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Current widely used approaches to calculate spectral functions using the density-matrix renormalization group
in frequency space either necessarily include an artificial broadening (correction-vector method), have limited
resolution (time-domain density-matrix renormalization group with Fourier transform method), or are limited
to low-energy properties or single dominant modes (original continued fraction method). Here we propose an
adaptive Lanczos-vector method to calculate the coefficients of a continued fraction expansion of the spectral
function iteratively. We show that one can obtain a very accurate representation of the spectral function very
efficiently, and that one can also directly extract the spectral weights and poles for the discrete system.
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Dynamical quantities such as the local density of states, the
single-particle spectral weight, or the dynamical spin or charge
correlation functions are of central importance in theoretical
and experimental condensed matter physics. Since electrons in
solids are interacting quantum objects, a reliable calculation of
their properties usually has to resort to numerical approaches.
The density-matrix renormalization group (DMRG)1 is one
such algorithm. Within the DMRG, the calculation of dynam-
ical quantities is a considerable challenge. A first attempt by
Hallberg was based on a continued fraction expansion (CFE).2

Subsequently, Kühner and White showed that this approach is
suitable, “if only the low-energy part of the correlation function
is of interest, or if the bulk of the weight is in one single peak,”3

and applied the correction vector method,3,4 which since then
has successfully been applied to many model systems.5,6

However, this approach has the drawback that one needs to
introduce an artificial broadening into the spectra, which can
be viewed as convolution of the true spectral function with
a Lorentzian of width η. As one is eventually interested in
the limit η → 0, one has to “deconvolute” the spectrum at
the end of the calculation. This is, like analytic continuation
of Monte-Carlo data, a numerically ill-defined procedure.6

Furthermore, the calculation of the correction vector at every
step of the DMRG is very time consuming and the frequencies
that one can address are limited. Another popular approach
to calculating spectral functions is to Fourier-transform time-
dependent DMRG data.7 To obtain good frequency resolution,
one has to calculate time-domain data over a long time
interval. However, accessing long time scales is limited by
either a loss of accuracy due to the approximate nature
of the DMRG, or by finite-size effects such as reflections
from open ends. A method that can resolve spectral features
with high resolution and no artificial broadening is therefore
desirable. Here we present an adaptive Lanczos-vector method
(ALM) that takes advantage of the CFE used in Ref. 2, but
gains efficiency by adapting the basis as in adaptive time
evolution.

The spectral function for the operators Â and B̂

is 2πi ρÂ,B̂(ω) = GÂ,B̂(ω + i0+) − GÂ,B̂(ω − i0+), where
GÂ,B̂(z) denotes the zero-temperature Green’s function. Here

we will take B̂ = Â†, yielding

GÂ,Â† (z) =: G
(1)
Â,Â†(z) − s · G

(2)
Â†,Â

(z) ,
(1)

G
(1/2)
X̂,Ŷ

(z) = 〈ψ0|X̂ 1

z ∓ (Ĥ − E0)
Ŷ |ψ0〉,

where |ψ0〉 is the ground state of Hamiltonian Ĥ , E0 is
the ground-state energy, and s = +1/ − 1 when Â is a
bosonic/fermionic operator. One of several ways to represent
the resolvent in Eq. (1) is the CFE2,8

G
(1)
Â,Â† (z) = 〈ψ0|ÂÂ†|ψ0〉

z − a0 − b2
1

z−a1− b2
2

z−...

, (2)

with a similar expression for G
(2)
ÂÂ† . The coefficients ai,bi of

this CFE can be calculated using the recursion formula

|f0〉 = Â†|ψ0〉, |fn+1〉 = H |fn〉 − an|fn〉 − b2
n

∣∣fn−1〉,
an = 〈fn|H |fn〉/〈fn|fn〉, (3)

bn = 〈fn|fn〉/〈fn−1|fn−1〉, b0 = 0 ,

which is essentially the one used in the Lanczos method, but
with starting vector |f0〉 replacing a random vector. Thus, we
will call the |fi〉 Lanczos vectors in the following. Hallberg2

used the CFE (2) and the recursion formulas (3) to obtain
spectral functions via a multitarget DMRG, i.e., by optimizing
the DMRG basis for the ground state and the Lanczos states
simultaneously.

