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We analyze interference phenomena in the quantum-Hall analog of the Fabry-Pérot interferometer, exploring
the roles of the Aharonov-Bohm effect, Coulomb interactions, and fractional statistics on the oscillations of the
resistance as one varies the magnetic field B and/or the voltage VG applied to a side gate. Coulomb interactions
couple the interfering edge mode to localized quasiparticle states in the bulk, whose occupation is quantized in
integer values. For the integer quantum Hall effect, if the bulk-edge coupling is absent, the resistance exhibits an
Aharonov-Bohm (AB) periodicity, where the phase is equal to the number of quanta of magnetic flux enclosed
by a specified interferometer area. When bulk-edge coupling is present, the actual area of the interferometer
oscillates as a function of B and VG, with a combination of smooth variation and abrupt jumps due to changes
in the number of quasiparticles in the bulk of the interferometer. This modulates the AB phase and gives rise to
additional periodicities in the resistance. In the limit of strong interactions, the amplitude of the AB oscillations
becomes negligible, and one sees only the new “Coulomb-dominated” (CD) periodicity. In the limits where
either the AB or the CD periodicities dominate, a color map of resistance will show a series of parallel stripes in
the B-VG plane, but the two cases show different stripe spacings and slopes of opposite signs. At intermediate
coupling, one sees a superposition of the two patterns. We discuss dependences of the interference intensities on
parameters including the temperature and the backscattering strengths of the individual constrictions. We also
discuss how results are modified in a fractional quantized Hall system, and the extent to which the interferometer
may demonstrate the fractional statistics of the quasiparticles.
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I. INTRODUCTION

A. Background

In the past few years there has been a surge of interest
in electronic interference phenomena in the regime of the
quantum Hall effect. This interest, both theoretical1–7 and
experimental,8–23 results in large part from the hope of utilizing
interference to probe unconventional statistics in various frac-
tional quantum Hall states. Interestingly, interferometer exper-
iments have led to puzzling results even in the integer regime,
which have posed a challenge to our theoretical understanding.

Arguably the simplest realization of a quantum Hall
interferometer is an analog to the optical Fabry-Pérot device. It
is constructed of a Hall bar perturbed by two constrictions, each
of which introduces an amplitude for interedge scattering. (See
Fig. 1.) The backscattering probability of a wave packet that
goes through the constrictions is then determined by an inter-
ference of trajectories. In the limit of weak interedge scattering,
two trajectories interfere, corresponding to scattering across
each of the two constrictions. As the scattering amplitudes get
larger, multiple reflections play a more significant role.

In our analysis, we assume that the two constrictions
forming the interferometer are identical to each other, and
that there is a single partially transmitted edge channel
penetrating the two constrictions. This partially transmitted
channel separates two quantized Hall states corresponding to
rational filling factors νin > νout, with νout being closer to the
sample edge. In addition to the interfering channel, there may
be a number of outer edge channels that are fully transmitted
through the two constrictions, whose number we denote by
fT � 0. The situations considered in this paper assume that

the states νin and νout are either integer states or integers plus
a fraction described in the composite fermion picture, where
the partially filled Landau level (LL) is less than half full. In
particular, this means that all edge states propagate in the same
direction. We also assume that the mean free path for scattering
of particles between parallel-propagating edge states is larger
than the perimeter of the interferometer.24,25 We shall refer
to the cases where νin is integer or fractional as an integer
quantum Hall effect (IQHE) or fractional quantum Hall effect
(FQHE) interferometer, respectively.

For noninteracting electrons, there will be an interference
between electrons backscattered at the two constrictions, with
a relative phase determined by the Aharonov-Bohm (AB)
effect. It is periodic in the magnetic flux � enclosed by
the loop defined by the two interfering trajectories, with a
period of one flux quantum �0 (we define the flux quantum
as �0 = h/|e| > 0, where e < 0 is the electron charge.). For
a uniform magnetic field B the flux is � = BAI , with AI

being the area of the interference loop. Experimentally, it is
customary to affect this flux through two experimental knobs:
the magnetic field B, and the voltage VG on a gate that affects
the area of the loop. The gate may be positioned above the
interference loop or to its side. For fractional quantum Hall
states, where electron-electron interaction is essential, the
relative phase is made of two contributions, an AB phase that
is scaled down by the charge of the interfering quasiparticle,
and an anyonic phase, accumulated when one quasiparticle
encircles another.

Experimentally, several remarkable observations were
made10,12,13,16,19 when interference was measured in small
Fabry-Pérot interferometers, e.g., with an interference loop
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FIG. 1. Fabry-Pérot interferometer in the IQHE regime, with one
totally transmitted edge mode fT = 1. The partially transmitted edge
mode separates quantized Hall regions with nominal filling νout = 1
and νin = 2. A third edge mode is totally reflected before entering
the constrictions, because the electron density in the constriction is
smaller than in the center of the interferometer. Dotted lines in each
constriction show the locations of scattering between the two edges,
indicated here as weak backscattering.

whose area is ∼5 μm2. One observation was that when the
magnetic field is varied, the backscattering current oscillates
as a function of the magnetic field, but the period �B of the
oscillations was not �0/AI . Rather, it was given by �0/fT AI ,
which means, in particular, that there was no dependence on B

for fT = 0. The period �B did not change when νc, the filling
factor at the center of the constriction was varied in the range
between fT and fT + 1, and the backscattering probability
for the partially transmitted edge state varied from strong to
weak. Second, when the lines of constant phase in the B-VG

plane were examined,13,16 they were found to have a positive
slope, which is the opposite sign relative to what one would
naively expect for an AB interference effect (Similar lines
were observed also in Ref. 23, where a scanning probe was
used to probe the spectrum of excitations of a spontaneously
formed quantum dot.) By contrast, in interferometers that were
sufficiently large (e.g., area ∼17 μm2), where the center island
was covered by a screening top gate, the conventional AB
pattern was observed, with field period �0/AI and a negative
slope for the lines of constant phase. A similar AB behavior
was also observed in some small interferometers.17,18

Previous works have explained that the periodicities and
slopes in the Fabry-Pérot interferometer are affected by
the Coulomb interactions and the discreteness of electronic
charges.6,13,16 The regime of parameters where lines of
constant phase have a positive slope (or zero slope in the case
fT = 0) will be referred to as the Coulomb-dominated (CD)
regime, in contrast with the AB regime.

In this paper, we present a general picture of the interplay
of the AB and CD regimes in the Fabry-Pérot interferometer,
and elucidate the way this interplay is determined by the
combination of Coulomb interaction and charge discreteness.
We limit our analysis of the FQHE to Abelian states. We hope
to extend our present study to the case of non-Abelian states
in a future publication.

B. Summary of our results

Before we turn into a detailed discussion, we summarize
our results and present a physical way of understanding them.

