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Coulomb interaction in graphene: Relaxation rates and transport
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We analyze the inelastic electron-electron scattering in undoped graphene within the Keldysh diagrammatic
approach. We demonstrate that finite temperature strongly affects the screening properties of graphene, which,
in turn, influences the inelastic-scattering rates as compared to the zero-temperature case. Focusing on the clean
regime, we calculate the quantum scattering rate which is relevant for dephasing interference processes. We
identify a hierarchy of regimes arising due to the interplay of a plasmon enhancement of the scattering and
finite-temperature screening of the interaction. We further address the energy relaxation and transport scattering
rates in graphene. We find a nonmonotonic energy dependence of the inelastic relaxation rates in clean graphene,
which is attributed to the resonant excitation of plasmons. Finally, we discuss the temperature dependence of
the conductivity at the Dirac point in the presence of both interaction and disorder. Our results complement the
kinetic equation and hydrodynamic approaches for the collision-limited conductivity of clean graphene and can
be generalized to the treatment of physics of inelastic processes in strongly nonequilibrium setups.
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I. INTRODUCTION

Graphene1,2 is a two-dimensional (2D) material with a
quasirelativistic dispersion law that has attracted outstanding
attention of leading experimental as well as theoretical
groups all over the world. In 2004, researchers at Manch-
ester University first succeeded in experimental isolation of
a monoatomic graphite layer—graphene—on an insulating
substrate.3,4 This technological breakthrough was immedi-
ately followed by transport measurements5,6 that have shown
remarkable properties related to Dirac nature of the charge
carriers. In particular, a short and wide sample of clean
graphene exhibits a pseudodiffusive charge transport,7 with
the counting statistics equivalent to that of a diffusive wire.8,9

This equivalence has been confirmed in recent measurements
of conductance and noise in ballistic graphene flakes.10,11 In
contrast to conventional metals, ballistic graphene near the
Dirac point conducts better when potential impurities are
added.12–15

Quantum interference in disordered graphene is also highly
peculiar due to the Dirac nature of the carriers. In particular,
at the Dirac point, the minimal conductivity5,6 ∼e2/h is
“protected” from quantum localization in the absence of
intervalley scattering16 or in the case of a chiral-symmetric
disorder.17,18 Away from the Dirac point, the concentration
dependence of graphene conductivity in diffusive samples
depends strongly on the nature of the scatterers.17 The
experimentally observed (approximately linear) dependence
in most of the samples may be explained by strong impurities
creating resonances near the Dirac point (“midgap states”),17,19

yielding σ ∝ n ln2 n. Alternative candidates are Coulomb im-
purities and/or ripples, leading to17,20–22 σ ∝ n. The dominant
type (or types) of disorder and the corresponding disorder
strength depend, of course, on technology of the sample
preparation.

How important is the electron-electron interaction in
graphene? Recent works demonstrated manifestation of the
interaction in dephasing rate providing the cutoff to quantum
interference phenomena,23–25 as well as in renormalization
of conductivity.26,27 Recent experiments also showed that the
interaction plays a particularly prominent role in suspended
graphene samples.28,29 In such samples the splitting of integer
quantum Hall transition (attributed to interaction-induced
spin/valley symmetry breaking) is observed at magnetic fields
as low as 2 T (i.e., an order of magnitude less than in graphene
structures on a substrate). Furthermore, one observes also
fractional quantum Hall plateaus, which indicates the impor-
tance of electron correlations.30–32 Continuous advances in
the fabrication of high-quality graphene samples are expected
to lead to further enhancement of the role of interaction in
graphene.

On the theoretical side, interactions may have a dramatic
impact on quantum electronic transport, especially in
systems of reduced dimensionality.33 Very generally, the
interaction-induced phenomena may be subdivided in two
big classes, related to effects of renormalization and inelastic
scattering, respectively. In the case of graphene, the interaction
physics becomes an even more complex problem, in view of
the “relativistic” dispersion of carriers. Interaction phenomena
are particularly strong near the Dirac point, where the density
of states vanishes (for a clean system), the screening by
intrinsic carriers becomes very inefficient, and the Drude
conductivity (in the presence of disorder) is of the order of
the conductance quantum.

The dimensionless bare coupling constant αg = e2/vF

describing the Coulomb repulsion in graphene samples on a
SiO2 insulating substrate is estimated to be 0.6–0.8 and can be
yet larger, αg � 2.2, in suspended graphene sheets. Transport
experiments on the interaction correction to conductivity in
graphene on a substrate27 have found much smaller values
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of the interaction constant (or, equivalently, the interaction
parameter rs) which can be attributed to the renormalization
effects which we briefly overview below. Furthermore, the
value of the effective fine-structure constant of free-standing
graphene as inferred from the results of recent experiments
on x-ray scattering in graphite34 was also found to be much
smaller than the bare value of α.

The interaction effects in the clean graphene have
been considered in Refs. 35–41 within the weak-coupling
renormalization-group (RG) scheme justified for a large
number of flavors of Dirac fermions. The main result of this
consideration35,36 is the renormalization of the Fermi velocity
and hence of the interaction parameter. This perturbative
renormalization group for graphene thus shows that in the
clean case the Coulomb interaction is marginally irrelevant.
In the disordered case, a unified ballistic RG emerges de-
scribing renormalization of disorder couplings and of the
interaction.37–42 In Ref. 41 the corresponding one-loop RG
equations are derived for time-reversal-invariant disorder and
in the limit of a large number of valleys.

At sufficiently strong αg , the Coulomb interaction in a
clean graphene has been argued to give rise to various
instabilities,43–49 in particular, to opening the gap in the Dirac
spectrum of the quasiparticles (spontaneous mass genera-
tion). Physically, this instability leads to a phase transition
from the semimetallic state to an insulator state, known
as excitonic semimetal-insulator transition.43 Recently, this
type of instability has been studied by the effective mean-
field-type approach,43,44 the renormalization-group method,36

and lattice simulations.47,48 The mean-field consideration of
the excitonic-type instability in graphene predicts a certain
value of the coupling constant αg � 2 (close to that in a
suspended graphene) at which the instability occurs. The
predicted semimetal-insulator transition, however, has not yet
been observed in experiments in zero magnetic field. One of the
possible reasons for that might be the presence of disorder.49 In
strong magnetic field—in the quantum Hall effect regime—the
repulsive interaction between electrons may result in the
Stoner instability50–52 giving rise to spontaneous breaking of
spin and/or valley symmetry. Experiments do show splitting
of quantum Hall plateaus in strong magnetic fields,53 which is
attributed to interaction effects.

It has been debated in the literature whether the Coulomb
interactions in graphene can be theoretically addressed within
the standard Fermi-liquid-type perturbation theory, which
requires, in particular, that the particle energy is much larger
than the decay rate (� � ε). In order to understand to
what extent graphene is a Fermi liquid, one has to explore
interaction-induced inelastic collision rates. The inelastic
quantum scattering rate at zero temperature (and finite quasi-
particle energy) has been considered in Refs. 54 and 55.
It was found in these works that the behavior at the Dirac
point is rather peculiar and requires a careful incorporation of
screening.

Another highly nontrivial feature of graphene is that inelas-
tic electron-electron collisions may limit the conductivity at the
Dirac point without any disorder or phonon scattering.56–58

This peculiarity of graphene—which should be contrasted
to conventional systems where interactions do not lead (in
the absence of Umklapp scattering) to finite resistivity—is a

consequence of the particle-hole symmetry and decoupling
between velocity and momentum. As a result, although the
total momentum of interacting particles is conserved during
inelastic collisions, the total current may relax. The collision-
limited conductivity of undoped graphene is found to be
inversely proportional to α2

g and depends on temperature only
through the renormalization of αg . It was found that the energy
relaxation caused by inelastic processes in graphene is fast,
which allows one to treat the problem by using a relativistic
hydrodynamic approach.59–62

In this paper we analyze the inelastic electron-electron
scattering in graphene within the Keldysh diagrammatic
approach. While we focus on the equilibrium situation in this
work, we have in mind to extend the treatment of physics of
inelastic processes to strongly nonequilibrium setups, which
explains why we prefer to work in the framework of the
Keldysh formalism. More specifically, our main results are
as follows:

(i) We demonstrate that finite temperature strongly af-
fects the screening properties of graphene, which, in turn,
influences the inelastic-scattering rates as compared to the
zero-temperature case.

(ii) Focusing on the high-temperature regime, we calculate
the quantum scattering rate, which is relevant for dephasing
interference processes. We identify a hierarchy of regimes
arising due to the interplay of a plasmon enhancement of the
scattering and finite-temperature screening of the interaction.

(iii) We further discuss the energy relaxation and transport
scattering rate in graphene. Our results complement the kinetic
equation and hydrodynamic approaches56–58 for the collision-
limited conductivity of clean graphene.

The paper is organized as follows. In Sec. II we define
the model and develop the Keldysh diagrammatic formalism
for treating the problem of Coulomb interaction in graphene.
Section III is devoted to the analysis of polarization operator
of graphene. We first review and discuss the results for the
zero-temperature case. Then we turn to the case of finite
temperature and discuss the properties of the polarization
operator. In particular, we compare the approximate form
of the dynamically screened interaction propagator with
the exact numerical results. In Sec. IV we calculate the
inelastic-scattering rates in the random-phase approximation.
Here we use the finite-temperature polarization operator
obtained in Sec. III to treat the problem analytically. We
discuss the asymptotics of the inelastic rates and show
that Dirac fermions show no Fermi-liquid behavior. Further,
in Sec. V, we discuss the collision-limited conductivity
obtained within the diagrammatic approach. In Sec. VI we
conclude and summarize the main results of this paper.
Technical details of the calculations are presented in four
Appendices.

II. MODEL

A. Clean graphene with Coulomb interaction

In this paper we consider clean graphene near the de-
generacy point. The problem is described by the following
Hamiltonian, which is a sum of the Dirac Hamiltonian
Ĥ0 (describing the physics of noninteracting electrons in
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graphene at not too high energies) and the Coulomb interaction
term,

Ĥ = Ĥ0 + V̂ =
∑

ν

∫
d2r �̂†

ν (r) (−ivF σ · ∇)�̂ν(r)

+ 1

2

∑
ν,ν ′

∫
d2r1d

2r2 �̂†
ν (r1)�̂†

ν ′(r2)

× e2

ε|r1 − r2| �̂ν ′(r2)�̂ν(r1). (1)

Here ε is the dielectric constant. The spinors �̂ have two
components in the sublattice space, σi are Pauli matrices
operating in this space. The indices ν,ν ′ label N independent
degrees of freedom (in graphene N = 4 accounts for spin and
valleys degeneracy): The Coulomb interaction is invariant with
respect to any rotations in the corresponding space. We set
h̄ = 1. We focus on the case of undoped graphene and set
the chemical potential (counted from the Dirac point) to zero,
μ = 0.

The retarded (advanced) Green’s function of the nonin-
teracting Hamiltonian Ĥ0 (the bare Green’s function) in the
energy-momentum space has the form

G
R,A
0 (ε,p) = ε1 + vF σ · p

(ε ± i0)2 − v2
F p2

. (2)

It is convenient to introduce the projection operators that
distinguish between the two chiral states:

P±(p) = 1 ± σ · n
2

, (3)

where np = p/p is the unit vector in the direction of momen-
tum. With the help of Eq. (3) the matrix Green’s function,
Eq. (2), can be decomposed into the superposition of the two
Green’s functions corresponding to the states with + and −
chiralities:

G
R,A
0 (ε,p) = P+(p)GR,A

0+ (ε,p) + P−(p)GR,A
0− (ε,p), (4)

where

GR
0±(ε,p) = 1

ε + i0 ∓ vF p
(5)

and GA
0±(ε,p) = [GR

0±(ε,p)]∗. For later purposes we will need
the quasiparticle spectral weight

A0(ε,p) = 1

2i

[
GR

0 (ε,p) − GA
0 (ε,p)

]
= − π

2ε
(ε1 + vF σ · p)[δ(ε − vF p) + δ(ε + vF p)].

(6)

Using the projection operators, we decompose the spectral
weight as follows:

A0(ε,p) = P+(p)A0+(ε,p) + P−(p)A0−(ε,p), (7)

A0±(ε,p) = −πδ(ε ∓ vF p). (8)

It is worth noticing that for Dirac particles the spectral weight
A0(ε,p) is not given by the imaginary part of the Green’s
function GR

0 (ε,p), because the latter contains the Pauli matrix
σy . However, within each chirality the conventional relation
holds: A0±(ε,p) = Im GR

0±(ε,p) .

Next, we introduce the coupling constant for Coulomb
interaction in graphene,

αg = e2

εvF

, (9)

which is similar to the fine-structure constant

α = e2

c
≈ 1

137

but is c/εvF times larger. The bare propagator of the Coulomb
interaction in Eq. (1) reads (in momentum space)

D0(q) = 2παgvF

|q| . (10)

Throughout the paper we assume αg � 1. This assumption is
favored by recent experiments,27,34 which suggested that the
effective interaction constant in graphene is rather small at
experimentally relevant temperatures.