The structure of the recursion formula (3) suggests imple-
menting an iterative method to calculate the Lanczos vectors in
the DMRG that optimizes the basis for only the three Lanczos
vectors needed at each recursion step. One initially calculates
the ground state |ψ0〉 of the system to the desired accuracy
with the usual DMRG algorithm. One then performs single
finite-system sweeps, simultaneously targeting the additional
vectors |f0〉 and |f1〉, from which one can evaluate a0, a1,
and b1. The recursion proceeds by replacing |ψ0〉, |f0〉, and
|f1〉 by |f0〉, |f1〉, and the new vector |f2〉. At this point, a
technical subtlety arises: |f0〉 and |f1〉 cannot be recalculated
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because there is no longer a condition to optimize them.
Instead, we transform the wave function from the previous
finite-size DMRG step to the new superblock configuration9 at
every step of the DMRG sweep. One DMRG sweep through the
system thus suffices to calculate the Lanczos vector |fi〉 and the
parameters ai and bi . As one needs to target only three Lanczos
vectors simultaneously, the number m of basis states necessary
to obtain an accurate representation is generally substantially
smaller than in the original algorithm.2 We will come back
to this point later. Here we emphasize only that we avoid
calculating the ground state at each DMRG step, speeding up
the calculation dramatically; the most time-consuming part
left in the Lanczos iteration is now the diagonalization of the
reduced density matrix needed to initialize the next DMRG
step. After iterating the recursion relation often enough, one
obtains a sequence {(ai,bi)} from which one can calculate the
Green’s function, Eq. (2).

We test the method on a model of spinless fermions on a
chain with Hamiltonian

Ĥ = −
∑

i

(c†i+1ci + c
†
i ci+1) + U

∑
i

nini+1,

where c
(†)
i denotes the usual creation (annihilation) operators

for an electron at site i, and ni denotes the occupation number
operator. Here we take A = ĉi and calculate the spectral
function ρ(x = i,ω) at the center of the chain for a system
at half filling. In Fig. 1, we compare the original (OLM)
and the ALM implementation of the CFE with the exact
solution on a chain of length L = 40 in the free-fermion limit,
U = 0. Both implementations do not give a clear hint as to
when to stop the Lanczos iteration. We have evaluated the
broadened spectral functions after 200 Lanczos iterations, see
below. Following Kühner and White,3 we do not target all
Lanczos vectors in the OLM but only a small fraction of them.
We then calculate the remaining vectors by straightforward
application of the recursion. To achieve good convergence of
the DMRG, we assign a weight of 0.5 to the ground state and
equal weights to the other Lanczos vectors (one could also
give them weights according to their spectral weights). This
large freedom, especially in choosing the number of targeted
Lanczos states, is in our a view a disadvantage of the OLM, as
the optimal parameters are not obvious, and the results depend

FIG. 1. (Color online) Broadened spectral function for spinless
fermions (L = 40, U = 0, η = 0.05, 200 Lanczos vectors) calcu-
lated with the new adaptive implementation (ALM), the original
implementation (OLM), and compared to the exact solution. The
DMRG truncation number is given by m.

on their choice. Employing the truncation error as measure
of the quality of the spectral function is also not possible, as
it depends only on the number of targeted states and their
weights.

In Fig. 1 we have used m = 1500, 25 sweeps, and eleven
target states, yielding a maximum truncation error of 10−6.
There is no way to determine the quality of the representation
of the following Lanczos states (one can only check their
orthogonality), but if we would have tried to target all Lanczos
states, the truncated weight would have been be much higher
than 10−6. In addition, the convergence is unstable, as small
changes in the first Lanczos vectors will lead to bigger changes
in subsequent Lanczos vectors.

In the ALM, we can increase the number of states during
the Lanczos iteration, as we do not need to calculate the ground
state at each step. We notice that the number of states needed
for a good representation of Lanczos vectors increases with
the number of iterations desired. For m = 1500, the maximum
truncation error per sweep for the ALM increases from 10−15

(ground state and first two Lanczos vectors) to 10−4 for the
last three Lanczos vectors. As already noted for the OLM,3

the low-energy portion (ω � 1) is well-reproduced by both
methods. Deviations occur in the high-energy part of the
spectrum, notably in both position and weight distribution
for the OLM. Here the ALM already shows much better
agreement with the exact solution for m = 1500. Increasing to
m = 3000 for the Lanczos iterations in the ALM, one almost
perfectly reproduces the exact solution. Note that m = 1500 is
the maximum number of states accessible in the OLM with our
computational resources; the simultaneous optimization of the
ground state and all other Lanczos states prevents calculations
with larger m.