Generally, when electron-electron interactions are taken into
account, we find that the area AI enclosed by the interfering
edge state is not a smooth monotonic function of the magnetic
field and gate voltage. Rather, we find that AI has the form

AI = Ā(B,VG) + δAI , (1)

where Ā is a slowly varying function of its arguments, while
δAI has rapid oscillations, with a period in B on the scale of
one flux quantum or a change in VG that adds one electron. We
assume throughout that the area AI is large enough to enclose
many electrons and flux quanta, so that the oscillation periods
occur on a scale where there is only a small fractional change
in B or Ā. The magnitude of δAI will be smaller than Ā by
a similar factor of the inverse of the number of flux quanta in
the system. Nevertheless, the oscillatory dependence of δAI

on the magnetic field and VG can have striking consequences
on the interference pattern, as we shall see below. (To simplify
our discussions, we shall also assume, except where otherwise
stated, that the secular area Ā is only weakly dependent on the
magnetic field B, i.e., that B∂Ā/∂B is negligible compared to
Ā.)

Typically, experiments measure the “diagonal resistance”
RD ,22 which is essentially the two-terminal Hall resistance of
the interferometer region. We find that RD has an oscillatory
part δR, which is a periodic function of B and δVG. In the limit
of weak backscattering it may be written as

δR = Re

( ∞∑
m=−∞

Rme2πi(mφ+αmδVG)

)
, (2)

where

φ ≡ BĀ/�0, (3)

and the coefficients Rm,αm are real and only slowly vary-
ing functions of B,VG. The voltage VG affects the phases
e2πi(mφ+αmδVG) in (2) in two ways. First, it affects the flux
φ through its effect on the area Ā. Second, it affects the
density in the bulk of the interferometer, indirectly affecting
the interference through interactions of the edge with the bulk.
The coefficients αm quantify the latter effect, which we will
analyze further below.

For noninteracting electrons (the extreme AB limit), the
weak backscattering limit has only one nonzero component in
Eq. (2). That component is m = 1, with α1 = 0. Since the area
Ā should be a monotonically increasing function of VG, we
find that for small changes in B and VG the contours of constant
phase are straight lines of negative slope in the B-VG plane.
(When backscattering becomes stronger, multiple reflections
lead to more harmonics of m showing up, but still αm = 0, so
the slope does not change.) When plotted as a color-scale map
in a B-VG plane, the resistance RD forms a set of parallel lines,
such as the dominant features seen in Fig. 2(a).

Electron-electron interactions lead to two important differ-
ences between the quantum Hall interferometer and a naive AB
interference experiment. First, as mentioned above, the area
AI of the interference loop is not rigidly constrained a priori,
but can fluctuate slightly. Thus, the area of the interference
loop varies with magnetic field and the flux within the loop
is generally not a simple linear function of the magnetic field.
The position of the edge is related to the charge it encloses, and
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FIG. 2. (Color) 〈δR〉 = Re(R1e
2πiφ + R−fT

e−2πifT φ) as a color map in the plane of B and VG, for fT = 2, with the parameter γ chosen
equal to 3.5β. (a), (b), (c), (d), and (e) have, respectively, |R−2/R1| = 0, 0.5, 1, 2, and ∞, corresponding to the AB, mixed, and CD regimes.
All Fourier components other than m = 1 and m = −fT are neglected. Alternating red and blue regions represent positive and negative values,
respectively, while white signifies a value close to zero.

its variation in our model is a consequence of considerations
of energy. Second, we model the region enclosed by the
interference loop as one in which there are localized states
close to the chemical potential. The number NL of electrons (in
the IQHE regime) or quasiparticles (in the FQHE regime) that
are localized in the bulk is an integer, and varies discretely. Due
to considerations of energy, an abrupt change of occupation of
a localized state as the magnetic field is varied affects also the
position of the interfering edge, and hence induces an abrupt
change in the flux enclosed by the interference loop.

Thus, as B or VG vary, the phase accumulated by the
interfering particle, θ , evolves in two ways: continuous
evolution for as long as NL does not vary, and abrupt jumps for
magnetic fields at which NL abruptly changes. The continuous
change results from the variation of the magnetic flux in the
interference loop, both directly as a consequence of the varying
B, and indirectly as a consequence of the variation of the
loop’s area AI . The abrupt change results from the effect of a
variation of NL on the area of the interference loop, and, in the
FQHE, from the anyonic phase accumulated when fractionally
charged quasiparticles encircle one another. Specifically, in the
integer case, θ is simply related to the field B and the area AI

by

θ = 2πBAI/�0, (4)

while, for the FQHE states that we consider, we find

θ = 2πe∗
in

BAI

�0
+ NLθa, (5)

where θa is the phase accumulated when one elementary
quasiparticle of charge of the inner FQHE state νin encircles
another, and e∗

in is the charge of the quasiparticle. Here, and
in the following, charge is to be measured in units of the
(negative) electron charge e.

Within our model, both the rate of continuous evolution
of the phase, dθ/dφ, and the size 2π� of the phase jump
associated with a change of NL by −1, vary only slowly with
B and VG. The same holds for the magnetic-field spacings
between consecutive changes in NL.

In the extreme CD regime, for integer and fractional states
alike, we find that a change of NL is accompanied by a change
of the area of the interference loop in such a way that the
phase jump �θ is an unobservable integer multiple of 2π .
Coulomb interaction makes the area vary in such a way that

the continuous variation of the phase follows dθ
dφ

= −2π νout
e∗

out
,

where e∗
out is the elementary charge of the outer νout quantized

Hall state. Neglecting the unobservable phase jumps, then,
θ = −2π νout

e∗
out

φ for both the IQHE and the FQHE. This limit
characterizes interferometers where the capacitive coupling of
the bulk and the edge is strong. By contrast, in the extreme AB
case, where the bulk and the interfering edge are not coupled,
the area of the interference loop does not vary with B at all.
Moreover, AI does not vary when NL varies. Thus, for integer
states, θ = 2πφ. The fractional case is more complicated due
to the anyonic phase θa .

In between these two extremes, θ is not proportional to φ,
and thus the Fourier transform of eiθ with respect to φ has
more than one component. For fractional states this is the case
even in the extreme AB limit, due to the anyonic phase θa .
We find that for all the cases we consider, the components that
appear in Eq. (2) satisfy

m = −νout

e∗
out

+ g
νin

e∗
in

, (6)

where g is an integer. Note that the ratios νout/e
∗
out and νin/e

∗
in

are always integers, so the allowed values of m are integers as
well. Moreover, due to the interaction, αm is not proportional
to m, leading to different slopes of the equal phase lines for
the different m components.

The CD limit and the AB limit are both defined in terms of
the dominant values of g in (6). In the extreme CD limit the
only term that appears in the sum (2) is that of g = 0 in (6),
both for integer and fractional states. In the extreme AB limit of
integer states the only term that appears in (2) is the naive AB
term m = 1 [or g = 1 in (6)]. For fractional states, however,
there will be coupling due to the phase jumps associated with
the anyonic statistics of the quasiparticles, and one would not
find pure AB behavior (only g = 1), even when the Coulomb
coupling between NL and AI can be neglected. Moreover, for
FQHE states with νin > 1, one finds that there is no value of
g that generates m = 1 in Eq. (6), so the naive AB period is
completely absent in the weak backscattering limit.

