In
particular, the prospect of electron-hole-pair (indirect exciton)
formation and dipolar superfluidity1 has fueled the research
of electron-hole bilayers in GaAs/AlGaAs heterostructures.2,3

Graphene4,5 is a particularly interesting material to explore
interacting bilayers. The symmetric conduction and valence
bands and the large Fermi energy favor correlated electron
states at elevated temperatures.6,7 The zero-energy band-gap
allows a seamless transition between electrons and holes
in each layer, and obviates the large interlayer electric field
required to simultaneously induce electrons and holes in
GaAs bilayers.3 Coulomb drag, a direct measure of interlayer
electron-electron scattering,8 can provide insight into the
ground state of two-9 and one-10 electron systems, as well
as correlated bilayer states.11,12 Here we demonstrate an
independently contacted graphene bilayer, and investigate the
Coulomb drag in this system.

Two main ingredients render the realization of
independently contacted graphene bilayers challenging.
First, an ultrathin yet highly insulating dielectric is required to
separate the two layers. Second, a method to position another
graphene layer on a pre-existing device with minimum or no
degradation is needed to create the second layer of the structure
investigated here. The fabrication of our independently
contacted graphene bilayers is described in Fig. 1. First, the
bottom graphene layer is mechanically exfoliated onto a 280-
nm thick SiO2 dielectric, thermally grown on a highly doped
Si substrate. E-beam lithography, metal liftoff, and etching
are used to define a Hall bar on the bottom layer [Fig. 1(a)]. A
7-nm thick Al2O3 is then deposited on the bottom layer using a
2-nm oxidized Al interfacial layer, followed by 5 nm of Al2O3

atomic-layer deposition.13 The second, top graphene layer is
also mechanically exfoliated on a similar SiO2/Si substrate.
A polymethyl metacrylate (PMMA) film is applied on the top
layer and cured. Using an NaOH etch,14 the PMMA film, along
with the graphene layer and the alignment marks, are detached
from the host substrate, forming a free-standing membrane.
The membrane is placed face down on the substrate containing
the bottom graphene layer [Fig. 1(b)] and aligned with it. A
Hall bar is subsequently defined on the top layer [Fig. 1(c)].
Ten back-gated, independently contacted graphene bilayers
have been fabricated and investigated in this study, all with
similar results. We focus here on data collected from three

samples, labeled 1, 2, and 3, with mobilities between 4,200 and
12,000 cm2/Vs for the bottom layer, 4,500 and 22,000 cm2/Vs
for the top layer, and with interlayer resistances of 1–20 G�.
These structures are markedly different from graphene
bilayers exfoliated from natural graphite consisting of two
graphene monolayers in Bernal stacking.15

We now turn to the individual layer characterization. The
layer resistivities (ρ) and Hall densities measured for sample
1 at a temperature T = 4.2 K, as a function of back-gate bias
(VBG) are shown in Figs. 2(a) and 2(b), respectively. The poten-
tial of the both layers is held at zero (ground) for all measure-
ments presented in this paper. The bottom layer dependence
on the applied VBG shows ambipolar conduction and a finite
resistance at the charge neutrality (Dirac) point, consistent with
the expected response of gated monolayer graphene.16 More
interestingly, the top layer resistivity also changes as a result
of the applied VBG. This observation indicates an incomplete
screening of the gate-induced electric field by the bottom
layer,17 which is most pronounced in the vicinity of the charge
neutrality point, a consequence of the reduced density of states
in graphene. As we show below, we can quantitatively explain
the layer resistivities and densities’ dependence on VBG.

Figure 2(c) shows the band diagram of the graphene bilayer
at VBG = 0 V; for simplicity, the gate Fermi energy and the
charge neutrality point in the two layers are assumed to be at
the same energy. Once a finite VBG is applied, finite charge
densities are induced in both top (nT ) and bottom (nB) layers
[Fig. 2(d)]. The difference between the gate and bottom layer
Fermi levels is distributed partly across the SiO2 dielectric and
partly on the Fermi energy of the bottom graphene layer

eVBG = e2(nB + nT )/CSiO2 + EF (nB), (1)

where EF (n) = h̄vF

√
πn is the graphene Fermi energy

measured with respect to the charge neutrality point at
a carrier density n, e is the electron charge, vF = 1.1 ×
106 m/s is the graphene Fermi velocity, and CSiO2 denotes
the SiO2 dielectric capacitance per unit area. Similarly, the
Fermi energy difference between the two layers is responsible
for the potential drop across the Al2O3 interlayer dielectric

EF (nB) = e2nT /CAl2O3 + EF (nT ), (2)

where CAl2O3 is the Al2O3 dielectric capacitance per unit
area. The finite Fermi energy of the bottom layer EF (nB) in
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(a) (b) (c)

FIG. 1. (Color online) Optical micrographs (top) and schematic representation (bottom) of the fabrication process of an independently
contacted graphene bilayer. (a) Hall bar device fabrication on the bottom graphene layer, followed by the Al2O3 interlayer dielectric deposition.
(b) Top graphene layer isolation on a separate substrate, followed by transfer onto the bottom layer. (c) Top layer Hall bar realization by etching,
lithography, metal deposition, and liftoff. The yellow (inner) and red (outer) dashed contours in the optical micrograph represent the top and
bottom layers, respectively. The scale bars in all panels are 10 μm.