B. Keldysh formalism

Although in this work we discuss only equilibrium physics,
we use the Keldysh formalism63,64 in order to have a basis
that can be generalized to the nonequilibrium situation. In
particular, this Keldysh formalism will be used elsewhere
for deriving kinetic equations for clean and disordered
graphene.

The bare Green’s function is now a matrix in the Keldysh
space,

Ǧ0 =
(

GR
0 GK

0

0 GA
0

)
. (11)

Here the Keldysh component GK
0 at the equilibrium reads

GK
0 (ε,p) = f (ε)

[
GR

0 (ε,p) − GA
0 (ε,p)

]
= 2if (ε)A0(ε,p), (12)

where the fermionic thermal factor is given by f (ε) =
tanh(ε/2T ).

The full Keldysh Green’s function for Eq. (1) is expressed
through Ǧ0,

Ǧ = (Ǧ0 − �̌)−1, (13)

where � is the full self-energy. In the lowest order in the fully
dressed propagator of Coulomb interaction Ď the retarded
self-energy is given by

�R
0 = i

2

(
DK ◦ GR

0 + DR ◦ GK
0

)
, (14)

where the symbol ◦ denotes integration over all internal
energies and momenta.

In the equilibrium situation the Keldysh component DK of
the interaction propagator satisfies

DK (ω,q) = 2ig(ω) Im DR(ω,q), (15)

where g(ω) = coth(ω/2T ) is the bosonic thermal factor. Using
Eqs. (14), (15), and (12), one gets

�R
0 − �A

0 = −[(f + g) Im DR] ◦ (GR − GA). (16)
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The retarded self-energy is a matrix which contains the two
terms

�R = �R
ε 1 + �R

v σ · np. (17)

The real parts of �R
ε and �R

v give rise to the corrections to the
energy and Fermi velocity, respectively:

δε = −Re �R
ε (ε,p), (18)

δvF = Re �R
v (ε,p)/p. (19)

In order to fix the energy unrenormalized, we introduced the
Z factor,

Z(ε,p) = 1 − Re �R
ε (ε,p)

ε
, (20)

so that ε − Re �R
ε (ε,p) = Z(ε,p)ε. The renormalized Fermi

velocity takes then the form

v∗
F = vF Z(ε,p)

[
1 + Re �R

v (ε,p)

vF p

]
. (21)

Using Eqs. (20) and (21), we write the retarded Green’s
function as

GR(ε,p)

= Z

[(
ε − iZ Im �R

ε

)
1 −

(
v∗

F + iZ Im �R
v

p

)
σ · p

]−1

,

(22)

where

Im �R
ε = − 1

2 Im DR(f + g) ◦ TrA, (23)

Im �R
v = − 1

2 Im DR(f + g) ◦ TrA σ · np. (24)

Note that in this representation the velocity acquires a nonzero
imaginary part.

The most singular terms in the renormalized velocity
v∗

F , coupling constant α∗
g = e2/εv∗

F , and the Z factor can
be summed up by means of the renormalization-group
approach.35 For the case of weak interaction αg � 1 the
solution of one-loop RG equations has the form

v∗
F (ε) = vF

(
1 + αg

4
ln



ε

)
, (25)

α∗
g(ε) = αg

1 + αg

4 ln 
ε

, (26)

Z(ε) = exp

{
− 4

3π
[αg − α∗

g(ε)]

}

= exp

[
− 1

3π

α2
g ln 

ε

1 + αg

4 ln 
ε

]
� 1. (27)

Here  is the ultraviolet energy cutoff (bandwidth) and the
on-shell relation between ε and p is assumed. At finite tem-
perature T the renormalization stops at max[ε,T ]. Therefore
for energies below T (which will be in the focus below)
the renormalized velocity and the Z factor are independent
of energy. Since for αg � 1 the corrections to unity in
the renormalized Z factor are parametrically small, in what
follows we set Z = 1.

Similarly to the bare Green’s function, Eq. (4), the full
Green’s function, Eq. (22), can be represented as a sum of the
two terms corresponding to ± chiralities:

GR(ε,p) = P+(p)GR
+(ε,p) + P−(p)GR

−(ε,p) , (28)

where

GR
±(ε,p) = Z

ε ∓ v∗
F p − iZ Im �R±

(29)

with

Im �R
± = Im �R

ε ± Im �R
v

= − Im DR(f + g) ◦ Tr [AP±] . (30)

Clearly, the bare Coulomb interaction (whose propagator is
purely real) does not yield the imaginary part of the self-energy,
so that one has to take into account the retardation effects. In the
random-phase approximation (RPA), the screened Coulomb
interaction takes the form

DR
RPA(ω,q) = D0(q)

1 + D0(q) N�R(ω,q)
, (31)

where N is the number of flavors. Below we will also consider
the interaction propagator at the golden rule (GR) level which
corresponds to expanding Eq. (31) to the second order in D0,

DR
GR(ω,q) = −D2

0(q) N�R(ω,q) . (32)

The dynamical screening in Eq. (31) is expressed through
the bare polarization operator

�R = i

2
Tr

(
GR

0 ◦ GK
0 + GK

0 ◦ GA
0

)
. (33)

In Sec. III below we study � at zero and finite temperature.

III. POLARIZATION OPERATOR

In the present section we discuss the properties of the
polarization operator. This is of primary importance for un-
derstanding the screening of the electron-electron interaction
and thus the physics of interaction-induced phenomena. We
find it instructive to start with analyzing the zero-temperature
result and describing the processes relevant for the polarization
operator. Then we turn to the case of finite temperature, which
is our main interest in the paper. Finally, we analyze the
consequences for the RPA-screened interaction. In the end
of this section we comment on the applicability of the RPA in
graphene.

A. Polarization operator at zero temperature and RPA
interaction propagator

The polarization operator in the energy-momentum repre-
sentation reads

�R(ω,q) = −
∫

d2p

(2π )2

∫
dε

2π
f (ε) Tr

{
A0(ε,p)

×[
GR

0 (ε + ω,p + q) + GA
0 (ε − ω,p − q)

] }
,

(34)
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ω= a+b
q= a+b

b

b

e−h

a

a

= a−bq

a+b=ω ω=

b

b

a

a

q=
a−b
a−b

ω= a−b
q= a+b

e−e

FIG. 1. Schematics of electron-hole (e-h) creation (left panel) vs
electron-electron (e-e) scattering (right panel) near the Dirac point
for μ = 0. The hole-hole scattering processes are analogous to those
shown in the right panel. We set vF = 1 for brevity. In both panels the
possible transferred momenta satisfy |a − b| � |q| � a + b (only the
extreme cases of minimal and maximal q are shown). For e-h creation
ω = a + b, so that ω � qvF , whereas for e-e scattering the kinematic
restrictions yield ω = a − b � qvF .

where G
R,A
0 are bare Green functions (2). The momen-

tum integrals that appear in this expression can be conve-
niently evaluated using elliptic coordinates as described in
Appendix A.

In the zero-temperature limit, Eq. (A1) simplifies and leads
to

�R(ω,q) = 1

16

q2√
v2

F q2 − (ω + i0)2
. (35)

Taking the imaginary part of the polarization operator,
Eq. (35), yields the well-known expression35

Im �R(ω,q) = 1

16
Re

q2sgnω√
ω2 − v2

F q2
. (36)

One can see that the imaginary part of the polarization operator
is nonvanishing only if ω > vF q and shows a divergence at
the “light cone” ω = vF q.

To understand the vanishing of the imaginary part of the po-
larization operator at ω < vF q, it is instructive to analyze54,58

the kinematic restrictions for elementary processes. It is easy
to see that an on-shell electron-hole pair can be created if (left
panel of Fig. 1)

ω � vF q. (37)

This should be contrasted to the energy and momentum
conservation of on-shell electron-electron-scattering processes
(right panel of Fig. 1),

ω2 + 2v2
F p1p2{1 − cos(�[p1,p2])} = v2

F q2, (38)

which implies the condition

ω � vF q. (39)

Thus if we restrict our consideration to on-shell particles,
electron-electron-scattering processes only create electron-
hole pairs under the condition ω = vF q, when Im � di-
verges. As follows from Eq. (38), scattering processes
that satisfy ω = vF q correspond to forward scattering with
�[p1,p2] = 0.

From Eqs. (32) and (36) we obtain the GR interaction
propagator at zero T :

DR
GR(ω,q) = − N

16

(2παgvF )2√
v2

F q2 − (ω + i0)2
,

Im DR
GR(ω,q) = −α2

gNv2
F π2

4
Re

sgnω√
ω2 − v2

F q2
.

(40)

After the RPA resummation [plugging Eq. (35) into Eq. (31)],
the imaginary part of the zero-T interaction propagator takes
the form

Im DR
RPA(ω,q) = −α2

gNv2
F π2

4

sgnω Re
√

ω2 − v2
F q2

ω2 − v2
F q2

(
1 − π2

32 α2
gN

2
) .

(41)

It is seen that the divergence at ω = vF q that occurred in
the GR interaction propagator, Eq. (40), is now eliminated.
Moreover, the imaginary part of the propagator is zero at
the light cone ω = vF q. Therefore the forward scattering
divergence that arises on the GR level disappears within
RPA, yielding a zero scattering rate on the RPA level. This
is a manifestation of a highly singular character of the
zero-temperature problem where RPA may be insufficient.
We will see below that at finite temperature the thermal
broadening regularizes the problem, so that scattering rates
can be evaluated within the RPA.

In view of the singular character of the problem, at zero
temperature the imaginary part of the self-energy is highly
sensitive to changes of the electron dispersion.58 The Fermi ve-
locity depends logarithmically on the momentum or energy,35

Eq. (25), due to the renormalization by Coulomb interaction.
In Eq. (36) we have neglected the momentum dependence
of vF which leads to a separation of the two regions defined
by Eqs. (37) and (39); see Fig. 2. The electron-hole creation
[ω � vF (q) q] and electron-electron-scattering [ω � vF (p) q]
regions are then separated due to the renormalization-induced
nonlinearity of the electron dispersion, which leads to the
vanishing of the zero-T scattering rate already at the GR
level.

However, at finite temperature the situation is essentially
different. First, conditions (37) and (39) will be smeared by
temperature. Second, for energy scales smaller than T the
renormalization of Fermi velocity is cut off by temperature
and hence the linearity of the dispersion relations is restored:
Renormalization reduces merely to a T dependence of the
Fermi velocity. Therefore when discussing the finite-T physics
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q

ω

p

vF(

v (

vF(

=ω

F )q=ω

=ω

p

Λ)

q)q

q

FIG. 2. Interaction-induced dispersion correction near the Dirac
cone. The electron-hole creation [ω � vF (q) q] and electron-
electron-scattering [ω � vF (p) q] regions do not overlap, so that the
zero-temperature inelastic-scattering rate is zero.

of inelastic scattering on scales � T we will disregard
the renormalization-induced nonlinearity of the dispersion.
Furthermore, below, whenever we use the notation vF for
ε � T we will mean the renormalized value of the velocity
v∗

F (T ) and omit the asterisk for brevity.

B. Polarization operator at nonzero temperature

We are now ready to calculate the polarization operator at fi-
nite temperature. It turns out that the effect of finite temperature
on the screening in graphene is much more pronounced than
in conventional metals with finite Fermi surface and quadratic
electronic dispersion. Indeed, the linearity of the spectrum
of Dirac fermions gives rise to a strong (linear) energy

dependence of the density of states in two dimensions, whereas
for a parabolic spectrum the density of states is constant.
In the latter case, the polarization operator is essentially
independent of temperature. This is not the case for Dirac
particles.

Physically, a finite temperature leads to population of
electronic states in an energy range ∼T around the Fermi level.
Let us consider the undoped graphene where the chemical
potential lies at the Dirac point. The typical density of states
that participate in the screening of Coulomb interaction at
finite temperature is now proportional to T . In more technical
terms, at finite T the integration over the fermionic energy in
the polarization bubble essentially involves not only the dis-
tribution function [thermal factors f (ε)] but also the Green’s
functions. This strongly changes the polarization operator at
qvF ,ω � T .

To simplify the notations at nonzero temperature, we
introduce the dimensionless variables according to

Q = vF q

2T
, � = ω

2T
. (42)

We use the general expression for the polarization operator,
Eqs. (A1) and (A2) from Appendix A. Considering four
different regions shown in Fig. 3, we simplify these equations
in each of the cases, which allows us to treat the problem
analytically.

The four regions are defined by the following conditions:
region 1: Q � 1 and Q < |�|,
region 2: 1 � Q and Q < |�|,
region 3: Q � 1 and |�| < Q,
region 4: 1 � Q and |�| < Q.