In between the extreme AB and CD limits, all integers g

appear in the Fourier decomposition of δR, with the relative
dominance of the AB and CD components being determined by
the value of �. We find, under plausible assumptions, that 0 <

� < 1, and that if 0 � � < 1/2 the AB term will dominate,
whereas the CD term will dominate if 1/2 < � � 1.
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When the sum (2) is dominated by one term, as is the case in
the CD limit and the AB limit of the IQHE, the color-scale plot
of δR on the B-VG plane is characterized by a set of parallel
lines, as is the case in Figs. 2(a) and 2(e).

Figures 2(b)–2(d) show the intermediate case, in which
several values of m contribute, and αm is not proportional to m.
Then the structure of RD in the B-VG plane assumes a form of
a two-dimensional lattice, rather than a set of lines, as it would
if αm stayed proportional to m. The periodic structure may be
characterized by a unit cell in the B-VG plane, described by
two elementary lattice vectors b and v. In the most general
case these vectors can have two arbitrary orientations in the
plane. However, if the secular area Ā is only weakly dependent
on the magnetic field B, that is, if B∂Ā/∂B � Ā, we find
that one of the elementary lattice vectors will be parallel to
the B axis. Specifically, if VG is held constant, δR will be
unchanged when B is changed by the amount that increases φ

by one. (We emphasize that this is true even if the interfering
particles are fractionally charged.) In our later discussions,
rather than employing the direct lattice vectors b and v, we
shall use a description in terms of their reciprocal lattice
vectors.

The restriction of the Fourier harmonics to the values (6) is
valid only in the limit of weak backscattering. As the constric-
tions are further closed and the amplitude for backscattering
becomes appreciable, all values of m appear in (2). In the limit
where this amplitude is strong, oscillations in the reflection
probability turn into transmission resonances. The spacing
between these resonances varies with the degree of coupling
between the bulk and the edge. Generally, a transmission
resonance occurs when the almost closed interfering edge has
a degeneracy point, at which it may accommodate an extra
electron (for the IQHE) or quasiparticle (for the FQHE) at
no extra energy cost. In the AB limit, it is the energy of
the edge, decoupled from the localized charges it encloses,
that should be invariant to adding an extra charge carrier.
At the integer quantum Hall regime, that would give rise to
one transmission resonance per every flux quantum. In the CD
limit, when the introduction of localized charges affects the
energy of the edge through their mutual coupling, there would
be νout/e

∗
out resonances per quantum of flux, in both the IQHE

and the FQHE. Thus, the distinction between the AB and CD
limits holds even in the limit of a closed interferometer, where
the interfering edge almost becomes a quantum dot.

As should be clear from the discussion above, the form
of δR depends crucially on the continuous and abrupt phase
variations dθ/dφ and �θ . Both of these quantities depend
on energy considerations, since the interferometer’s area is a
property of thermal equilibrium. We model the energy of the
interferometer in terms of a capacitor network. The parameters
of the model, describing the self-capacitance of the interfering
edge, the self-capacitance of the localized quasiparticles, the
mutual capacitance of the two, and the capacitive coupling
of the gate to the interferometer, depend on microscopic
parameters which we cannot accurately calculate at this point.
However, we are able to give some insights into the way
in which various parameters should vary with details of the
systems, including particularly the perimeter and area of the
interference loop.

C. The structure of the paper

The structure of the paper is as follows. In Sec. II we
deal with the weak backscattering limit. We identify what
we believe to be the important degrees of freedom in the
interferometer, express the phase θ in terms of these degrees of
freedom, and introduce an energy functional in terms of these
degrees of freedom. In Sec. III we calculate the thermal average
of eiθ , which is the factor that determines the interference
contribution to RD in the weak backscattering limit, and dis-
tinguish between the AB and CD limits. In Sec. IV we extend
the discussion to the regime of intermediate backscattering,
and in Sec. V to the regime of strong backscattering. In Sec. VI
we exemplify the way in which the energy parameters for the
interfering edge and the localized states can be influenced by
coupling to edge states that are fully transmitted, by solving
in detail two simple models. In Sec. VII we compare our
findings to earlier experimental and theoretical works. Finally,
we summarize our results in Sec. VIII.

For the convenience of the reader, we include a table with
a list of the main symbols used in the paper, their brief
description, and a pointer to the section in which they are
defined.

II. THE PHYSICAL MODEL—WEAK BACKSCATTERING
CASE

In this section we introduce the physical model on which
we base our analysis of the weak backscattering limit. We
start with the IQHE interferometers, and then generalize to the
FQHE ones.

In the weak backscattering limit there should be an
oscillatory part of the backscattered resistance given by

δR ∝ Re[r1r
∗
2 〈eiθ 〉], (7)

where r1,r2 are the reflection amplitudes at the two con-
strictions, and the angular brackets represent an average over
thermal fluctuations. We focus here on measurements in the
limit of small source-drain bias, so we may consider all leads
to be at the same electrochemical potential μ. We assume the
change in B and VG to be small enough that we may neglect any
changes in r1 and r2, and associate oscillations in the resistance
with oscillations in the phase factor 〈eiθ 〉. Our analysis of the
phase factor eiθ is based on the following picture of the edge
of a quantum Hall fluid in the integer regime.

A. Model for integer quantum Hall edges

We expect that any LL j which is more than half filled
in the bulk of the system will have a single chiral edge
state that circulates along the edge of the system.26 For our
discussion of the spatial location of this edge state, we assume
that the electron density varies smoothly near the edge of
the sample, on the scale of the magnetic length. We denote
the local charge density by n(
r) and define a local filling
factor ν̄(
r) = n(
r)�0/B. As disorder localizes states away
from the center of a LL, the spatial location of the circulating
edge state will be close to the point where the LL is half
full, and the extended state crosses the Fermi level. For
example, the location of the interfering edge state should be
given, approximately, by the condition ν̄(
r) = fT + 1/2. Note
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TABLE I. List of symbols, their brief description, and the section where they are defined.