Eq. (2) plays the same role with respect to the top layer, as
the applied VBG in Eq. (1) for the bottom layer. Equations (1)
and (2) allow us to determine nB and nT as a function of VBG.
This model can be adjusted to include finite layer densities
at VBG = 0 V. The layer resistivity dependence on VBG can
be understood using a Drude model ρT,B = (n∗

T ,BeμT,B )−1,
where μT and μB are the top and bottom layer mobilities,
and the layer densities nT,B =

√
n2

T ,B + n2
0T ,0B are adjusted

to allow for finite carrier densities (n0T , n0B ) at the charge
neutrality point. The data of Figs. 2(a) and 2(b) show a
good agreement between the measured layer resistivities and
densities (symbols) and the calculations (solid lines). The
layer mobilities, determined from Hall measurements, are
μB = 5,400 cm2/Vs and μT = 4,500 cm2/Vs at T = 4.2 K.

Key insight into the physics of the graphene bilayer system
can be gained from Coulomb drag measurements.8,9 A current
(IDrive) flown in one (drive) layer leads to a momentum transfer

between the two layers, thanks to the interlayer electron-
electron interaction. To counter this momentum transfer, a
longitudinal voltage (VDrag) builds up in the opposite (drag)
layer. The polarity of VDrag depends on the carrier type in
the two layers and is opposite (same) polarity as the voltage
drop in the drive layer when both layers have the same
(opposite) type of carriers. The drag resistivity is defined
as ρDrag = (W/L)VDrag/IDrive, where L and W are the length
and width of the region where drag occurs. ρDrag versus VBG

measured at T = 250 K in sample 2 is shown in Fig. 3(a),
along with the layer resistivities ρT and ρB . Unlike sample
1 data (Fig. 2), the charge neutrality (Dirac) points of both
layers can be captured in the experimentally accessible VBG

window. Consequently, depending on the VBG value, sample
2 can probe three different regimes: a hole-hole bilayer for
VBG < −15 V, an electron-hole bilayer for −15 V < VBG

< −2 V, and an electron-electron bilayer for VBG > −2 V.

(a) (b) (c) (d)

FIG. 2. (Color online) (a) Layer resistivities and (b) densities vs VBG measured at T = 4.2 K in sample 1. Depending on VBG, both electrons
or holes can be induced in the bottom layer; the top layer contains electrons in the available VBG window, owing to unintentional doping. The
symbols in panels (a) and (b) represent experimental data, while the lines represent the calculated values according to Eqs. (1) and (2). (c) Band
diagram across the graphene bilayer heterostructure at VBG = 0 V, and (d) at a positive VBG. Both layers are assumed to be at the charge neutrality
point and aligned with the back-gate Fermi level at VBG = 0. The layers are held at the ground potential, and their thicknesses exaggerated to
show the Dirac cones. The applied VBG induces voltage drops VSiO2 and VAl2O3 across the bottom and interlayer dielectrics, respectively.
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(a)

(b)

FIG. 3. (Color online) Coulomb drag in graphene. (a) Layer
resistivities (ρT,B ) and ρDrag vs layer densities (nT,B ) for sample 2,
measured by sweeping VBG at T = 250 K. The bilayer probes three
different regimes: hole-hole, electron-hole, and electron-electron.
(b) ρDrag vs VBG at different T values, from 250 to 77 K (solid lines).
Inset: maximum ρDrag vs T 2 in the electron-hole and electron-electron
regimes. The different x axes, i.e., nB and nT of panel (a) and VBG of
panel (b), apply to both panels.

The dependence of ρB and ρT on VBG of Fig. 3 is also in
good agreement with the model presented in Fig. 2. Consistent
with the above argument, ρDrag is positive in the electron-hole
bilayer regime, negative in the hole-hole or electron-electron
regime, and changes sign when either the top or the bottom
layer are at the charge neutrality point. Standard consistency
checks9 ensured the measured drag is not affected by interlayer
leakage current.