As shown in Appendix A, the leading-order terms with
a nonvanishing imaginary part form the following simplified
polarization operator:

�R(�,Q) = T

v2
F

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln 2
π

[
1 − |�|√

�2−Q2

] + i
8

Q2 tanh(�/2)√
�2−Q2

, (region 1) |�| > Q

Q � 1
ln 2
π

+ i ln 2
π

�√
Q2−�2

, (region 3) |�| < Q

− ζ( 3
2 )(2−√

2)
8
√

π

√
Q√

�2−Q2
+ i sgn �

8
Q2√

�2−Q2
, (region 2) |�| > Q

Q  1
1
8

Q2√
Q2−�2

+ i√
2π

√
Qe−Q sinh �√

Q2−�2
, (region 4) |�| < Q

(43)

In the case of large momenta, Q  1, we recover the
zero-temperature result. For Q � 1, the polarization operator
substantially differs from the zero-T expression. We will
discuss this case in more detail in Sec. III C. The separation
between � < Q and � > Q is dictated by the nonanalytical
structure of the polarization operator; see Eq. (43).

C. RPA interaction at nonzero temperature

The real part of the polarization operator, Eq. (43), for
Q � 1 is determined by temperature and leads therefore to

the screening of the Coulomb interaction:

lim
� → 0

DR
RPA(�,Q) = D0(Q)

1 + D0(Q) N�R(0,Q)

= v2
F π

NT ln 2

(
αgN ln 2

Q + αgN ln 2

)
, (44)

which yields the screening length

lscr = vF

2αgNT ln 2
. (45)
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FIG. 3. (Color online) Imaginary part of the polarization operator
in the frequency-momentum plane. Four regions of dimensionless
variables � and Q (see text) are indicated. The magnitude of
Im�R(�,Q) is encoded by the logarithmic color scale.

Thus at finite temperature the system does screen the long-
range Coulomb interaction. Note that for Q � αgN , the
RPA propagator becomes independent of the interaction
constant αg ,

DR
RPA(�,Q)|Q�αgN � 1

�R(�,Q)
, (46)

as in conventional systems with Coulomb interaction. We will
see, however, that the dominant contributions to relaxation
rates are determined by higher transferred momenta Q � αgN ,
where the peculiarities of the finite-T screening in graphene
are crucially important.

In region 1, the real part of the polarization operator in
Eq. (43) may become negative, leading to emergence of plas-
mon excitations. The plasmon dispersion �p(Q) is determined
by the zero of

1 + D0N�R = αgNQ ln 2

(�2 − Q2)3/2

[
�− (αgN ln 2 + Q)

√
Q√

Q + αgN2 ln 2

]
,

(47)

yielding

�p(Q) = (αgN ln 2 + Q)
√

Q√
Q + 2αgN ln 2

. (48)

For Q → 0, this simplifies to �p(Q) ∝ √
αgNQ. A nonzero

imaginary part of the polarization operator (43) in the
corresponding region implies that these plasmons have a
finite lifetime. The decay rate of plasmon excitations is
given by

�p(�,Q) = (�2 − Q2)3/2

αgNQ ln 2
Im D0(Q) Im �R(�,Q) , (49)

FIG. 4. (Color online) (a) Imaginary part of RPA interaction. Left: using an analytic approximation; right: by numerical evaluation of
Eqs. (A1) and (A2). Dashed lines indicate the plasmon dispersion [see Eq. (47)]. (b) cross sections through the plots of (a) from (�,Q) = (1,0)
to (�,Q) = (0,1) (1) from (�,Q) = (0.2,0) to (�,Q) = (0,0.2) (2). Solid curves: analytic approximation; dashed curves: numerical integration.
For all plots the interaction strength is αgN = 1/3.
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which yields

�p(�,Q) |�=�p(Q) = π�

16 ln 2
(�2 − Q2)|�=�p(Q)

� π�3

16 ln 2

∣∣∣∣
�=�p(Q)

. (50)

Remarkably, Eq. (50) indicates a good quasiparticle behavior
for plasmons, which is, as we will see in Sec. IV A, not
true for electronic excitations. The situation is somewhat
similar to Luttinger liquid where plasmons are almost perfect
quasiparticles, whereas, from the point of view of fermionic
excitations, the Luttinger liquid represents a paradigmatic
example of a non-Fermi liquid.

Figure 4 demonstrates that Eq. (43) for the polarization op-
erator yields a remarkably good approximation for evaluation
of the imaginary part of the RPA interaction,

Im DRPA = − ND2
0 Im �R

(1 + ND0 Re �R)2 + (ND0 Im �R)2
(51)

[see also Eq. (B2) in Appendix B]. In Fig. 4(b) we see the
plasmon peak in the RPA interaction propagator, which is
strongly asymmetric and is suppressed around the light cone,
so that Im DRPA = 0 exactly at � = Q.

Let us now discuss the status of the RPA in graphene. Above
we have introduced the large number of independent flavors
N  1. At zero temperature, this is the only parameter which
justifies the RPA summation in the problem of interacting
Dirac fermions at μ = 0. Indeed, in view of the absence of the
screening, the non-RPA diagrams are parametrically the same
as those included in the RPA series for N ∼ 1. Furthermore,
as discussed in the end of Sec. III A, the renormalization-
induced curvature of the spectrum (which is also beyond the
RPA) may dramatically affect the results obtained within the
RPA.

However at finite T , the T -induced screening of the
interaction, Eq. (44), restores the validity of the RPA for q �
T/vF (Q � 1) even for N ∼ 1. Indeed, the 1/q singularity
of the long-range Coulomb interaction is not compensated
in the denominator of Eq. (51) because the polarization
operator at finite T is no longer linear in q. The situation
becomes similar to that in conventional metals with a finite
Fermi surface, where the RPA is justified for q � kF . In
graphene the role of kF is played by T/vF , which in effect
establishes an analog of a finite Fermi surface. Therefore for
q � T/vF the RPA does sum up the most singular interaction-
induced terms: All other terms are nonsingular because of
the screening. This means that all the observables that are
dominated by the collisions with the momentum transfer
smaller than T/vF can be calculated (even with the correct
numerical prefactors) within the RPA. The RPA result for those
observables that are dominated by qvF ∼ T is parametrically
correct, but the value of the prefactor cannot be found using the
RPA.

Below we employ the finite-T RPA for calculation of
various scattering rates in graphene. For the sake of generality,
we keep N as a parameter. In what follows we focus on the
case αgN � 1, but whenever the rate under consideration is

dominated by qvF � T , the condition N  1 can be removed
so that we are allowed to use the RPA for N ∼ 1.

IV. SCATTERING RATES

In this section we calculate various inelastic-scattering rates
in clean graphene at finite temperature. More specifically,
we focus on the quantum scattering rate (and dephasing)
and the energy relaxation rate induced by the RPA-screened
Coulomb interaction. In Sec. V A below, we will also calculate
the transport scattering rate due to inelastic collisions. The
quantum scattering rate determines the lifetime of quantum
states (plane waves) and is related to the dephasing rate. The
energy relaxation rate governs the relaxation of the quasipar-
ticle distribution function. Finally, the transport scattering rate
describes the influence of the inelastic scattering on transport
phenomena.

Although the origin of all these rates is the same—the
inelastic electron-electron collisions, these rates may strongly
differ from each other. For instance, this is exactly what
happens in diffusive metals33,65 because of the infrared-
singular collision kernel. Another prominent example of a
nontrivial behavior of relaxation rates related to the infrared
singularities is a Luttinger liquid (disordered or clean).66–69

On the other hand, within the Fermi-liquid theory of clean
metals all the inelastic-scattering rates behave in the same
way, since the characteristic frequency and momenta transfer
in the course of electron-electron collisions is determined by
temperature. The goal of this section is to understand whether
or not the situation in clean graphene is similar to that of the
Fermi liquid.

We have already mentioned in the Introduction (Sec. I)
the previous works on the inelastic quantum scattering rate
in graphene.35,55 These works addressed the scattering rate
at the GR level at zero temperature and obtained the Fermi-
liquid-type result τ−1

q ∼ α2
gNε � ε. Naively, one could think

that at finite temperature this consideration would lead to
τ−1

q ∼ α2
gNT . However, since the GR result is completely

determined by the “mass shell” (ω = vF q) (see discussion in
Sec. III A) one concludes that the RPA resummation (which
kills the on-shell interaction) would yield τ−1

q (ε) = 0 for
T = 0 and arbitrary ε. Therefore the finite-T expectation based
on the GR is also doubtful.

How the quasiparticle broadening behaves in the experi-
mentally relevant case of finite temperature is thus by far not
obvious. As discussed in Sec. III B, the finite density of states at
nonzero T leads to screening of the Coulomb interaction, thus
justifying the use of the RPA which then sums up the most
singular contributions of the interaction for small momenta,
qvF < T . In this section we find the behavior of inelastic rates
at finite temperature within the RPA. As we have already seen
in Sec. III B, the behavior of the polarization operator at finite
temperature is highly nontrivial. This leads to a rather rich
behavior of the scattering rates.

It turns out that, in addition to the temperature scale,
two more characteristic scales appear which are relevant for
relaxation rates: α2

gN
2T and αgNT . In this section we will

distinguish between the four regimes (I–IV) as shown in
Fig. 5. The contributions to each of the scattering rates from
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I IIIII IV
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α TN2
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2
g αg

FIG. 5. Characteristic energy scales separating domains of dis-
tinct behavior of the rates.

different regions (1–4, see Fig. 3) of the momentum-frequency
plane are calculated separately.

A. Quantum scattering rate in graphene

One of the main manifestations of the inelastic scattering
in electronic systems is the interaction-induced dephasing.
In order to analyze the effects of dephasing in graphene,
we will follow the route suggested by earlier works on 2D
(in particular, diffusive) systems.33 A natural first step is to
calculate the quantum scattering rate τ−1

q which is given by
the imaginary part of the quasiparticle self-energy taken at the
mass shell. Indeed, for conventional metals with parabolic
dispersion, in the high-temperature (ballistic) regime, the
dephasing rate τ−1

φ to leading order is given by τ−1
q ; see

Ref. 70. In the diffusive regime, the scattering kernel acquires
an infrared singularity leading to a divergent τ−1

q at finite
T . This is a manifestation of the fact that the single-particle
self-energy is not a gauge-invariant object; no divergencies
occur in observable (gauge-invariant) quantities, such as,
e.g., the dephasing rate. However, even when the quantum
scattering rate diverges, the calculation of it turns out to be
instructive: A parametrically correct result for the dephasing
rate can be obtained from the expression for τ−1

q supplemented
with an appropriate infrared cutoff. It is thus useful to begin
with analyzing τ−1

q .

1. Quantum scattering rate: Definitions

The peculiarity of graphene is that the self-energy is a
matrix in the sublattice space, which has a nonzero imaginary
part, Im �v [Eq. (24)], in the off-diagonal components.
Therefore the definition of the quantum scattering time in
graphene is actually not unique. Indeed, one can associate
with the quantum scattering rate the on-shell value of the
imaginary correction to the energy in the full Green’s function,
Im �ε [Eq. (23)], similarly to the conventional Fermi-liquid
theory:

1

2τq(ε)
= −θ (ε) Im �ε(vF p,p)|p=ε/vF

− θ (−ε) Im �ε(−vF p,p)|p=−ε/vF
. (52)

Here at ε > 0 we have taken the self-energy at the “+” mass
shell corresponding to the positive energies, ε = vF p, and at
ε < 0 on the “−” mass shell. Clearly,

1

τq(ε)
= 1

τq(−ε)
(53)

for undoped graphene (μ = 0) because of the particle-hole
symmetry. Within the RPA the explicit expression for the
imaginary part of the total self-energy �ε taken at ε = vF p

reads

Im �ε(vF p,p)

= −π

2

∫
dω

2π
[g(ω) + f (vF p − ω)]

∫
d2q

(2π )2
Im DR(ω,q)

× [δ(vF p − ω − vF |p − q|)
+ δ(vF p − ω + vF |p − q|)] . (54)

Alternatively, one can introduce the lifetime of the + and −
chiral states through the corresponding self-energies, Eq. (30):

1

2τ±(ε)
= − Im �±(ε,p)|p=|ε|/vF

, (55)

which yields

1

τ+(ε)
= 1

τ−(−ε)
. (56)

Using Eqs. (30) and (6), we get for the self-energy of electrons
(+ chirality)

Im �+(vF p,p)

= −π

2

∫
dω

2π
[g(ω) + f (vF p − ω)]

∫
d2q

(2π )2
Im DR(ω,q)

×
[(

1 + p(p − q)

p|p − q|
)

δ(vF p − ω − vF |p − q|)

+
(

1 − p(p − q)

p|p − q|
)

δ(vF p − ω + vF |p − q|)
]

(57)

for the “own” mass shell, and

Im �+(−vF p,p)

= −π

2

∫
dω

2π
[g(ω) + f (−vF p − ω)]

∫
d2q

(2π )2
Im DR(ω,q)

×
[(

1 − p(p − q)

p|p − q|
)

δ(−vF p − ω − vF |p − q|)

+
(

1 + p(p − q)

p|p − q|
)

δ(−vF p − ω + vF |p − q|)
]

(58)

for the “wrong” (hole) mass shell.
The main formal difference between the two relaxation

rates, Eqs. (52) and (55), which are related by

1

τq(ε)
= 1

2τ+(ε)
+ 1

2τ−(ε)
, (59)

is in the appearance of Dirac factors 1 ± cos θ in Eqs. (57)
and (58) where θ = arccos(pp′/pp′) is the scattering angle
between the incoming momentum p and the momentum
p′ = p − q after scattering. These factors are related to the
additional Berry phase in the problem of Dirac particles,
which arises due to the overlap of Bloch functions and, in
particular, forbids the backscattering within the same chirality
and valley. Note that for well-defined quasiparticles (i.e., in
a Fermi-liquid situation) the self-energy at a “wrong” mass
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shell would never be relevant. However, if the quasiparticle
broadening is larger than the characteristic energy, this is no
longer the case, so that Eq. (58) may then contribute to the
observables.