Another advantage of the ALM is its shorter run time.
For m = 1500 our calculations used ≈30 h on a standard
workstation for the ALM and ≈90 h for the OLM. We
emphasize, however, that the run time is determined by several
parameters and thus should be interpreted with some care.
For example, the ALM scales linearly with the number of
Lanczos iterations, whereas the original implementation is
roughly independent of the iteration number. The run time of
the latter, however, strongly depends on the number of Lanczos
states targeted, because more target states increase the number
of DMRG sweeps needed to achieve convergence.

Since the CFE gives an analytical expression for the spectral
function, we can take the limit η → 0 so that the spec-
tral function ρÂÂ†(ω) = ∑

n �−
n δ(ω − ωn) − s

∑
n �+

n δ(ω +
ωn) is a series of δ functions, where ωn = En − E0, �−(+)

n =
|〈ψ0|Â(†)|n〉|2 and |n〉 are the eigenstates of Ĥ with eigenen-
ergies En. Evidently, all of the information on the spectral
function is contained in the weights �±

n and poles ωn =
±	En. Furthermore, one will always obtain a discrete and
finite set of poles for any finite system. Since the DMRG treats
finite systems, the spectral weights and pole positions can
be calculated directly. Such a calculation has two important
advantages: (i) One can study the size dependence of spectral
properties in a very controlled manner. (ii) It is possible
to obtain precise values for the energies of the low-lying
excitations;10 they are given by the pole positions ωn, which
can be directly obtained as the eigenvalues of the tridiagonal
matrix Tij = ai−1δij + bi (δj,i+1 + δi+1,j ).3 The poles of the
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(a)

(b)

FIG. 2. (Color online) Spectral weights evaluated for different
numbers of coefficients (a) and flow of the eigenvalues as a function
of the number of Lanczos steps i (b) for spinless fermions (L = 40,
U = 0, m = 3000).

Green’s function are located on the real axis and they are
discrete. Therefore, one can integrate along a closed path C
in the complex plane chosen to enclose one single singularity,
say at ωn. According to the residue theorem, the weight �n of
this pole is then

2πi�n =
∫ ∞

−∞
[G(ωn − ε + iγ ) − G(ωn + ε + iγ )] dγ.

The parameter ε must be chosen to be smaller than the distance
to the next eigenvalue, ε < |ωn − ωn±1|. Using this procedure
with the position of the poles known, the spectral weights can
be calculated to high precision using numerical integration.

In Fig. 2(a) we compare the weights and positions of the
poles calculated with the DMRG and the ALM to the exact
values on a chain of length L = 40, which are given by �n =

2
L+1 | sin ((kf + kn)x)|2, ωn = 2 cos(kn), where kn = πn

L+1 , n ∈
{1, . . . ,L}, and kf is the Fermi wave vector. For small energies,
the agreement is nearly perfect, while deviations occur for
large energies. The quality of the agreement depends on the
number of coefficients ai , bi taken into account. One finds that
after an initial improvement, no improvement occurs when one
further increases the number of coefficients.

The origin of this behavior can be understood from
Fig. 2(b), which depicts the flow of the eigenvalues of the
matrix Tij as a function of the number of Lanczos coefficients.
The convergence of the first few eigenvalues is evidently rapid.