For two closely spaced two-dimensional systems, when the
ground state of each layer is a Fermi liquid, and the interlayer
interaction is a treated as a perturbation, the ρDrag depends on
layer density (n) as ∝ 1/n3/2, on temperature as ∝ T 2, and
interlayer distance (d) as ∝ 1/d4.9 Likewise, the Coulomb
drag resistivity in graphene, calculated in the Fermi liquid
regime using Boltzmann transport formalism and the random
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FIG. 4. (Color online) ρDrag vs VBG measured in sample 2 for
T � 77 K. As T is reduced, ρDrag exhibits mesoscopic fluctuations
with increasing amplitude, which fully obscure the average drag at
the lowest T . The traces are shifted for clarity; the horizontal dashed
lines indicate 0 � for each trace.

phase approximation for the dynamic screening, is18

ρDrag = − h

e6

ζ (3)

32

(kBT )2

d4

ε2

n
3/2
B n

3/2
T

, (3)

where kB is the Boltzmann constant, ζ (3) ∼= 1.2, ε and is
the dielectric permittivity. A separate effect, which has been
theoretically advanced as the representative Coulomb drag
mechanism in graphene, is trigonal warping.19 Figure 3(b)
data show ρDrag versus VBG measured for sample 2 for T

values between 77 and 250 K. Away from the bottom layer
charge neutrality point, the ρDrag magnitude decreases with
increasing nB and nT . A power law ρDrag ∝ 1/(nα

Bnα
T ) fitting

to Fig. 3 data for VBG > 0 yields an exponent α = 1.25
± 0.25, which depends little on temperature. We note that the
magnitude of ρDrag is a factor of ∼102 lower than the values
expected according to Eq. (3). While further theoretical work
is needed to explain this discrepancy, a possible explanation is
that Eq. (3) is valid for high densities and/or large interlayer
spacing such that kF · d � 1 (kF denotes the Fermi wave
vector18); for Fig. 3 data, kF · d � 3 at all layer densities. The
ρDrag ∝ (kBT )2 dependence, which stems from the allowed
phase space where electron-electron scattering occurs, is
followed closely for temperatures between 70 and 200 K
[Fig. 3(b) inset], and softens for T > 200 K. Figure 3 data
show a smooth crossover for ρDrag through 0 �, from the
electron-hole to the electron-electron regime [blue (shaded)
corridor of Fig. 3(b)]. The crossover can be explained by
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FIG. 5. ρDrag vs B measured at T = 0.3 K in sample 3, showing
mesoscopic fluctuations similar to Fig. 4 data. Inset: ρDrag vs B data
autocorrelation.

the coexistence of electron and hole puddles near the charge
neutrality point of the bottom layer, which generate drag
electric fields of opposite sign, and cancel the ρDrag.

A remarkable transition in the drag resistance is observed
for T lower than 50 K (Fig. 4). As T is reduced, the ρDrag

data start to develop fluctuations superposed on the average
ρDrag versus VBG dependence of Fig. 3 and Eq. (3), valid
for diffusive transport. The ρDrag fluctuations, which are
reproducible in different measurements, grow in amplitude
as T is reduced and fully obscure the average diffusive drag
below 20 K. This manifestation of mesoscopic physics at
elevated temperatures is a consequence of the phase coherence
length (Lϕ) increasing with reducing T , and represents
the counterpart of universal conductance fluctuations20 in
Coulomb drag.21,22 Figure 4 data reveal that ρDrag fluctuation
amplitude reaches a maximum near the charge neutrality point
of the bottom layer (VBG = −1 V) and increases, albeit slowly,
as T is decreased. Theoretical arguments22 indicate that the

drag conductivity (σDrag = ρDrag/ρT ρB) fluctuation amplitude
(δσDrag) depends on relevant length scales and temperature as
δσDrag ∝ T · (L3

ϕl)/L; l is the electron mean-free path. For the
temperature range examined in Fig. 4, l can be considered
constant, as the mobility is weakly dependent on T . Assuming
the electron-electron interaction is the main phase-breaking
mechanism in graphene,23 hence, Lϕ = l

√
EF /2kBT , the T

dependence of δσDrag and δρDrag should follow a ∝ T −1/2

dependence, in good agreement with Fig. 4 data.
To probe the signature of weak localization in Coulomb

drag, in Fig. 5 we show an example of ρDrag versus per-
pendicular magnetic field (B) data, measured in sample 3
at T = 0.3 K and VBG = 0 V; both layers contain electrons
with layer densities nT = 1.4 × 1011 cm−2 and nB = 1.5 ×
1011 cm−2. Similar to the VBG dependence of Fig. 4, the ρDrag

versus B data show reproducible mesoscopic fluctuations. The
autocorrelation function [C(�B)] of Fig. 5 data reveals a
correlation field Bc = 47 mT, which corresponds to a phase
coherence length Lϕ = √

h/eBc = 300 nm. Similar Lϕ values
have been extracted from ensemble average measurements
using scanning gate microscopy.24

In summary, we demonstrate independently contacted
graphene bilayers and probe the Coulomb drag in this system.
At elevated temperatures, the drag resistance dependence
on density and temperature are consistent with the Fermi
liquid theory. At reduced temperatures, the drag exhibits
mesoscopic fluctuations that obscure the average drag, a result
of the interplay between electron-electron interaction and
phase-coherent transport.
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