In Eq. (57), the term with 1 + cos θ corresponds to the
electron-electron scattering (right panel of Fig. 1), which is
determined by the contribution of region 3 in Fig. 3. The term
with 1 − cos θ is due to electron-hole scattering (electron-hole
pairs, left panel of Fig. 1) accompanied by the excitation of
plasmons and is determined by the contribution of region 1 in
Fig. 3. The latter contribution is suppressed for the forward
scattering θ = 0 because of the Dirac factor. Furthermore,
at zero temperature only the electron-electron processes are
allowed by the kinematic restrictions.

At finite T , however, the situation is different for low-
energy domains I and II (ε < αgNT ), where the contributions
of the electron-electron and electron-hole scattering to the
inelastic quantum scattering rates are of the same order.
This means that the low-energy electron-type and hole-
type quasiparticles are strongly correlated by the mutual
inelastic scattering, whereas at higher energies (ε > αgNT ,
corresponding to domains III and IV) the electronic and
hole subsystems are only weakly coupled with each other,
in agreement with Ref. 58.

As we will see below, depending on the energy range,
Fig. 5, both τ−1

q and τ−1
± may be larger or smaller than energy.

When the quasiparticle’s broadening is small, the two rates
coincide since the inelastic scattering is dominated by small
scattering angles θ and the Dirac factors reduce to 0 and 1.
At the lowest energies (domains I and II), both τ−1

q and τ−1
±

exceed the energy which makes the notion of mass shell not
well defined. In particular, due to the inelastic broadening, the
electronic excitation (+ chirality) has tails at negative energies
which overlap with the hole mass shell.

Furthermore, as shown in Sec. IV C, the characteristic rate
of the energy relaxation (energy mixing due to the diffusion
over energy) at low energies is of the same order as the quantum
scattering rate, so that the electronic excitations constantly
explore the hole mass shell and vice versa. In this situation,
the broadening of quasiparticles of a given chirality is in effect
described by the total scattering rate τ−1

q , according to Eq. (59)
rather than Eq. (55). Therefore in what follows we will mostly
focus on the Fermi-liquid-type total rate τ−1

q , formally defined
in Eq. (52).

2. Quantum scattering rates: Results and discussion

The evaluation of integrals involved in the calculation of
the total quantum scattering rate τ−1

q is outlined in Appendix
B. The result depends on the energy range (see Fig. 5):

1

2τq(ε)
≈

⎧⎪⎪⎨
⎪⎪⎩

c1
T
N

√
ε
T
, ε � α2

gN
2T , I

c2αgT , α2
gN

2T �ε � αgNT, II

c3αgT , αgNT �ε, III, IV.

(60)

Here c1 ∼ 1, c2 = 3π/2, and c3 = 2β(2)/π are the numerical
coefficients of order unity, β(x) is the Dirichlet beta function,
and β(2) is the Catalan constant. Note that for energies in
regimes II, III, and IV, the number of independent flavors

Ε

τq
1

α
g
T

TαgN Tαg
2N2T

I II III IV

FIG. 6. (Color online) Quantum scattering rate for αgN =
4 × 10−3 (double logarithmic scale). Dots: exact values ob-
tained by numerical evaluation; solid lines: analytical asymptotics,
Eq. (60).

N drops out from the expression for τq. The comparison
of the asymptotic expressions (60) with the exact numerical
evaluations is shown in Fig. 6.

The obtained rates are dominated by different values
of momenta transferred during the collision. Furthermore,
depending on the energy range, the main contribution may
come from different regions of the Q vs � plane (Fig. 3) as
shown in Table I.

In regime I the result is determined by momenta of
order temperature and therefore all four regions contribute
in the same way: τ−1

q ∼ (εT )1/2/N . All scattering angles θ

contribute to the result in regime I. In order to evaluate the
numerical prefactor cI one needs the knowledge of the screened
interaction in the crossover around qvF ∼ T , which is beyond
the analytic approximations for the polarization operator used
above. For energies in regime II the dominant contributions
come from regions 3 (electron-electron scattering) and 1
(electron-hole scattering); in both of them all scattering angles
θ contribute. In regimes III and IV the main contribution to
the quantum scattering rate stems from region 3 (electron-
electron scattering) and is dominated by forward scattering
(θ � αgNT/ε � 1).

An important feature of the quantum scattering rate is
its nonmonotonic energy dependence; see Eq. (60) and
Fig. 6: with increasing energy the quasiparticle broadening
first grows in regime I, has a maximum at ε ∼ α2

gN
2T ,

then decreases in regime II, and finally becomes energy
independent. The maximum of τ−1

q occurs due to the resonant
emission/absorption of plasmonic excitations. We will see
below that the nonmonotonicity of the energy dependence is
related to the peculiar properties of the dynamical screening

TABLE I. Momentum/frequency scales and regions of the Q-
� plane that dominate the quantum scattering rate τ−1

q in different
domains (I, II, III, and IV) of energy ε.

τq I II III IV

qvF ∼ ω T (αgNT )2/ε αgNT αgNT

Regions 1,2,3,4 1,3 3 3
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Ε

Τ 1

α
g
T

TαgN Tαg
2N2TgN T g

2N2T

I II III IV

FIG. 7. (Color online) Quantum scattering rate τ−1
+ for the +

chirality (electrons) for αgN = 4 × 10−3 (double logarithmic scale).
Dots: exact values obtained by numerical evaluation; solid lines:
analytical asymptotics (see Appendix B).

in graphene and is a characteristic feature of all inelastic-
scattering rates in graphene.

In Fig. 7 we show the results for the quantum scattering
rate of electrons, τ−1

+ , defined in Eq. (55). One sees that
Fig. 7 represents an “unfolding” of Fig. 6 into the contributions
of “own” (ε > 0) and “wrong” (ε < 0) mass shells, according
to Eq. (59). The hole mass shell with ε < 0 is probed by elec-
trons due to the strong quasiparticle broadening. At posi-
tive energies in regimes III and IV (ε > αgNT ), the total
scattering rate τ−1

q is dominated by the electronic scattering

rate τ−1
+ .

In contrast to the naive expectation (τ−1
q ∼ α2

gNT ) based
on the Fermi GR result, the quantum scattering rate calculated
within the RPA is proportional to αg (and does not depend
on N ) for ε  α2

gN
2T and is independent of αg at the

lowest energies. This enhancement of the inelastic scattering
for αgN � 1 is a result of peculiar screening properties of
graphene at finite T which leads to a nonanalytic behavior
of the rate as a function of the natural four-fermion coupling
constant α2

g . This behavior bears a certain similarity to the
behavior of the quantum scattering rate in a spinful Luttinger
liquid.66,67

Since the RPA quasiparticle broadening in domain I may
overlap with the higher-energy domains, where the quantum
scattering rate is of the order of αgT , one can speculate that
the characteristic strength of inelastic scattering is given by
τ−1

q (ε) ∼ αgT also at low energies. Of course, the calculation
based on the lowest-order RPA diagrams for the self-energy
is then insufficient. Moreover, the typical observables at finite
temperatures are dominated by ε ∼ T (the border between
domains III and IV), where the quasiclassical broadening is
smaller than the energy and the above calculation is justified.
The low-energy inelastic relaxation may become relevant in
the context of spectroscopy under strongly nonequilibrium
conditions, for example, in problems related to tunneling into
a nonequilibrium state (cf. Ref. 69). In this situation the
inelastic effects can be treated within the quantum-kinetic
approach including non-RPA contributions, similarly to one-
dimensional problems.69

B. Dephasing rate at high temperatures

Let us now discuss the dephasing rate. The result for
the quantum scattering rate obtained for the clean graphene
allows us to evaluate the dephasing rate relevant to weak

(anti)localization in the ballistic regime24 of high temperatures
T τdis  1, where τdis is the elastic mean free time due to
scattering off impurities. It is worth noting that this condition
may coexist with the condition τφ  τdis which allows long
interfering paths in the weak-localization experiment. Indeed,
the inelastic scattering is suppressed with decreasing αg (even
though in a nontrivial way) so that one expects that τφ can be
made arbitrarily long.

The result for the quantum scattering rate, Eq. (60), remains
intact (up to the change in prefactor) when we calculate it in a
self-consistent way as appropriate for estimating the dephasing
rate:

τ−1
φ ∝

∫ ∞

(T τφ )−1
dQ . . . . (61)

This happens due to the fact that the characteristic momenta
dominating the integrals for the quantum scattering rate in
regimes II, III, and IV is of the same order as the resulting
rate [see Table I and Eq. (60)]; both are ∼αgT for N ∼ 1
(for N  1, the characteristic momenta are much higher
than 1/τq). In regime I of lowest energies, the characteristic
momentum transfer is much higher than the rate. Therefore
in all these regimes the infrared cutoff is redundant and the
dephasing rate is given by the quantum scattering rate, Eq. (60),
similarly to the case of conventional metals in the ballistic
regime70 (although, in contrast to the conventional case, the
characteristic transferred frequencies are much smaller than
temperature). Since the characteristic energies involved in the
transport coefficients are of order of T , we conclude that
in the ballistic regime the interference effects are governed
by

1

τφ

∼ αgT . (62)

This prediction can be verified by transport experiments on
graphene at sufficiently high temperatures (depending on
the purity of the system, T � 10–100 K for a typical setup
with graphene deposited on a insulating substrate and T �
1–10 K for suspended graphene flakes). At lower temperatures
T τdis � 1 corresponding to the “diffusive regime” with respect
to interaction, one expects the conventional33,71 diffusive result
for the dephasing rate,

1

τφ

∼ T

g
ln g, (63)

where g is the dimensionless Dirac-point conductance. At the
Dirac point g is close to unity and hence τ−1

φ ∼ T .

C. Energy relaxation rate

Let us now discuss the energy relaxation time in clean
graphene. In Sec. IV A we have seen that the typical momen-
tum or energy transfer during the electron-electron collision
is much smaller than temperature. In this situation, the energy
relaxation occurs through multiple-scattering processes, which
can be viewed as diffusion in energy space (see, e.g.,
Ref. 72). The characteristic energy relaxation rate is given
by the diffusion coefficient of this problem, which amounts
to introducing the factor KE = ω2/T 2, see Appendix B1,
into the collision kernel. More rigorous calculation of
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FIG. 8. (Color online) Energy relaxation rate for αgN = 4 ×
10−3 (double logarithmic scale), obtained from the energy-diffusion
consideration. Dots: exact values obtained by numerical evaluation;
solid lines: analytical asymptotics, Eq. (64). Since the energy-
diffusion approximation employed in the calculation is not justi-
fied in regime IV, we do not present the results in this regime
for ε  T .

the energy relaxation or equilibritation rates can be done
using the language of kinetic equation; here we only es-
timate the typical rate τ−1

E within the energy diffusion
picture.

Once the quantum scattering rate is obtained, the calculation
of the energy relaxation rate can be done using the same steps
as described in the previous section. Technically, the integrals
in Eq. (54) are only slightly changed, which leads, however,
to a substantial difference between the two rates. The detailed
calculation can be found in Appendix B; here we present only
the result:

1

τE(ε)
∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T
N

√
ε
T
, I

α2
gNT√
ε/T

ln
(

ε/T

α2
gN

2

)
, II, III

α2
gNT

(
ε
T

)3/2
ln

(
1

αgN

)
, IV.

(64)

In particular, we have the following estimates for the en-
ergy relaxation rate at characteristic energies separating the
regimes:

1

τE(ε)
∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αgT , ε ∼ α2
gN

2T

α
3/2
g N1/2T ln

(
1

αgN

)
, ε ∼ αgNT

α2
gNT ln

(
1

αgN

)
, ε ∼ T .