Symbol Short description Section

νin (νout) Filling factor inside (outside) the interfering edge state I A
fT Number of fully transmitted edge states I A
B Magnetic field I A
�B Magnetic field periodicity I A
VG Voltage applied to a gate I A
AI Area of the interference loop I A
Ā Slowly varying part of AI I B
δAI Rapidly oscillating part of AI I B
RD Diagonal resistance I B
δR Oscillatory part of RD I B
φ Magnetic flux within the area Ā I B
αm Quantifies the effect of VG on the bulk of the interferometer loop I B
NL Number of electrons or quasiparticles localized in the bulk of the interferometer I B
θ The interference phase I B
e∗

in (e∗
out) The charge of a quasiparticle in the νin (νout) state I B

2π� Jump in phase θ when NL varies by −1 I B
θa Anyonic phase I B
r1,r2 Reflection amplitudes at constrictions 1,2 II
Ne

j ,N
h
j Integer number of localized electrons and holes in the j th Landau level II A

KI ,KIL, KL Coupling constants in the energy functional describing the interferometer II B
q̄ Effective bulk background charge II B
β Quantifies the effect of VG on the area of the interferometer II B
γ Quantifies the effect of VG on the bulk background charge II B
�ν νin − νout II C
CI ,CL, CIL Reparametrization of KI ,KL,KIL by effective capacitances II D
μI ,μL Electrochemical potentials of the I and L regions II D
w,L Width and length of the region of nonuniform density near the loop’s edge II D
Z Partition function III B

Ggh Reciprocal lattice vectors of the 2D description of δR(B,VG) III E
λ Describes the variation of Ā with B III E
η Describes the variation of q̄ with B III E
PR Reflection probability for the interfering edge state IV
η± Interferometer scattering phase shifts IV
ρ(ε) Density of states IV
�φ Flux spacing between resonances V
No Total number of electrons in the highest Landau level enclosed by the interfering edge channels V

that at least within the Hartree-Fock approximation, localized
states will form in a partially full LL, even in the absence of
external disorder, due to spontaneous breaking of translational
symmetry,27 which may be loosely described as the formation
of a Wigner crystal of electrons or holes.

The location of an edge state will separate two regions
where the nominal filling factors ν differ by one; for the
interfering edge state this change would be from νout to νin.
(For the case of an IQHE interferometer, we assume that there
are no intervening regions of FQHE in the constrictions or at
the edges of the interferometer region.) However, in typical
situations, we will not find that electronic states in the LL are
entirely empty at positions outside the edge state or entirely
full inside the edge state. This means that there will be a
difference between the the local charge density n(
r) and the
ideal “condensate” charge density νB/�0. The corresponding
difference between the actual filling ν(
r) and the nominal
filling ν represents the contribution of “localized charges,”
which occur when the LL has a certain number of electrons

Ne
j in localized states outside the edge state, and a certain

number Nh
j of unoccupied localized states (holes) inside the

area delimited by the edge state. The quantities Nh
j and Ne

j are
constrained to be integers, as they represent the occupations
of localized states.

Although the localized electrons and holes are localized
in a one-body approximation, they are not completely im-
mobile. At any finite temperature, they will have a nonzero
conductivity due to processes such as multiparticle hopping,
and we assume that they can readjust their relative positions
continuously on the experimental time scale for changes in the
magnetic field or gate voltage.

In Ref. 28, Chklovskii, Shklovskii, and Glazman analyzed
the region near the boundary of a Hall bar using a self-
consistent Hartree approximation, neglecting the influence of
disorder. They found that in the quantized Hall regime the
density profile can be described by a sequence of compressible
and incompressible stripes: There are broad compressible
stripes where a given LL is gradually filled up, and narrow
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incompressible stripes, where, due to the excitation gap be-
tween consecutive LLs, the filling factor is exactly equal to an
integer. We can make contact with that analysis by associating
the broad compressible regions of Ref. 28 with both the chiral
edge states, in our description, and the regions containing
electrons and holes that are localized but are still weakly
mobile. Further, we can associate the narrow incompressible
stripes of Ref. 28 with the boundary between a region with
localized holes, i.e., a region with density n(
r) < νB/�0,
and a neighboring region with localized electrons, i.e., with
n(
r) > νB/�0.

We assume that any incompressible regions, which might
occur where the local filling ν̄ is very close to an integer, are
sufficiently narrow that such regions have at most a minor
affect on the overall charge distribution of the system, and
that they are narrow enough so that electrons can easily cross
between the inner and outer edges of the region, by either
tunneling or thermal activation, on a laboratory time scale. Of
course, on a very short time scale, such as the transit time for
an electron to move around the interferometer, it should not
only be impossible for an electron to cross an incompressible
strip, but for an electron to move across a region of localized
states; so the effective quantized Hall region, where the local
σxx is small and σxy is close to a quantized value νe2/h, will
be much wider than the incompressible strip itself. However,
on a laboratory time scale, the interior of the island should
behave as a set of metallic regions: The localized charges
will arrange themselves to give a constant electrochemical
potential in equilibrium, within each class of localized states.29

As a result of the integer constraints on the total occupation
numbers Ne

j and Nh
j , however, there can be small differences

between the electrochemical potentials of various classes of
localized states and that of the adjacent edge states or leads.
Experimental support for this picture was found in Ref. 23.

In our analysis below, we shall neglect any changes in
the number of electrons or holes localized in regions outside
the interfering edge state, and keep track only of changes
in the total number that are localized in the bulk of the
interferometer, inside the area enclosed by the interfering edge
state, which we denote by NL. (A justification for our neglect
of other integer variables is given in Sec. II D 2.) Within our
model, then, the interferometer has one important discrete
degree of freedom, NL, and several continuous degrees of
freedom Aj , describing the area occupied by each of the edges
that are coupled to the leads, where the subscript j numbers
the edge state. As is always the case in the quantum Hall effect,
charge density on the edge translates to an area enclosed by
the LL. The phase θ is directly related to the area AI enclosed
by the interfering edge state, as delimited by the points in the
constrictions where there is tunneling between the partially
transmitted edge states. (The subscript I stands for “inter-
fering.”) Specifically, the relation is given in Eq. (4) above.
Alternatively, we can consider θ as a measurable quantity
(mod 2π ), and use (4), to form a precise definition of AI .

B. Macroscopic energy function

We will now formulate the way by which we will calculate
(7) and its dependence on B and VG. Since the phase θ depends
only on what happens in the νin bulk region, we find it useful to

define an energy functional E(NL,AI ) as the total energy of the
system when NL and AI are specified, and the energy is mini-
mized with respect to all other variables, including the fluctu-
ating areas Aj of any fully transmitted edge states. (The elec-
trochemical potential μ of the leads is here taken to be zero.)

Let us consider small variations of B about a given initial
value B0, at a fixed value of the gate voltage VG. For
small variations in NL,AI , we may then expand the energy
E(NL,AI ) to quadratic order, and write

E = KI

2
(δnI )2 + KL

2
(δnL)2 + KILδnI δnL, (8)

where δnL is the deviation of the number of localized electrons
from the value that would minimize the energy if there were no
integer constraint on NL, and δnI is the charge, in units of the
electron charge, associated with deviations in the area AI from
value that would then minimize the energy. More precisely,

δnL = NL + νinφ − q̄, (9)

where q̄ is the effective positive background charge, in units
of |e|, resulting from ionized impurities in the donor layer
and additional charges on the surfaces and on metallic gates,
as well as any fixed charges in localized states outside the
interference loop. We assume that q̄ depends monotonically
on the gate voltage. Furthermore, for weak backscattering,

δnI = B(AI − Ā)/�0 = nI − φ, (10)

where nI is the charge enclosed by the interfering edge state,
ignoring the charges of the localized electrons and holes.