The flow of the eigenvalues therefore gives a nice criterion
for stopping the iterations (also for the OLM). However,
after approximately 50 iterations, an eigenvalue with nearly
vanishing weight appears and subsequently moves rapidly
to zero energy. More such eigenvalues follow, at rapidly
increasing frequency. This appearance of so-called “ghost”
eigenvalues is well known in the Lanczos method. These
ghost eigenvalues are caused by the loss of orthogonality of
the Lanczos vectors due to numerical error.11,12 Their appear-
ance here is therefore not surprising, in particular because
the calculated Lanczos vectors also include an error from the
approximate DMRG representation. We find that this effect
is enhanced as one reduces the number of states within the
DMRG. Thus, the study of the flow of the eigenvalues makes
it possible to control the quality of the spectral function. Note
that such ghost eigenvalues also occur within the OLM. As
far as we know, this problem was never addressed in detail for
this method. While the ghost eigenvalues seem, at first glance,
to be a serious problem, we emphasize that, for the spectral
function in particular, they do not appear to cause real harm
because they possess only very small weight. This is evident
from the scaling in Fig. 2(b) and also from the fact that all
the ghost eigenvalues are located on the abscissa in Fig. 2(a).
This observation is just an empirical one at present. However,
as long as this remains true, the method will be insensitive
with respect to the occurrence of ghost eigenvalues, except
for regions with very small spectral weight. Here it is difficult
to distinguish ghosts from small but real spectral weights.
One possibility is to examine their convergence.11,12 Another
problem with ghosts is that they lead to a violation of sum rules
due to double counting. If one adds up just the real spectral
values there will be a missing weight that is given by the
sum of all ghost values. As long as the weight of the ghost
values is small, this will not lead to severe violations of sum
rules and can be used as a measure for the ghost problem.13

Another, in our opinion much more severe, problem is the
poor convergence at large energies. This could be addressed
by spectral transformations, which are a standard method for
improving convergence of excited states within the Lanczos
method.12

FIG. 3. (Color online) Comparison of the spectral weight calcu-
lated using the adaptive Lanczos-vector method with that calculated
using the correction vector method for different broadenings η

(U = 1.0, mCV = 300, mALM = 3000, 250 Lanczos vectors).

161104-3



RAPID COMMUNICATIONS

DARGEL, HONECKER, PETERS, NOACK, AND PRUSCHKE PHYSICAL REVIEW B 83, 161104(R) (2011)

We now consider finite interaction, U = 1, and compare
our method to the correction vector method.3,4 The correction
vector can be efficiently calculated by minimizing a functional
at every step of the DMRG,14 but one must include a
finite broadening in this process. Each broadening requires
a separate DMRG run, in contrast to the ALM, which can
evaluate the Green’s function readily for any set of frequencies
and arbitrary broadening once the Lanczos coefficients have
been calculated. In Fig. 3, we compare results from the two
methods for two different values of the broadening, η = 0.1
and 0.2. We find very good agreement overall, especially
for small energies. As expected, there are deviations at high
energies, which become more pronounced with decreasing
broadening.

We have shown that the ALM is capable of calculating the
spectral weights and poles accurately within the DMRG. In
contrast to the OLM, we obtain the correct weights and poles
of a Green’s function up to energies of the order of half the
bandwidth with only moderate resources and, as long as the
spectral weight is not too small, a reasonable reproduction of
the spectrum even at larger energies. A clear advantage of the
CFE in general is that it is based on an analytical expression
for the Green’s function, making it possible to evaluate it at an
arbitrary set of frequencies with any possib le broadening with-
out having to repeat the DMRG calculation. In addition, one
can extract irreducible quantities such as self-energies directly

as continued fractions. The inaccuracies that appear at higher
energies can be traced to a loss of orthogonality of the Lanczos
vectors due to systematic and numerical errors. In order to
improve the accuracy of spectral functions at higher energies,
the truncation number m must be increased. This increase in
m can become quite resource intensive in standard DMRG
implementations. However, an improvement in efficiency
could be achieved by using the matrix-product-state (MPS)
formulation of the DMRG.15 Within the MPS formulation,
one can variationally optimize the three Lanczos vectors in
the recursion formula separately, potentially leading to much
better performance. Another advantage is that, within the MPS
formulation, the Hamiltonian can be represented exactly (see
Ref. 16 for an introduction), thereby further reducing system-
atic errors. Finally, we point out that this recursive approach to
calculate a special basis for the evaluation of spectral functions
is not limited to the Lanczos basis. For example, expansion in
Chebyshev polynomials leads to a similar recursion formula.17

Recently, we learned that Holzner et al.18 have shown
that an adaptive method using Chebyshev polynomials in
combination with MPS is highly efficient and gives accurate
spectral functions.
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