(65)

Again the obtained rates are dominated by different mo-
mentum scales and by contributions of different regions as
shown in Table II. Due to the factor KE all contributions
except in regime IV are now determined by momenta of order
temperature, which does not allow us to find the numerical
value of the prefactors analytically.

Furthermore, in fact, the above calculation based on the
energy diffusion is not justified for “hot electrons” with
high energies, ε > T . Indeed, within our consideration, the
characteristic energy transfer dominating the energy relaxation

TABLE II. Momentum/frequency scales and regions of the Q-
� plane that dominate the energy relaxation rate τ−1

E in different
domains (I, II, III, and IV) of energy ε.

τE I II III IV

qvF ∼ ω T T T ε

Regions 1,2,3,4 1,2,3,4 1,2,3,4 4

in regime IV turns out to be much higher than T , in contrast
to the original assumption. Therefore the estimate Eq. (64) for
regime IV cannot be trusted and another approach is needed
for this regime.

The numerical results for the energy relaxation rate are
shown in Fig. 8 together with the analytical asymptotics,
Eq. (64). One sees that the energy relaxation has a minimum
at ε ∼ T , where we recover, up to the logarithmic factor
| ln αg|, the GR result τ−1

E ∼ α2
gNT . At lower energies the

inelastic scattering is enhanced due to the resonance in the RPA
interaction propagator (the resonant condition corresponds to
ε ∼ α2

gN
2T ), whereas at high energies the energy relaxation is

stronger because of the large phase space available for inelastic
processes. We remind the reader, however, that at ε > T the
above calculation based on the energy-diffusion approximation
is not justified. In order to find the correct relaxation of the
distribution functions in this regime of hot electrons, one
should solve the corresponding kinetic equation which can
be reduced to the Fokker-Planck equation. This will be done
elsewhere.

V. TRANSPORT RATE AND CONDUCTIVITY

A. Transport scattering rate due to inelastic collisions

In this section we calculate the transport relaxation rate due
to inelastic collisions. The expression for the corresponding
kernel of the self-energy can be deduced from the interaction-
induced correction to the conductivity, as described below.
We are interested in the linear-response dc conductivity. The
leading-order perturbative correction to the conductivity due
to Coulomb interaction is given by the two diagrams shown in
Fig. 9.

In the absence of interaction, the conductivity of a clean
graphene diverges at finite temperature. Therefore we have
regularized the diagrams by introducing a small broadening
(δ) which mimics the finite lifetime due to weak disorder.
The general analytic expression of the lowest-order interaction
correction to the conductivity within the Keldysh formalism
can be found in Ref. 71. This correction can be split into
two parts [Figs. 9(a) and 9(b), respectively]: δσ = δσ s + δσ v ,

FIG. 9. Diagrams describing the first-order interaction correction
to the conductivity.
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where

δσ s
ββ = − 1

4i

∫
d2p1

(2π )2

∫
dε1

2π

∫
d2p2

(2π )2

∫
dε2

2π

∂f1

∂ε
Tr{jβ[GR(1) − GA(1)]jβ

× [(f2 + g)[DR − DA][GR(1)GR(2)GR(1) − GA(1)GA(2)GA(1)]

+ f2[GR(1)[GR(2)DR − GA(2)DA]GR(1) − GA(1)[GR(2)DR − GA(2)DA]GA(1)]]} (66)

is the self-energy contribution and

δσ v
ββ = − 1

4i

∫
d2p1

(2π )2

∫
dε1

2π

∫
d2p2

(2π )2

∫
dε2

2π

∂f1

∂ε
Tr{jβ(f2 + g)[DR − DA]

× [GR(1)GR(2) − GA(1)GA(2)]jβ[GR(2)GR(1) − GA(2)GA(1)]

+ 2jβf2[GR(1) − GA(1)][DAGR(2)jβGR(2) − DRGA(2)jβGA(2)]jβ[GR(1) − GA(1)]} (67)

is due to the vertex correction. Here jβ = evF σβ is the current operator in graphene and we used the shorthand notations for
the arguments of Green’s functions: 1 = p1,ε1 and 2 = p2,ε2. We first trace out the sublattice structure and then regularize
the divergent integrals by δ. The most divergent interaction-induced correction to the dc conductivity is then proportional
to δ−2:

δσ = −e2v2
F

4δ2

∫
dε1

2π

∂f

∂ε1

∫
dε2

2π

∫
d2p1

(2π )2

∫
d2p2

(2π )2
π [δ(ε1 − vF p1) + δ(ε1 + vF p1)] sgnε1

×
[

1 −
(

p1 · p2

p1p2

)]
︸ ︷︷ ︸

Transport factor

[
1 +

(
p1 · p2

p1p2

)]
︸ ︷︷ ︸

Dirac factor

K�(ε1,ε1 − ε2,p1,p1 − p2). (68)

Here K� is the integral kernel of the self-energy:

Im �R
0 (ε,p) =

∫
d2q

(2π )2

∫
dω

2π
K�(ε,ω,p,q) . (69)

The correction, Eq. (68), is determined by inelastic electron-
electron scattering. In the diagrams of the leading order in
bare interaction shown in Fig. 9, we have K� ∝ Im D0 = 0,
so that the inelastic corrections are zero. What remains
in the first-order conductivity correction, Fig. 9, are the
contributions responsible for the renormalization of the Fermi
velocity in graphene coming from the real part of the
self-energy; note that these contributions are less singular
in δ−1.

Thus we have to consider higher-order corrections. In
Fig. 10 one can see all classes of second-order skeleton

FIG. 10. Second-order skeleton diagrams for the conductivity.

diagrams. There are also the second-order diagrams of the
ladder type; see Fig. 11. Such diagrams contribute only to the
renormalization of vF , similarly to the diagrams in
Fig. 9, and their contribution has been already in-
cluded into the calculation simply by the replacement
vF → vF (T ).

In the large N approximation diagrams in Figs. 10(d)–10(f)
dominate. Diagram 10(f) is known as the Coulomb drag
diagram and yields a zero contribution at the Dirac point
due to electron-hole symmetry (see Refs. 73 and 74 and
Appendix C). Thus we are left with diagrams 10(d) and 10(e)
which correspond to the two diagrams shown in Fig. 9 with
the second-order correction to the interaction instead of the
bare one. For these two diagrams Eq. (68) still holds with
K� ∝ Im D1. This suggests to replace the bare interaction
lines shown in Fig. 9 by the RPA interaction lines, which
would correspond to Eq. (68) with K� ∝ Im DRPA. Note
that even with the RPA-dressed interaction, Eq. (68) still
yields a divergent contribution which we have regularized
with δ.

FIG. 11. Examples of second-order diagrams for the conductivity
that contribute to the renormalization of velocity.
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Considering the two independent scattering processes with
the transport scattering rates δ and τ−1

tr such that we find the
Drude conductivity in the form

σ = e2
∫

dε ρ(ε)

(
−∂nF

∂ε

)
v2

F τtr(ε)

2[1 + τtr(ε)δ]
, (70)

where nF (ε) = [1 − f (ε)]/2 is the thermal Fermi distribution
function and ρ(ε) is the thermodynamic density of states.
Expanding this formula in (δτtr)−1, we get the “interaction-
induced” correction:

δσ = e2v2
F

4δ2

∫
dε

∂f

∂ε

ρ(ε)

τtr(ε)
. (71)

Comparing Eq. (71) with Eq. (68) we can identify the
interaction-induced transport scattering rate in graphene.
The transport scattering rate obtained from the conduc-
tivity correction corresponds to the kernel Ktr defined in
Appendix B1.

Furthermore, the connection between the kernels in the
transport scattering rate and the quantum scattering rate also
follows from Eqs. (68), (69), and (71). One can see from
Eq. (68) that in the transport scattering rate not only is the
contribution of forward scattering processes suppressed as in
conventional systems but also the contribution of the backward
scattering. The latter suppression is due to the Berry phase of
π in graphene.

In the above derivation we have assumed δ  τ−1
tr which

allowed us to extract τ−1
tr from the expansion of the conduc-

tivity in τ−1
tr . Using the generalized GR approach, we show

in Appendix C that the expression for the transport scattering
rate obtained in this way remains valid also for δ → 0.

B. Transport scattering rate: Results

Similarly to the quantum scattering rate, the transport rate
is dominated by region 3 in regimes II, III, and IV. Again, this
is not so for energies that are in regime II. In this case, we have
an additional contribution from region 1, like in Sec. IV A.
The calculation outlined in Appendix B yields

1

τtr(ε)
∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T
N

√
ε
T
, I

αgT , II

α2
gNT

(
T
ε

)
, III

α2
gNT

(
T
ε

)2
, IV.

(72)

The characteristic momenta dominating the transport scat-
tering rate as well as the relevant regions in the Q-� plane are
shown in Table III. The transport scattering rate in regimes
II and III is dominated by momenta much smaller than
temperature, which allows us to find the numerical prefactors
(given in Appendix B). Regimes I and IV are determined by
momenta of order temperature, which does not allow us to
find the numerical coefficient in these regimes. The analytical
asymptotics are plotted alongside with the exact numerical
result in Fig. 12.

∋

τ tr
1

α
g
T

α
g2
N

T

TαgN Tαg
2N2T

I IVIIIII

FIG. 12. (Color online) Transport scattering rate for αgN =
4 × 10−3 (double logarithmic scale). Dots: exact values ob-
tained by numerical evaluation; solid lines: analytical asymptotics,
Eq. (72).

Similarly to Sec. IV C, we see a strong enhancement of the
transport scattering rate in region II. When energy approaches
temperature, the GR result

τ−1
tr (ε ∼ T ) ∼ α2

gNT (73)

is reproduced.
Comparing the transport scattering rate with the energy

relaxation rate,

τtr

τE
∝ ln

1

αgN
, (74)

we observe that in the limit of small αg the relaxation of
energy due to the inelastic collisions occurs much faster than
the velocity relaxation, τtr  τE. The difference between the
two rates comes from the fact that the forward scattering in
graphene is strongly enhanced. The RPA screening suppresses
the contribution of scattering angles smaller than αg thus
regularizing the logarithmically divergent contribution to the
energy relaxation rate. On the other hand, the transport factor in
Ktr, see Eq. (68), kills the contribution of the forward scattering
to the transport scattering rate much more efficiently than the
RPA screening (this is the reason why the GR result for τtr

is parametrically correct), so that no logarithmic factor arises
in τtr.

The relation Eq. (74) justifies the hydrodynamic
approach:58,60–62 the distribution functions of electrons and
holes equilibrate within each type of carriers much faster
than the direction of the velocity is changed. As a result, the
distribution functions effectively depend only on the velocity
direction. This means that the interaction-induced transport

TABLE III. Momentum/frequency scales and regions of the Q-�
plane that dominate the transport scattering rate τ−1

tr in different
domains (I, II, III, and IV) of energy ε.

τtr I II III IV

qvF ∼ ω T α2
gN

2T/ε ε T

Regions 1, 2, 3, 4 1, 3 3 3
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scattering rate entering the observables should be averaged
over the temperature window:

〈
τ−1

tr

〉 =
∫ ∞

0 dε ρ(ε) ∂f

∂ε
1

τtr(ε)∫ ∞
0 dε ρ(ε) ∂f

∂ε

. (75)

This energy-averaging procedure exactly corresponds to
the solution of kinetic equation in Refs. 56 and 57; see
Appendix D.

Evaluating the integral in Eq. (75) numerically with the
exact expression for the RPA propagators, we find〈

τ−1
tr

〉 � 0.989 α2
gNT . (76)

The numerical prefactor in this result agrees with that found
in Ref. 56 for the direct interaction term. As we will see
below, this averaged value of the transport scattering rate can
be substituted into the Drude expression for the conductivity,
which yields the parametrically correct result for the collision-
dominated conductivity of clean graphene.

C. Collision-limited conductivity

Above, when calculating the conductivity, we have assumed
that the finite lifetime of quasiparticles is provided by some
artificially introduced broadening δ, which mimics disorder.
The introduction of the artificial lifetime allowed us to identify
the contribution of the inelastic collisions to the transport
scattering rate by considering the perturbative-in-interaction
contributions to the conductivity. Let us now discuss the
conductivity of clean graphene, or, more precisely, the conduc-
tivity of graphene in the regime when the inelastic collisions
dominate over disorder scattering.

The conductivity of graphene at the Dirac point is a rather
intricate quantity. In the absence of interaction, transport in the
ballistic limit shows remarkable peculiarities in graphene.2

The interplay between vanishing density of states and van-
ishing scattering rate leads to the nonuniversal conductivity
that depends on the measurement details. In particular, the
finite-size clean graphene sample of the “short-and-wide”
geometry shows a behavior analogous to that of a normal
diffusive metal. The zero-T conductivity of such a setup is
σ = 4 × e2/πh. The same value of conductivity was predicted
for an infinite sample with a large but finite electron lifetime.
A different result, σ = e2/2h, was found in the undoped
graphene at a large frequency. At any nonzero value of the
chemical potential, the conductivity of clean graphene is
infinite. At finite temperature, energies within the temperature
window contribute to the conductivity. This implies that the
Dirac-point conductivity becomes infinite in the noninteracting
case at any nonzero T .