When the gate voltage VG is varied with B remaining
fixed, the background charge q̄ and the area Ā will vary.
Their variation depends on the coupling of the gate to the
interferometer, and we characterize it by two parameters,

β = (B/�0)dĀ/dVG, γ = dq̄/dVG. (11)

The parameter β describes the extent to which a variation
of the gate voltage affects the area of the interferometer AI

(and indirectly φ), while γ describes the way the gate affects
the background charge in the bulk of the interferometer (and
indirectly NL).

Note that the energy function (8) leads to an interference
phase that is unchanged when φ varies by one. This change in
φ can be completely compensated in the energy function by
changing NL by the integer amount −νin, while nI changes
by one. The fixed value of δnI means that the area AI has not
changed, but the phase θ has changed by 2π . Such a phase
change has no effect on the value of eiθ .

C. Fractional quantized Hall states

Our considerations for the integer case can be easily
extended to an edge mode separating fractional quantized Hall
states of the form

νin = I + p

2ps + 1
, νout = I + p − 1

2s(p − 1) + 1
, (12)

where p and s are positive integers, and I is an integer � 0.
These are filling fractions in the range I � ν < I + 1/2, and
we assume that they are correctly described by the standard
composite fermion picture.30 The integers p and p − 1 are the
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number of filled effective LLs for the composite fermions in
the ideal FQHE states. Elementary charged quasiparticles in
the region νin will have a charge e∗

in = 1/(2sp + 1), while
quasiparticles in the region νout will have a charge e∗

out =
1/[2s(p − 1) + 1]. We assume that the particle backscattered
across the νin region in the constriction is the elementary
quasiparticle with charge e∗

in. Whether this assumption is
correct in any given experiment should be checked by the
results of the measurement.

As in the integer case, the local charge density n(
r) may be
considered the sum of a contribution from the ideal quantized
Hall state and one from localized quasiparticles or quasiholes,
and the difference between ν̄ and the quantized nominal filling
factor ν at point 
r represents the contribution of localized
charges, whose integral must be quantized in multiples of the
elementary charge e∗ corresponding to ν. If the electron density
varies slowly near the edge of a sample, the fractional chiral
edge state31,32 separating quantized Hall regions νin and νout

should occur at a point were ν̄ has a value somewhere in the
middle between νin and νout.

As in the integer case, we again use a quadratic energy
function of the form (8), but now we have to modify (9) and
(10) and use (5) instead of (4) to describe the relations between
δnI ,AI ,NL and θ . Specifically, the phase θ accumulated by an
interfering quasiparticle is

θ

2π
= e∗

inBAI/�0 − 2NLse∗
in. (13)

The first term is the AB phase, scaled down by the charge
of the interfering quasiparticle, and the second term is the
anyonic phase accumulated when one composite fermion goes
around another.33–35 The statistical phase θa , which appeared
in Eq. (5), is thus given by θa = −4πse∗

in.
It should be emphasized that Eq. (13), which can be derived

using a fermion-Chern-Simons transformation,35 should apply
regardless of whether the localized charges are isolated
quasiparticles of charge ±e∗

in or occur in puddles where the
individual quasiparticles may have lost their identity. For
example, if νin = 4/3, an enclosed puddle with a different
filling fraction, such as ν =1, 2, or 7/5, must still contain a
total localized charge (above the background charge corre-
sponding to ν = 4/3) that is a multiple of e∗

in = 1/3, and the
corresponding contribution to the phase on the interfering edge
state is still given by the second term in (13).

An increase of the magnetic flux by one flux quantum
requires, on average, νin/e

∗
in quasiparticles to maintain charge

neutrality. Relation (9) is correspondingly modified to

δnL = e∗
inNL + φνin − q̄. (14)

Here NL is the net number of quasiparticles minus quasiholes,
of charge e∗

in, inside the interfering edge state.
The relation between the area enclosed by the interfering

edge and the charge contained in the corresponding composite
fermion LL—the modified version of (10)—is now

δnI = �νB(AI − Ā)/�0, (15)

where �ν ≡ νin − νout. The normalizations of δnI and δnL

have been chosen so that they are measured in units of the
electron charge.

As before, in the limit of weak backscattering, the resistance
oscillation will be proportional to Re〈eiθ 〉. Note that formulas
for the fractional case reduce to those of the integer case if one
sets s = 0.

D. Comments on the energy function

The previous section has defined the model we will use for
analyzing the interference term (7) and its dependence on B

and VG. Before carrying out this calculation, we pause to make
some comments on the model.

1. An alternative parametrization of the energy function

The macroscopic energy function E may be alternatively
described by an equivalent capacitor network. If we intro-
duce electrochemical potentials μI = ∂E/∂(δnI ), and μL =
∂E/∂(δnL), then the quadratic part of E may be rewritten as

e2E = CI

2
μ2

I + CL

2
μ2

L + CIL

2
(μI − μL)2, (16)

where

KI = e2 CL + CIL

D
, KL = e2 CI + CIL

D
, KIL = e2 CIL

D
,

D = (CL + CIL)(CI + CIL) − C2
IL. (17)

The coefficients CL and CI may be interpreted as effective
capacitances to ground for the respective conductors, while
CIL plays the role of a cross capacitance. The effective capac-
itances result from a combination of classical electrostatics
and quantum-mechanical energies.

An advantage of rewriting the energy in this form is
that it may be easier to understand the dependencies of the
capacitance coefficients on the parameters of the system. For
example, we would expect the coefficients CI and CIL to be
proportional to the perimeter L of the interferometer, if the
structure of the edge is held fixed. The capacitance CL should
be proportional to the area Ā of the island, if the center region
is covered by a top gate with a fixed setback distance. On the
other hand, we would expect CL to vary as L ln L,if there is no
top gate and the nearest conductors are gates along the edges
of the sample.

In the situation where the edge state is connected to leads
in equilibrium at zero voltage, the equilibrium value of μI will
be zero. Then the ground-state energy will be given by E =
(CL + CIL)μ2

L/2e2, and we have e2δnL = μL(CL + CIL) and
e2δnI = −μLCIL.

2. Further justification for the model

The major simplification involved in our model is the
reduction of the number of degrees of freedom in the problem.
In principle, the interferometer has edge states that form
one-dimensional compressible stripes and a set of localized
states between these stripes that may be either empty or full.
Our model reduces the problem to two degrees of freedom, AI

and NL.
We neglect the degrees of freedom associated with localized

states between edge states. We assume that the width w of the
region of nonuniform electron density near the edge of the
sample is small compared to the overall radius to the island.
The area available for localized electrons or holes in the LL
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that is partially filled in the center of the interferometer should
be approximately Ā, while the areas available for localized
electrons or holes in any other LLs should be of order Lw,
which is much smaller. Then the number of localized electrons
or holes in any of these regions will be relatively small, and
the energy cost of adding or subtracting a particle from one of
them should be relatively high. Thus we may generally neglect
fluctuations in these quantities at reasonably low temperatures.
The fluctuations in NL that do occur will arise normally from
changes in the occupation of the innermost partially full LL.