As has been shown in Refs. 56–58, the conductivity of
clean undoped graphene becomes finite due to the inelastic
electron-electron collisions. The estimate for the collision-
limited conductivity can be obtained by substituting the typical
value of interaction-induced transport scattering time, Eq. (73),
and the typical density of thermally populated states, ρ(T ) ∼
NT/v2

F , into the Drude formula, which yields

σ = e2

h
ρ(T )v2

F τtr(T ) ∼ e2

h

NT

v2
F

v2
F

1

α2
gNT

∼ e2

h

1

α2
g

. (77)

Note that the explicit dependence on T , N , and vF drops
out from this formula; however, the temperature dependence
appears in Eq. (77) implicitly through the renormaliza-
tion of αg . A more rigorous calculation of the collision-
limited conductivity requires the analysis of the kinetic
equation.56,57 Importantly, the fast energy relaxation dis-
cussed above not only simplifies such an analysis, but
also reduces the kinetic equation to the hydrodynamic
model.58–62

The consideration of Sec. V A, which allowed us to
find the transport scattering rate from the expression for
the conductivity, relied on the perturbative treatment of the
interaction. This assumes the following hierarchy of the energy
scales:

τ−1
tr � δ � T . (78)

The first inequality implies that the broadening of the Green’s
functions is due to the artificial “disorder” rate δ, whereas
the second inequality establishes the ballistic regime which
allows us to neglect the dressing of interaction by disorder.
Since the characteristic frequency transfer in the transport
scattering rate is of order of temperature, the resulting τ−1

tr
does not depend on δ as long as δ � T . Furthermore, in
Appendix C we have calculated τ−1

tr from the generalized
GR approach for δ = 0 and reproduced the transport kernel
Ktr from Appendix B. Therefore we expect that the Drude
formula, yielding Eq. (77), is applicable also for τ−1

tr  δ, i.e.,
in the collision-dominated transport regime. This expectation
is supported by the results of Refs. 56–58 and the comparison
of our results with the solution of kinetic equation outlined in
Appendix D.

Assuming the validity of the Drude formula for δ �
τ−1

tr , we evaluate the conductivity using the energy-averaged
transport scattering rate given by Eq. (76):

σ = e2

h

Nπ〈
τ−1

tr

〉 ∫ ∞

0
dερ(ε)

∂f

∂ε
≈ e2

h

0.7

α2
g

. (79)

This result agrees with that found in Refs. 56 and 57 within the
kinetic equation approach [note that in Eq. (79) we included
only the contribution of the direct interaction, which survives
the large-N limit].

It is worth noting here that the kinetic approach of Refs. 56
and 57 was based on the GR calculation of the self-energies.
As we have seen in Sec. V A, the RPA result for the transport
scattering rate at relevant energies ε ∼ T [as well as the
energy-averaged characteristic rate, Eq. (75)] has the same
form as given by the GR. Moreover, the averaging of the
energy-dependent transport scattering rate using Eq. (75)
yields the same numerical prefactor as follows from the kinetic
equation with the GR collision integral,56,57; see Eq. (76).
Therefore we conclude that the RPA resummation does not
change the numerical prefactor of conductivity in the leading
order in α2

g . In other words, unlike the quantum scattering
(or dephasing) rate considered in Secs. IV A 2 and IV B,
the calculation of the conductivity can be done within the
golden-rule approach. The RPA resummation yields only
subleading-in-αg corrections to the conductivity, as explained
in Appendix D.
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FIG. 13. (Color online) Schematic plot (only parametrical scales
are given) of the temperature dependence of the Drude conductivity
(in units of e2/h; solid line) αg � 1/ ln(τdis), where  is the
bandwidth. For simplicity, the logarithmic temperature corrections
to αg , which comes from the renormalization, is not shown. Dashed
lines: low-T behavior of the conductivity governed by quantum
interference effects; depending on the character of disorder, the local-
ization, antilocalization, or criticality (coincides with the solid line)
may occur. Dash-dotted line: expected high-T behavior governed by
electron-phonon scattering.

Finally, let us discuss on the qualitative level the effect
of disorder on the Dirac-point conductivity in graphene. For
simplicity we set N = 1 below. In the absence of interaction,
effect of disorder on transport in the ballistic regime is
highly unconventional and strongly depends on the type of
randomness.13,14,18,75 On the other hand, as we have seen
above, the interaction effects are crucially important for the
transport already in a clean system. It is thus important
to explore transport in realistic graphene structures, with
both the electron-electron interaction and disorder taken into
account.

The role of disorder here is twofold: (i) potential disorder
introduces velocity relaxation, thus contributing to the trans-
port scattering rate,

1

τtr
∼ α2

gT + 1

τdis
, (80)

and (ii) establishes a finite density of states already in the Dirac
point,

ρ ∝ T + 1

τdis
. (81)

Substituting these formulas into the Drude conductivity,
we obtain the following result describing the crossover
between the collision-dominated and disorder-dominated
regimes:

σ ∼ e2

h

T + 1
τdis

α2
gT + 1

τdis

. (82)

This expected temperature dependence of the Drude conduc-
tivity is shown in Fig. 13 for the case of weak interaction (or
strong disorder), αg � 1/ ln(τdis) when the renormalization

τdis
1 T0

4
Αg

T

1

1
16

Log2
T0

αg
2

σ

FIG. 14. (Color online) Schematic plot of the temperature de-
pendence of the Drude conductivity (in units of e2/h) for strong
interaction, αg  1/ ln(τdis). The characteristic scale T0 is given by
T0 ∼ τ−1

dis ln2(/T0) ∼ τ−1
dis ln2(τdis). For possible deviations at low

and high T (interference and phonon contributions, respectively), see
Fig. 13.

of αg gives only small logarithmic corrections. For stronger
interaction (or weaker disorder), αg � 1/ ln(τdis), the renor-
malization of

αg(T ) = αg

1 + αg

4 ln 
T

becomes strong [so that the renormalized coupling “forgets”
about its bare value, αg(T ) → 4/ ln(/T )] already in the
collision-dominated regime; see Fig. 14. One sees that, since
the interaction-induced transport rate contains α2

g whereas
the density of states of thermally excited quasiparticles does
not, the two crossover T scales appear, which establishes an
intermediate regime of the ballistic transport,

1

τdis
� T � 1

α2
gτdis

.

Again, a more rigorous derivation of the conductivity in
the presence of both disorder and inelastic scattering is
based on kinetic equation approach and will be performed
elsewhere. Note that we neglected the phonon contribution to
the relaxation rates (for estimate of their contribution, see,
e.g., Ref. 24) which becomes relevant at sufficiently high
temperatures.

At T ∼ 1/τdis the Drude conductivity becomes of the order
of conductance quantum and the dephasing rate becomes of
the order of T . At lower temperatures, the T dependence of the
conductivity is governed by interference effects: localization,
antilocalization, or critical behavior may occur, depending on
the symmetry of disorder.16,17,76 The crossover scale 1/τdis in
typical experiments on high-quality graphene is in the range
T ∼ 1–100 K.

VI. CONCLUSIONS

In conclusion, we have analyzed the inelastic electron-elec-
tron scattering in graphene using the Keldysh diagrammatic
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approach. We have demonstrated that finite temperature
strongly affects the screening properties of graphene. This,
in turn, dramatically influences the inelastic-scattering rates
as compared to the zero-temperature case. We have calcu-
lated the finite-T quantum scattering rate, see Eq. (60) and
Fig. 6, which is relevant for dephasing of interference
processes. We have identified a hierarchy of regimes, Eq. (5),
arising due to the interplay of a plasmon enhancement of the
scattering and finite-temperature screening of the interaction.
The lifetime of quasiparticles with energies close to the Dirac
point has been found to be independent of the coupling
constant. We have further calculated the energy relaxation rate,
Eq. (64) and Fig. 8, and transport scattering rate, Eq. (72)
and Fig. 12. For all the three rates, we have found a
nonmonotonic energy dependence which has been attributed
to the resonant excitation of plasmons. Finally, we have
discussed the collision-limited conductivity of clean graphene
as well as the expected behavior of the high-temperature
conductivity in the presence of disorder, see Eqs. (79) and
(82), respectively. Our results complement the kinetic equa-
tion and hydrodynamic approaches for the collision-limited
conductivity.

Our approach, which employs the Keldysh formalism,
can be generalized for the treatment of physics of inelas-
tic processes in strongly nonequilibrium setups. In partic-
ular, this framework is expected to allow us to investi-
gate interaction effects on full counting statistics of the
electron transport in graphene and to develop the theory

of tunneling spectroscopy in a strongly biased graphene
setup.
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APPENDIX A: POLARIZATION OPERATOR

In this appendix we evaluate the polarization operator,
Eq. (34), at finite temperature. In a scattering process with
emitting a photon, three different momenta are involved,
which form in two dimensions triangles, as shown in Fig. 15.
Specifically, if an electron before scattering has the momentum
p and the emitted photon carries momentum q, the electron
that is left over has to carry p − q. The angular integration
over the transferred momentum q becomes complicated.
To proceed further it is convenient to choose elliptic co-
ordinates defined by ξ = p + |p − q| and η = p − |p − q|.
The corresponding coordinate system is shown in Fig. 15.
Using the elliptic coordinates, the expressions for the imag-
inary and real parts of the polarization bubble take the
form

Im �R = sinh(Qβ)

2π
Re

[
Q√

β2 − 1

∫ 1

0
dη

√
1 − η2

cosh(Qβ) + cosh(ηQ)
+ Q√

1 − β2

∫ ∞

1
dξ

√
ξ 2 − 1

cosh(Qβ) + cosh(ξQ)

]
, (A1)

Re �R = − Q

π2

∫ ∞

1
dξ

∫ 1

0
dη

sinh(ξQ)
√

1−η2

ξ 2−1
ξ

β2−ξ 2 + sinh(ηQ)
√

ξ 2−1
1−η2

η

β2−η2

cosh(ξQ) + cosh(ηQ)
. (A2)

Here and below we introduce the notation β = �/Q to
decouple expansions in small or large Q from the be-
havior at the singularity Q = �. For simplicity we set
vF = 1 and T = 1. The integrals in Eqs. (A1) and (A2)
are evaluated separately in the four regions shown in
Fig. 3.

a. Region 1

In region 1 the condition Q � 1 and β > 1 hold, which
means that in Eq. (A1) only the part with the η integral is left.
Expanding the integrands in small ηQ � 1, we get

Im �R � Q sinh(Qβ)

2π
√

β2 − 1

∫ 1

0
dη

√
1 − η2

cosh(Qβ) + 1

= Q

8

tanh(Qβ/2)√
β2 − 1

(A3)

for the imaginary part and

Re �R � −Q

π2

= πQ

2 ( β√
β2−1

−1)︷ ︸︸ ︷∫ 1

0

dη√
1−η2

Qη2

β2−η2

� 2 ln 2
Q2︷ ︸︸ ︷∫ ∞

1
dξ

√
ξ 2 − 1

cosh(ξQ)+1

� − ln 2

π

(
|β|√

β2 − 1
− 1

)
(A4)

for the real part of �R . The term ∝ sinh(ξQ) in Eq. (A2)
yields a contribution of the order of ∼Q2. The second term
∝ sinh(ηQ) results in Eq. (A4).

b. Region 2

In region 2, we have Q  1 and β > 1. In Eq. (A1) again
only the η integral is left and by neglecting cosh(ηQ) and
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p−q

q

=

=

p

p

p

x

y

ξ const.

const.η

FIG. 15. Sketch of elliptic coordinates.

expanding in large Q we get

Im �R � 1

2π

sinh(Qβ)√
β2 − 1

∫ 1

0
dη

√
1 − η2

cosh(Qβ)
= 1

8

Q sgn β√
β2 − 1

.

(A5)

By expanding Eq. (A2) in large Q and resolving exponen-
tials in the denominator by a geometric series, we see that
the leading contribution comes from η � 1 (y = 1 − η � 0).
A competition of Q and �2 − Q2 arises and the limit �2 −
Q2 � Q gives the relevant contribution. The corresponding
principal value integral reads

Re �R � −Q−1/2
∞∑

n=1

(−1)n

(nπ )3/2

∫ ∞

0

d
√

2y
√

2y
2
e−Qn

√
2y

2
/2

(β2 − 1)2 − √
2y4︸ ︷︷ ︸

�− π
4

1√
β2−1

� − 1

4
√

π

1√
Q(β2 − 1)

∞∑
n=1

(−1)n+1

n3/2
. (A6)

c. Region 3

Region 3 is characterized by the conditions Q � 1 and
β < 1. In this region, only the ξ integral contributes to
Eq. (A1). By expanding the integrand in small Qβ we get

Im �R � Qβ

2π

Q√
1 − β2

� 2 ln 2
Q2︷ ︸︸ ︷∫ ∞

1
dξ

√
ξ 2 − 1

1 +cosh(ξQ)

� ln 2

π
Re

β√
1 − β2

. (A7)

The simplification of Eq. (A2) in region 3 is similar to
that leading to Eq. (A4). The contribution of the first term in

Eq. (A2) is of order Q ln Q, yielding

Re �R � − Q

π2

=− πQ

2︷ ︸︸ ︷∫ 1

0

dη√
1 − η2

Qη2

β2 − η2

� 2 ln 2
Q2︷ ︸︸ ︷∫ ∞

1
dξ

√
ξ 2 − 1

cosh(ξQ) + 1

� ln 2

π
. (A8)

d. Region 4

Finally, in region 4 the conditions Q  1 and β < 1 are
fulfilled. In Eq. (A1) only the ξ integral contributes and by
neglecting cosh(Qβ) and expanding the integrand in large Qξ

we get

Im �R � sinh(Qβ)

π

Q√
1 − β2

∫ ∞

1
dξ

√
ξ 2 − 1 e−Qξ

︸ ︷︷ ︸
�e−Q 1

Q3/2

√
π
2

� sinh(Qβ)√
β2 − 1

e−Q

√
2π Q

. (A9)

In region 4 the simplification of Eq. (A2) differs from that
in region 2 in one important point. By neglecting cosh(Qη) in
comparison to cosh(Qξ ), the first term [∝ sinh(Qξ )] yields no
principle value integral, while β is smaller than 1. This results
in

Re �R � − Q

π2

∫ ∞

1
dξ

ξ√
ξ 2 − 1(β2 − ξ 2)

∫ 1

0
dη

√
1 − η2

= 1

8

Q√
1 − β2

. (A10)

APPENDIX B: CALCULATING THE RATES

In this appendix we calculate the integrals for inelastic-
scattering rates.

1. Definitions of the rates

The rates we are interested in are defined by inserting the
kernel Kj into the integrand for the imaginary part of the total
self-energy, Eq. (54) (j = q, + ,E,tr):

(i) Total quantum scattering rate (j = q),

Kq = 1;

(ii) Energy relaxation rate (j = E),

KE = ω2

T 2
;

(iii) Transport scattering rate (j = tr),

Ktr = 1

2
sin2 θ = 1

2

q2 sin2 γ

ε2 + q2 − 2εq cos γ
.

Here θ is the angle between incoming particle and outgoing
particle and γ is the angle between q and p. The origin of Ktr

is explained in Sec. V A. The kernel for the chiral scattering
rate τ−1

± depends on the scattering channel. In particular,
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for + chirality at ε > 0 the electron-electron-scattering kernel
contains cos2(θ/2) and the electron-hole scattering kernel
contains sin2(θ/2) due to Dirac factors.

It is convenient to introduce the dimensionless energy y =
ε/2T . The integrals we have to handle are of the following
form:

τ−1
j (y) = −2T 2

v2
F

∫ ∞

0

dQ

2π
Q

∫ 2π

0

dγ

2π

∑
�=y±

√
y2+Q2−2Qy cos γ

{
Kj(�,Q,y) Im DR

RPA(�,Q)[coth(�) + tanh(y − �)]
}
. (B1)

Since the combinations y ±
√

y2 + Q2 − 2Qy cos γ lead to
complicated integrands, we split the integrals into the parts
corresponding to Q � y and y � Q. Here γ is the angle
between the transferred momentum q and the initial momen-
tum p.

A. Simplifying the integrand

The imaginary part of the interaction propagator is given
by

Im DR
RPA(�,Q)

= − D2
0(Q) N Im �(�,Q)

[1 + D0(Q) N Re �(�,Q)]2 +[D0(Q) N Im �(�,Q)]2 ,

(B2)

where

D0(Q) = v2
F

T

αgπ

Q
(B3)

is the bare Coulomb interaction.
The splitting of the Q integral leads to the following

simplification:

� � y ±
{

y − Q cos γ Q � y

Q − y cos γ y � Q
,

√
|Q2 − �2| �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2y +
Q � y

Q |sin γ | −
2
√

yQ
∣∣sin γ

2

∣∣ +
y � Q.

2
√

yQ
∣∣cos γ

2

∣∣ −
(B4)

Here +,− correspond to the two possible values for �

that appear in Eq. (B1). These signs reflect the separation
of integration domains into the parts above and below the
mass-shell line Q = �: + corresponds to � > Q and −
corresponds to � < Q. Below we simplify the integrands
I = [g + f ]Kj Im DR

RPA separately in each to the region in
the Q vs � plane.

a. Region 1

In region 1, the dominant contribution to all the rates comes
from the domain y � Q. Using the simplified polarization

operator, Eq. (43), we obtain

I j
1,2(y,Q,γ ) � v2

F

T

1

N

π2

8

√
yQ

∣∣sin γ

2

∣∣( 2
√

y
√

Q

αgN

∣∣ sin γ

2

∣∣ − ln 2
)2 + (

π
16Q2

)2

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, j = q

2 cos2 γ

2 , j = +
4Q2, j = E
1
2 sin2 γ, j = tr.

(B5)

Here and below, the first digit in the subscript of the function
I denotes the region in the Q vs � plane, while the second
digit is 1 for Q � y and 2 for Q  y.

b. Region 2

The contribution to all the rates coming from region 2 is
exponentially small in regime IV. In other regimes, it contains
at least an extra αg as compared to the contributions of region
3, except for the situations when results for the rate are
determined by momenta q of order T/vF . In this situation,
it turns out that the asymptotics produced by region 2 is
the same as the asymptotics of region 3. We remind the
reader that finding the numerical value of the prefactor is
beyond our analytical approach when integrals are dominated
by q ∼ T/vF . Therefore there is no case where we need to
calculate the contribution of region 2.

c. Region 3

Region 3 appears to be the most important region because
most of the final results for the rates are determined by this
region. In this region both small and large y compared to Q

are important:
(i) y  Q:

I j
3,1(y,Q,γ ) � v2

F

NT

π

ln 2

| sin γ |Q−1[(
Q

αgN ln 2 + 1
)2 − 1

]
sin2 γ + 1

×

⎧⎪⎪⎨
⎪⎪⎩

1, j = q

2, j = +
4Q2 cos2 γ, j = E
1
2

Q2

y2 sin2 γ, j = tr;

(B6)
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(ii) y � Q:

I j
3,2(y,Q,γ ) � v2

F

T

1

N

2π

ln 2
√

y
Q−3/2 cos γ

2
4y

Q

(
Q

αgN ln 2 + 1
)2

cos2 γ

2 + 1

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, j = q

2 sin2 γ

2 , j = +
4Q2, j = E

1
2 sin2 γ, j = tr.

(B7)

d. Region 4

This region is only important for the energy relaxation
rate (j = E). The corresponding contribution is governed by
Q � y, so that only the energy range y  1 is of interest,
where

IE
4,1(y,Q,γ ) � v2

F

T

α2
gπ

24N√
2πQ

sin γ cos2 γ(
sin γ + αgπN

8

)2 . (B8)

B. Results for the rates

Finally we estimate the rates in the regimes I, II, III, and
IV as defined in Fig. 5, using the simplified integrands of the
previous part.

a. Region 1

The contributions of Region 1 to the quantum and transport
scattering rates are only relevant for energies in regime II for
y � Q, where we have

τ−1
j (y) = 2T 2

v2
F

∫ 1

min(y,1)

dQ

2π
Q

∫ 2π

0

dγ

2π
I j

1,2(y,Q,γ ) . (B9)

Performing first the angular integration over γ , we obtain the
quantum scattering rate (see Table IV),

τ−1
q (y) � 4αgT

∫ 1

0
da

1√
1 − a2

� 2παgT , (B10)

the chiral scattering rate (see Table V),

τ−1
+ (y) � 4αgT

∫ 1

0
da

√
1 − a2 � παgT , (B11)

and the transport scattering rate (see Table VI),

τ−1
tr (y) � 8αgT

∫ 1

0
da a2

√
1 − a2 � π

2
αgT . (B12)

TABLE IV. Contribution of region 1 to the total quantum
scattering rate τ−1

q in regime II and the characteristic values
of the transferred momentum Q, transferred frequency �, the
angle γ between momenta p and q, and the scattering angle θ

(the results here and in tables below are symmetric with respect
to γ → −γ and θ → −θ ).

Regime τ−1
q (y) Q � γ θ

II � 2παgT α2
gN

2/y Q 0 � γ � π 0 � θ � π

TABLE V. Contribution of region 1 to the chiral quantum
scattering rate τ−1

+ in regime II and the characteristic values of Q, �,
γ , and θ dominating this contribution.

Regime τ−1
+ (y) Q � γ θ

II � 2παgT α2
gN

2/y Q 0 < γ < π 0 < θ < π

Here the integrals over the variable a = αgN ln 2/
√

4yQ

correspond to the Q integration.
In all the regimes, the contribution of region 1 to the energy

relaxation rate is parametrically the same as that of other
regions. Since the numerical prefactor is not accessible within
our calculation (the integrals are dominated by qvF ∼ T ), we
have chosen to present only the calculation of the contribution
of region 3.

b. Region 2

There is no important contribution from region 2 (see
Sec. VI B2 above).

c. Region 3

This is the most important region for all the rates in
most of the regimes. The corresponding integrals are ex-
pressed through the kernels I j

3,i introduced in Sec. VI as
follows:

τ−1
j (y) = 2T 2

v2
F

∫ min(y,1)

0

dQ

2π
Q

∫ 2π

0

dγ

2π
I j

3,1(y,Q,γ )

+ 2T 2

v2
F

∫ 1

min(y,1)

dQ

2π
Q

∫ 2π

0

dγ

2π
I j

3,2(y,Q,γ ) .

(B13)

Using the shorthand notations

x ′ = 1

αgN ln 2
, y ′ = y

αgN ln 2
,

we obtain the following result for the contribution of region 3
to the quantum scattering rate (see Table VII):

τ−1
q (y) � αg

π
T

{ ∫ min(x ′,y ′)

0
dx

arsinh
[√

x(x + 2)
]

√
x(x + 2)(x + 1)

+
∫ x ′

min(x ′,y ′)
dx

arsinh
[√

4y ′(√x + 1√
x

)]
(1 + x)

√
1 + 4y ′(√x + 1√

x

)2

}
.

(B14)

TABLE VI. Contribution of region 1 to the transport scattering
rate τ−1

tr in regime II and the characteristic values of Q, �, γ , and θ

dominating this contribution.

Regime τ−1
tr (y) Q � γ θ

II � π αgT /2 α2
gN

2/y Q 0 < γ < π 0 < θ < π
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TABLE VII. Contribution of region 3 to the total quantum scattering rate τ−1
q in all energy domains and the corresponding

characteristic values of the transferred momentum Q, transferred frequency �, the angle γ between momenta p and q, and the scattering
angle θ .

Regime τ−1
q (y) Q � γ θ

I ∼
√

y

N
T 1 −Q 0 < γ < π 0 < θ < π

II � παgT α2
gN

2/y −Q 0 < γ < π 0 < θ < π

III � 4β(2)
π

αgT αgNT Q cos γ 0 < γ < π θ � αgN

y
� 1

IV � 4β(2)
π

αgT αgNT Q cos γ 0 < γ < π θ � αgN

y
� 1

For the contribution of region 3 to the chiral scattering rate (see Table VIII) we get

τ−1
+ (y) � αg

π
T

{ ∫ min

0
(x ′,y ′) dx

arsinh[
√

x(x + 2)]√
x(x + 2)(x + 1)

+
∫ x ′

min(x ′,y ′)
dx

√
1 + 4y ′(√x + 1√

x

)2
arsinh

[√
4y ′(√x + 1√

x

)] − √
4y ′(√x + 1√

x

)
(1 + x)2 4y ′

x

}
. (B15)

The contribution of region 3 to the energy relaxation rate (see Table IX) reads

τ−1
E (y) � αg

π (x ′)2
T

⎧⎨
⎩

∫ min(x ′,y ′)

0
dx

x

x + 2

[
arsinh(

√
x(x + 2))

(x + 1)−1
√

x(x + 2)
− 1

]
+

∫ x ′

min(x ′,y ′)
dx

x2arsinh
[√

4y ′(√x + 1√
x

)]
(1 + x)

√
1 + 4y ′(√x + 1√

x

)2

⎫⎬
⎭ . (B16)

Finally, region 3 yields the following result for the transport
scattering rate (see Table X) τ−1

tr :

τ−1
tr (y)� αg

2πy ′2 T

∫ min(x ′,y ′)

0
dx

x

x + 2

[
1 − arsinh(

√
x(x + 2))

(x + 1)
√

x(x + 2)

]

+ 4

π
αgT

∫ x ′

min(x ′,y ′)
dx

√
y ′

x

×
[
z2 + 3

3z4
− arsinhz

z5(1 + z2)−1/2

]
z=√

4y ′(
√

x+ 1√
x

)

. (B17)

a. Region 4

This region is only relevant for the energy relaxation rate in
regime IV, where the main contribution comes from Q � y,

yielding

τ−1
E (y) = 8T 2

v2
F

∫ max(y,1)

1

dQ

2π
Q

×
∫ π/2−1/Q

0

dγ

2π
IE, γ � π/2 − 1/Q

4,1 (y,Q,γ )

≈ 12N√
2π

α2
gT y3/2 ln

(
16

Nπαg
√

y

)
. (B18)

Since the result is determined by Q ∼ � ∼ y  1, the
energy-diffusion model is, in fact, not applicable in this
regime.