If the magnetic field B or the gate voltage VG is varied
by a sufficiently large amount, we do expect to encounter
discontinuous changes in the occupations of localized states
other than those NL of the innermost partially full LL. These
jumps should lead to jumps in the phase θ , which would
appear as “glitches” in the interference pattern. The analysis
of periodicities given above apply, strictly speaking, only in
the intervals between glitches. The frequency of occurrence
of glitches should roughly correspond to the addition of one
electron or one flux quantum in area Lw, which would be
rarer by a factor of Lw/Ā than the oscillation frequencies
we are interested in. Also, in many cases, the coupling
between the interfering edge state θ and a particular occupation
number Nh

j or Ne
j may be sufficiently small that any glitches

associated with changes in that occupation number would be
unobservable.

Finally, in replacing the full energy function by the
macroscopic function E, we have minimized the energy with
respect to all continuous variables nj other than that of the
partially transmitted edge state, i.e., we have ignored the
effects of thermal fluctuations in these variables. This neglect
is justified for the continuous variables, because they enter the
energy in a quadratic form, so their thermal fluctuations add
only a constant to the energy.

III. AHARONOV-BOHM AND COULOMB-DOMINATED
REGIMES IN THE WEAK BACKSCATTERING LIMIT

We now have Eq. (7) for the resistance in the weak
backscattering limit in terms of the interference phase θ . We
also have Eqs. (4), (5), and (13) for θ in terms of the degrees of
freedom AI ,NL, and the energy function (8) for the energy and
its dependence on B and VG. In this section we make use of
these expressions to calculate several thermal averages. First,
we calculate the abrupt phase jump 2π� that occurs when
the number of localized electrons (or quasiparticles) varies by
−1. Then, we calculate the magnetic-field and gate-voltage
dependencies of 〈eiθ 〉 at high temperatures, and show that in
that limit the interferometer shows either AB or CD behavior,
depending on the value of �. Finally, we turn to the case
where AB and CD behaviors mix together, and develop the
tools needed to analyze this case, at low temperatures as well
as high.

A. Continuous and abrupt phase evolution

As the energy function is quadratic with respect to the
continuous variable AI , the average AI is the one that

minimizes the energy function. For a fixed number NL of
localized charges, we obtain

θ

2π
= e∗

inφ − 2se∗
inNL − KIL

KI

1

e∗
out

[e∗
inNL + νinφ − q]. (18)

The abrupt phase jumps 2π� associated with a change
of NL by −1 can be read out from (18). For an IQHE
interferometer we find

� = KIL

KI

= CIL

CL + CIL

. (19)

When there is no bulk-edge coupling KIL = 0 the interference
phase is unaffected by NL. When the bulk-edge coupling is
strong, the jumps are unobservable, since � = 1.

For an FQHE interferometer, we have

� = KIL

KI

+ 2e∗
ins

(
1 − KIL

KI

)
. (20)

Now, if KIL = 0, then 2π� is the phase jump associated with
the fractional statistics of the quasiparticles. When the bulk and
the edge are coupled, the phase jumps reflect both the change
of the area AI caused by the introduction of quasiparticles and
the fractional statistics. In the limit of strong coupling, where
KIL = KI , the phase jump becomes unobservable, just as in
the integer case. Now, if there is a change of −1 in NL, corre-
sponding to the introduction of a quasihole in the bulk, the area
AI will increase by (e∗

in/�ν)(�0/B). This is the area necessary
to accommodate the charge of the quasihole, and is also the
area necessary for the accumulated phase to grow by 2π .

B. Magnetic-field dependence

Next, if the parameters entering (8) are known, we may
calculate the thermal expectation value

〈eiθ 〉 = Z−1
∑
NL

∫ ∞

−∞
dAIe

−E/T eiθ , (21)

with the partition function Z given by

Z =
∑
NL

∫ ∞

−∞
dAIe

−E/T . (22)

Since E is a quadratic function of its variables, the integration
over AI is trivial. The sum over the discrete variable NL can be
handled by using the Poisson summation formula and taking
the Fourier transform. Thus we may write

∞∑
NL=−∞

=
∫ ∞

−∞
dNL

∞∑
g=−∞

e−2πiNL(g−1). (23)

Using this formula, one may perform the integrations over
NL in the numerator and denominator of (21). The formulas
simplify at high temperatures, where the partition function Z

becomes independent of φ, and we may concentrate on the
numerator of (21). We then find that the expectation value can
be written in the form

〈eiθ 〉 =
∞∑

g=−∞
Dme2πimφ, (24)

where m(g) = − νout
e∗

out
+ g νin

e∗
in

, as in Eq. (6).
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The coefficients Dm may be written as

Dm = (−1)g+1|Dm| exp

[
2πiq̄

(
e∗

in − m

νin

)]
, (25)

with

|Dm| = e−2π2T/Em (26)

and

1

Em

= 1

(e∗
out)2KI

+ (g − 1 + �)2KI

(e∗
in)2

(
KIKL − K2

IL

) . (27)

Remarkably, Eq. (27) identifies the most dominant Fourier
component of the resistance in the high-temperature limit, and
displays its relation to �: In the integer case and for fractions
where m = 1 is allowed (i.e., for fractions with νin < 1/2),
if −1/2 < � < 1/2, the interference is dominated by the AB
component, with g = 1, m = 1. In contrast, if 1/2 < � < 3/2,
it is dominated by the CD component, with g = 0, m = 1 −
(νin/e

∗
in).

We note that the plausible assumption of a positive cross
capacitance CIL > 0 leads to the restriction 0 < � < 1. We
will then find � < 1/2 if and only if CIL < CL. We also
remark that the energy Em for the CD term is related to the ca-
pacitances by Em = (e∗

in)2/(CL + CI ). The denominator here
may be thought of as an effective capacitance resulting from
the electrostatic and quantum capacitances of the combined
system of the localized charges and the interfering edge state,
if the edge state is disconnected from the leads.

C. Gate voltage dependence

A variation of the gate voltage VG varies the phases of the
Fourier components of 〈eiθ 〉 through its effect on q̄ and φ in
the phases in Eqs. (24) and (25). There are two origins to
this dependence—the effect of the gate voltage on the area
of the interference loop Ā and its effect on the charge density
in the bulk, and through it, on NL. These two dependencies
are described by the parameters β,γ of (11).

For small variations δVG and δB, we see that Dme2πimφ

varies proportional to

exp

{
2πi

[
δVG(αm + βm) + mδB

Ā

�0

]}
, (28)

where the term proportional to β originates from the area
change induced by the gate, and the term proportional to

αm = γ (e∗
in − m)/νin (29)

originates from the effect of the gate on the bulk background
charge.

For the integer case, we see that lines of constant slope in
the AB regime will have dVG/dB = −Ā/�0β, while in the
CD regime, the lines of constant slope will have dVG/dB =
fT Ā/�0(γ − fT β).

We expect that applying positive voltage to a side gate
should tend to increase the area Ā, so that the coefficient β

should be positive. To estimate γ , let us first consider a model
in which there is a constant electron density in the interior of
the interferometer, except for a thin region around the edge,
and let us imagine that the effect of δVG is to alter the location
of the edge, without changing its density profile, and without

changing the electron density away from the edge. In this case
we would find γ = ν̄β, where ν̄ � (fT + 1/2) is the filling
factor in the interior. In reality, we would expect that positive
δVG will increase the average density inside, so that γ should
be even larger. Thus we expect that the slope of the constant
phase lines will be negative for the AB stripes but positive for
the CD stripes.

D. Low temperatures

Although at high temperatures we need only consider one
Fourier component, at lower temperatures, particularly if � is
close to 1/2, the g = 0 and g = 1 components may both be
important. Then a color-scale map of the interference signal
versus B and VG will show lines of both slopes, with a resulting
pattern of a checkerboard type, as seen in Fig. 2. Even if both
slopes are present, however, the eye will tend to pick out only
the stronger component, if there is a big difference in the
amplitudes, as in Figs. 2(b) and 2(d).

At still lower temperatures, higher harmonics with g > 2
and g < 0 will also appear. In general one must take into
account that Z in the denominator of (21) depends on φ. Let
us expand Z as

Z =
∞∑

g=−∞
zge

2πig(νinφ−q̄)/e∗
in . (30)

(The coefficients zg fall off exponentially with increasing
temperature, except for z0, which is simply proportional to T .)
The Fourier components of 〈eiθ 〉 will then be a convolution of
the Fourier components of Z−1 with the Fourier coefficients
obtained from the numerator of (21), which are given by (25)
and (26). We see that this does not introduce any new Fourier
components into the function, but it can affect the relative
weights of the different harmonics.

In the limit of low temperatures, the phase θ becomes a
sawtooth function of φ, for fixed VG, and we can simply
evaluate the Fourier coefficients of eiθ . Up to a constant phase
factor, we find that for the allowed values of m, the coefficients
Dm may still be written in the form (25), but now

|Dm| = sin(π�)

π (� + g − 1)
. (31)

We see that the CD component (g = 0) will be largest if 1/2 <

� � 1, and the component (g = 1) will be largest if 0 � � <

1/2, at T = 0 as well as at high temperatures.
In our discussions of the temperature dependence of the

interference signal, we have taken into account only classical
fluctuations, ignoring quantum fluctuations, which can be
important on energy scales larger than kBT . In the FQHE case,
quantum fluctuations lead to a renormalization of the tunneling
amplitudes, which will typically cause the individual reflection
amplitudes r1,r2 to decrease with increasing temperature, as
a power of 1/T , in the weak backscattering regime.36 At
high temperatures, this decrease should be less important than
the exponential decrease of the interference signal arising
from classical fluctuations, predicted by Eq. (26), but the
power-law dependence should be taken into account at lower
temperatures. If one defines a normalized interference signal
by dividing the interference term by the total backscattered
intensity, ∝(|r1|2 + |r2|2), then the low-temperature power-law
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dependence should be canceled.1 Quantum fluctuations do not
lead to a power-law dependence of the normalized interference
signal on length of the interferometer, in the limit of vanishing
temperature and vanishing source-drain voltage.1

E. Two-dimensional description

For a proper analysis of the regime where the CD and AB
lines coexist, we need to introduce a two-dimensional Fourier
transform of δR with respect to B and VG, rather than the
Fourier transform with respect to φ at fixed VG, which we
have employed so far. One finds that the periodic pattern can
be expanded in terms of a set of “reciprocal lattice vectors”

Ggh ≡ (G(b)

gh,G
(v)
gh ), where g and h are integers, with


Ggh = g 
G10 + h 
G01, (32)


G10 = 2π

(
νin

e∗
in

Ā

�0
,
βνin − γ

e∗
in

)
(33)


G01 = 2π

(
−νout

e∗
out

Ā

�0
,
γ − βνout

e∗
out

)
, (34)

and

δR(B,VG) =
∑
gh

Rghe
i

(
G

(b)
ghδB+G

(v)
gh δVG

)
. (35)

The reality of δR requires that Rgh = R∗
−g,−h.

The set of reciprocal lattice vectors may be derived by first
removing the restriction that NL is an integer. Regardless of
the values of KI ,KL,KIL, the energy can then be minimized
by choosing AI and NL so that δnI = δnL = 0, using (15)
and (14). If we then calculate changes in θ using (13), we
find that δθ = G

(b)
11 δB + G

(v)
11 δVG, while δNL = −(G(b)

10 δB +
G

(v)
10 δVG)/2π , with 
Ggh defined as in (32)–(34). Here, we have

used the relations �ν = e∗
ine

∗
out and 2s = (e∗

out − e∗
in)/�ν.

In the limit of weak backscattering, the only reciprocal
lattice vectors with nonzero amplitudes have h = ±1. For h =
1, the coefficients Rgh may be related to the coefficients Dm

defined previously, with Rg,1 ∝ r1r2Dm, where m is related
to g by Eq. (6) and r1,r2 are the bare reflection amplitudes
at the two constrictions. For h = −1, the coefficients are the
complex conjugates of R−g,1.

When one goes beyond weak backscattering, as discussed
below, one finds harmonics at reciprocal lattice vectors
which are arbitrary sums of the ones present in the weak
backscattering limit. Thus, one may obtain contributions at
all integer values of h, including h = 0.

Using the two-dimensional description, we may readily
extend our analysis to the situation where one cannot neglect
the dependence of the secular area Ā on the magnetic field B.
In this case, we should also take into account the change in the
“background charge” q̄ resulting from the change in Ā. We
define two dimensionless parameters,

λ = −B

Ā

∂Ā

∂B
, η = −�0

Ā

∂q̄

∂B
. (36)

Then the formulas for the fundamental reciprocal lattice
vectors should be replaced by


G10

2π
=

[(
νin(1 − λ) + η

e∗
in

)
Ā

�0
,
βνin − γ

e∗
in

]
, (37)


G01

2π
=

[
−

(
νout(1 − λ) + η

e∗
out

)
Ā

�0
,
γ − βνout

e∗
out

]
. (38)

If the field B is varied while the gate voltage VG is held fixed,
the field periods associated with the AB term (g,h) = (1,1)
and the CD term (g,h) = (0,1) are given, respectively, by

Ā(�B)AB = �0

(1 − λ)
(

νin
e∗

in
− νout

e∗
out

) + η
(

1
e∗

in
− 1

e∗
out

) , (39)

Ā(�B)CD = − e∗
out�0

η + νout(1 − λ)
. (40)

If η �= 0, the two periods will generally be incommensurate.
Then when the magnetic field is varied at constant gate voltage,
the resistance will not be a periodic function of B, but rather
quasiperiodic. To obtain a periodic variation, one must vary B

and VG simultaneously, along a line of appropriate slope.
As a simple example, let us assume that Ā(B,VG) is

determined by a contour in the zero-field electron density
n(
r), where n�0/B = (νin + νout)/2, and let us assume that
q̄ is equal to the integral of this density inside the area Ā. Then
we find

η = λ(νin + νout)

2
, (41)

λ = 1

Ā

∮
n(
r)dr

|∇n| , (42)

where the integral is around the perimeter of the area Ā. We see
that η and λ will vanish in the limit where the length scale for
density variations at the edge is small compared to the radius
of the island (assuming that the density in the bulk is not too
close to density at the interfering edge state).