TABLE VIII. Contribution of region 3 to the chiral quantum scattering rate τ−1
+ in all energy domains and the corresponding characteristic

values of Q, �, γ , and θ .

Regime τ−1
+ (y) Q � γ θ

I ∼
√

y

N
T 1 −Q 0 < γ < π 0 < θ < π

II � παgT α2
gN

2/y −Q 0 < γ < π 0 < θ < π

III � 8β(2)
π

αgT αgNT Q cos γ 0 < γ < π θ � αgN

y
� 1

IV � 8β(2)
π

αgT αgNT Q cos γ 0 < γ < π θ � αgN

y
� 1
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TABLE IX. Contribution of region 3 to the energy relaxation rate τ−1
E obtained in all energy domains within the energy-diffusion

approximation and the corresponding characteristic values of Q, �, γ , and θ . Since in all energy domains the result is dominated by
Q ∼ 1, the numerical prefactors can not be obtained from the asymptotics at Q � 1 and Q  1.

Regime τ−1
E (y) Q � γ θ

I ∼
√

y

N
T 1 −Q 0 < γ < π 0 < θ < π

II ∼ α2
gT

N√
y

ln( y

α2
gN2 ) 1 −Q π − αgN√

y

αgN√
y

� 1

III ∼ α2
gT

N√
y

ln( y

α2
gN2 ) 1 −Q π − αgN√

y

αgN√
y

� 1

IV ∼ α2
gNT ln( 1

α2
gN2 ) 1 −Q π − αgN√

y
θ � αgN

y
� 1

APPENDIX C: SCATTERING RATES FROM THE
GENERALIZED GOLDEN RULE

In this appendix we analyze the golden rule (GR) approach
to calculating quantum and transport scattering rates. The
quantum scattering rate for electrons was introduced in
Eq. (55). Using the imaginary part of the self-energy Eq. (24),
we obtain

τ−1
+ (ε) ∝

∫
dq

∫
dω |DRPA(q,ω)|2 [1 − nF (ε − ω)]

×
∫

dp Tr [P+(p) δ(ε − vF p)A0(ε − ω,p − q)]

×
∫

dE [nF (E − ω/2) − nF (E + ω/2)]

×
∫

dk Tr[A0(E −ω/2,k − q/2)

×A0(E +ω/2,k + q/2)]. (C1)

The spectral weights A0 are defined in Eq. (6). Equation (C1)
is completely equivalent to Eq. (46) of the main text.

We can regard the quantum scattering rate as the probability
(per unit time) of the electron decay with emitting an electron-
hole pair. The amplitude of this decay process is given by
the “half” of the self-energy diagram shown in Fig. 16. The
incoming and outgoing particles in this diagram are taken at
the mass shell. Equation (C1) has the form of the Fermi golden
rule with the amplitude determined by the RPA-screened
interaction.

We now apply the GR to calculate the transport scattering
rate. This amounts to including an extra transport factor [vi ·
(vi − vf )]/v2

F accounting for the change of the current due to
scattering, in the integrand of Eq. (C1). Here vi and vf are total

velocities of incoming and outgoing particles. For the linear
electronic dispersion the velocities of individual quasiparticles
are determined by the relation

v = ∂ε

∂p
= v2

F p
ε

. (C2)

This results in the following transport factor:

vi · (vi − vf )

v2
F

= v2
F

p
ε

(
p
ε

− p − q
ε − ω

− k + q/2

E + ω/2
+ k − q/2

E − ω/2

)
. (C3)

Note that in the conventional case of massive particles with the
quadratic electronic dispersion, v = p/m and hence vi − vf ∝
p − (p − q) − (k + q/2) + (k − q/2) = 0, which reflects the
fact that because of the total momentum conservation there
is no current relaxation in conventional metals due to the
electron-electron interaction.

We now make use of the particle-hole symmetry of the
graphene spectrum in order to simplify the expression for
the transport scattering rate. Let us reverse the integration
variables in the second line of Eq. (C1): (E,k) �→ (−E, −k).
Using the symmetry A0(ε,p) = A0(−ε, − p), we see that
the trace in the integrand is not changed. The difference of
two equilibrium distribution functions in the second line of
Eq. (C1) is also independent of the sign of E. Thus the
contribution of particle-hole pair into the current relaxation
vanishes, which corresponds to the absence of the Coulomb-
drag contribution to the conductivity77 in undoped graphene
[Fig. 10(f)]. This allows us to keep only the part of the transport

TABLE X. Contribution of region 3 to the transport scattering rate τ−1
tr in all energy domains and the corresponding characteristic values of

Q, �, γ , and θ . Since in energy domains I and IV the result is dominated by Q ∼ 1, the numerical prefactors in these domains are beyond the
accuracy of our approximations. Furthermore, since in regime III the integral is dominated by Q ∼ y, the splitting of the integrand according
Eqs. (B6) and (B7) does not reproduce the correct prefactor.

Regime τ−1
tr (y) Q � γ θ

I ∼
√

y

N
T 1 −Q 0 < γ < π 0 < θ < π

II � π

4 αgT
α2

gN2

y
−Q π − αgN√

y

αgN√
y

� 1

III ∼ N

y
α2

gT y y(1 − 2| sin γ

2 |) αgN

y
& π − αgN

y
θ � αgN

y
� 1

IV ∼ N

y2 α2
gT 1 Q cos γ

αgN

y
θ � αgN

y
� 1
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2

E − ω/2

E + ω/2

− ω

FIG. 16. Diagram for the “elementary” inelastic-scattering am-
plitude.

factor Eq. (C3) that is even under reversing E and k,

v2
F

p
ε

(
p
ε

− p − q
ε − ω

)
= 1 − sgn(ε − ω) cos θ, (C4)

where θ is the scattering angle. Inserting this reduced transport
factor into the first line of Eq. (C1) and calculating the trace
of projection operators, we obtain

[1 − sgn(ε − ω) cos θ ] Tr [P+(p)A0(ε − ω,p − q)]

= −π

2

[
1 − sgn(ε − ω) cos θ

]
× [

(1 + cos θ )δ(ε − ω − vF |p − q|)
+ (1 − cos θ )δ(ε − ω + vF |p − q|)]

= 1

2
(1 − cos2 θ )

[
A0,+(ε − ω,p − q)

+A0,−(ε − ω,p − q)
]
. (C5)

This way the transport factor 1 − cos2 θ appears for Dirac
fermions.

The GR calculation of the transport scattering rate re-
produces the result obtained from the Drude conductivity
Eq. (68). Note that an additional broadening δ was not
used in this calculation. This shows that our result for τ−1

tr
can be actually applied in the limit τ−1

tr  δ as we argued
in Sec. V C.

APPENDIX D: TRANSPORT SCATTERING RATE
AND CONDUCTIVITY: DIAGRAMMATICS VS

KINETIC EQUATION

In this appendix we show how the energy-averaged trans-
port scattering rate, Eq. (75), is related to the calculation of the
conductivity by using the kinetic equation approach.56,57 The
kinetic equation in graphene governs the distribution functions
n±(p) of + and − quasiparticles:

(∂t + v∇R + eEv ∂ε) nα = Stα(p)[n]. (D1)

Here is Stα(p) the collision integral (see Refs. 56 and 57 for
the definition) which mixes distribution functions of electrons
and holes and v(ε) is defined as in Eq. (C2). Following Ref. 56,
we use an ansatz for small electric-field-induced deviations of
the distribution functions from its equilibrium form nF (Fermi

distribution):

nα = nF + δnα = nF (αp + αeEχp) = nF (ε) + eEvχp∂εnF .

(D2)

As was shown in Refs. 56 and 57, in view of the fast energy
relaxation, the conductivity is dominated by the momentum-
independent part χ0 of χp. Therefore we substitute Eq. (D2)
with a constant χ0 into the kinetic equation, Eq. (D1). We also
insert the nonequilibrium part of the distribution function δnα

with momentum independent factor χ0 into the definition of
the current,

j = e

h̄
N

∑
α=±

∫ ∞

0

d2p

(2π )2
vδnα(p)

= e

h̄v2
F

N

∫ 2π

0

dφv

2π

∫ ∞

−∞

dε

2π
ε v(ε) δn(ε)

= e2χ0

2πv2
Fh̄

N

∫ 2π

0

dφv

2π

∫ ∞

−∞
dε ε v(ε) [Ev(ε)] ∂εnF (ε)

= e2

2πh̄
ENχ0

∫ ∞

−∞
dε

ε

2
∂εnF (ε)

= e2

2πh̄
E Nχ0T ln2. (D3)

Linearizing the collision integral with respect to electric
field, we simplify the kinetic equation:

evF E
p
ε
∂εnF (ε) = Stsgn(ε)(p)[δn]. (D4)

Now we observe that the left-hand side of Eq. (D4) is nothing
but the integrand in the current (up to prefactors) as given by
Eq. (D3). Therefore we can express the current through the
collision integral as follows:

j = e

2πv2
Fh̄

χ0N

∫ 2π

0

dφv

2π

∫ ∞

−∞
dε ε v(ε) Stsgn(ε)(p)[δn]

= e2

2πh̄
E Nχ2

0

∫ ∞

−∞
dε ε

1

τtr(ε)
∂εnF (ε). (D5)

Here we have used the fact that the collision integral
acting on the nonequilibrium ansatz, Eq. (D2), with χp →
χ0 yields the transport scattering rate at energy ε; see
Appendix C.

Comparing Eqs. (D3) and (D5), we express χ−1
0 through

the energy-averaged transport scattering rate:

χ−1
0 = 2

T ln2

∫ ∞

0
dε ε

1

τtr(ε)
∂εnF (ε), (D6)

which is equivalent to Eq. (75) and therefore allows us to
identify 〈

τ−1
tr

〉 = χ0. (D7)

This fits perfectly to the physical picture behind the ansatz
in Eq. (D2) where this rate corresponds to the time scale on
which the acceleration of the electrons takes place.

We note that the above procedure is valid for the gen-
eralized GR with the RPA propagators replacing the bare
interaction (see Appendix C). We have actually calculated
the energy-averaged transport scattering rate using the full
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RPA propagators. The resulting expression for the conductivity
coincides with the second-order GR result of Refs. 56 and 57.
However, the validity of the second-order calculation is not
obvious a priori. Indeed, there are at least two possibilities
to have the RPA corrections to the numerical prefactor of the
conductivity:

(i) The higher-order terms in the RPA collision kernel
have a resonant structure at small momentum transfer with
the width governed by the interaction constant. Therefore the
momentum integration over the resonance may, in principle,
lead to correction to the transport scattering rate at relevant
energies ε ∼ T , which is of the same order as the GR result.
As an example, one may consider the following integral:
α3

g

∫
dQ/[(Q − αg)2 + α2

g]. The expansion of the integrand
in αg starts with α3

g , but the result of the integration is of
the order of α2

g . We have checked, however, that this en-
hancement does not occur in our calculation of 1/τtr at
energies ε ∼ T relevant to the conductivity. On the contrary,
the transport scattering rate at small energies (ε ∼ αgT ), the
RPA resummation is crucially important and does lead to

a nonanalytic enhancement of the transport scattering rate
∼|αg|; see Fig. 12.

(ii) The conductivity is determined by the transport scat-
tering rate averaged over energies. We have shown in this
appendix that the averaging involves the single-particle density
of states ρ(ε) ∝ ε; see Eq. (75). Let us assume for a moment
that the energy averaging of τ−1

tr (ε) is performed with a
constant weight rather than with the density of states. Since at
ε < αgT the transport scattering rate is enhanced (∼|αg|T ) due
to the RPA resummation, the contribution of this low-energy
domain to the such averaged rate would be ∼α2

gT thus
changing the numerical prefactor in the conductivity. However,
since the actual energy averaging does involve the density of
states, the low-energy domain (ε < αgT ), dominated by the
RPA, yields only a subleading ∼α3

gT correction to the GR

result for 〈τ−1
tr 〉.

Thus our calculation based on the RPA resummation
of the interaction propagators justifies the previous results
for the collision-limited conductivity obtained at the GR
level.
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