IV. INTERMEDIATE BACKSCATTERING

If one goes beyond the lowest order in the backscattering
amplitudes r1 and r2, the above analysis must be modified in
several respects. In this section we confine ourselves to the
IQHE case; we come back to the FQHE in the next section,
for the regime of strong backscattering.

The most obvious change from the weak backscattering
limit is that the interference contribution to the resistance RD is
no longer simply proportional to Re[r1r

∗
2 eiθ ]. To be specific, let

us consider the case of symmetric constrictions, so that r1 = r2.
We may write R−1

D = (fT + 1 − PR)(e2/h), where 0 < PR <

1 is the probability that an incident electron in the partially
transmitted edge state will be reflected by the interferometer
region. If we continue to define θ as the phase accumulation
around the interferometer loop for an electron at the Fermi
energy, then the full expression for PR is

PR = 2|r1|2 1 + cos θ

1 + |r1|4 + 2|r1|2 cos θ
. (43)

If we expand this in powers of r1, we find terms of order
|r1|4 multiplying cos2 θ , etc., which we may understand as
contributions from electrons that undergo multiple reflections
and therefore traverse the circuit more than once. Such
terms will add additional harmonics of e2πiφ to the reflection
coefficient, and in principle all harmonics will be present.
However, the underlying period will not be affected. Moreover,

155440-10



THEORY OF THE FABRY-PEROT QUANTUM HALL . . . PHYSICAL REVIEW B 83, 155440 (2011)

at least at high temperatures, the higher harmonics should fall
off faster than the principal AB component (∝e2πiφ) or the
principal CD component (∝e−2πifT φ) and should not be very
noticeable.

In the presence of a significant reflection probability, one
should also take into account the fact that in this case the
number of electrons enclosed by the partially transmitted edge
state is no longer precisely equal to θ/2π . This follows from
the Friedel sum rule, which states that ρ(ε), the density of
states for the LL inside the interferometer at energy ε, may be
written as

ρ(ε) = 1

π

∂(η+ + η−)

∂ε
, (44)

where η± are the phase shifts, derived from the eigenvalues
e2iη± of the 2 × 2 S matrix for transmission through the
interferometer. Explicitly, the eigenvalues are given by

e2iη± = (1 − |r1|2)eiθ/2 ± i|r1|(eiθ + 1)

1 + |r1|2eiθ
, (45)

and the phase shifts are required to be continuous functions
of the energy ε. The reflection probability (43) may then be
written as PR = sin2(η+ − η−). For |r1|2 �= 0, Eq. (45) gives
an oscillatory contribution to the phase shifts and an oscillatory
contribution to the density of states. Since the electron number
nI is the integral of ρ(ε) up to the Fermi energy, it will also
acquire an oscillatory part. Specifically we may write

nI = π−1(η+ + η−) + const = (2π )−1θ + f (θ ), (46)

where the phase shifts are evaluated at the Fermi energy, and
f (θ ) is periodic, with period 2π .

The oscillatory contribution to nI will also be manifest
when one varies the magnetic field, the gate voltage, or the
electrochemical potential μ. For an interacting system, where
the number of electrons nI associated with the interfering
edge state is coupled to other variables, such as NL, or even
to continuous variables such as the number of electrons in
fully transmitted edge states, an oscillatory component of nI

will lead to an additional oscillatory component to the energy
E, which should be taken into account when evaluating the
thermal average of PR . Again, we see that these effects can
lead to additional oscillatory contributions at harmonics of the
basic periods, giving rise to nonzero amplitudes at arbitrary
reciprocal lattice vectors 
Ggh, but they should not change the
fundamental frequencies 
G10 and 
G01.

We can treat the case of intermediate (or strong) backscat-
tering within our general model if we make a few modifications
of the definitions. We continue to use the energy formula (8),
with the definitions (4) and (9) for θ and δnL. We continue to
define δnI ≡ nI − φ, as in (10), but we can no longer equate
this to B(AI − Ā)/�0. Instead, we must compute nI using
(46). Finally, we must calculate 〈PR〉 by averaging (43) with
the weight e−E/T , integrating over AI , and summing over NL.

V. STRONG BACKSCATTERING

It is interesting to explore the behavior of the interferometer
at low temperatures in the limit of strong backscattering, where
the amplitude r1 is close to unity. For the case r1 = r2, when
θ is an odd integer multiple of π a resonant tunneling occurs,

and PR = 0. Then, for noninteracting electrons, at large r1,
we would find that the reflection probability PR is close to
unity most of the time, but there would be a series of values
of the magnetic field, or of the gate voltage, where in a narrow
interval, PR drops to zero. The actual vanishing of PR is special
to the case where r1 = r2, but even for an asymmetric case,
one would find reductions in PR in the vicinity of the points
where θ is an odd multiple of π .

We now analyze the effect of interactions between electrons
on these transmission resonances, and in particular on the flux
spacing �φ between transmission resonances. Interestingly,
we find that this spacing is different for interferometers in the
AB and CD regimes.

In the limit of strong backscattering the charge enclosed in
the νin area is almost quantized in units of e∗

out, and the value
of nI increases with AI in a series of almost-step functions. It
is therefore convenient to use the essentially discrete variable
nI rather than AI as the variable in our energy functional.
The condition for a transmission resonance, that θ is an
odd multiple of π , is also the condition for a degeneracy of
the energy for two consecutive values of the charge on the
interfering edge. We shall take advantage of the discreteness
of nI to explore how this affects the magnetic-field spacings
between resonances.

We start with the integer quantum Hall regime. Let No =
nI + NL be the total number of electrons in the higher LLs
enclosed by the (almost closed) interfering edge channel,
excluding electrons in the fT filled LLs that correspond to
the totally transmitted channels. The energy of the system is
then

E(No,NL) = KI

2
(No − NL − φ)2

+KIL(No − NL − φ)[NL + (fT + 1)φ − q̄]

+ KL

2
[NL + (fT + 1)φ − q̄]2. (47)

An increase of φ by one decreases NL by (fT + 1) and
increases No by fT . Resonant transmission occurs when there
is a vanishing energy cost for adding one electron to the
closed edge, that is, a vanishing energy cost for varying No

by one while keeping NL fixed. Degeneracy points where NL

changes by ±1 while No is fixed will generally not lead to
resonances, even though nI changes by ∓1 at such points.
Although the θ will technically pass through an odd multiple
of π in this process, one expects that these transitions will
generally happen discontinuously, so there is no point at which
the resonance could be observed. Points where NL and No

increase simultaneously do not involve a change in nI and do
not lead to transmission resonances.

In the extreme AB limit, where KIL = 0, there are degener-
acy points where E(No,NL) = E(No + 1,NL + 1) separated
on the φ axis by spacings �φ = 1/(fT + 1). These points do
not, however, lead to resonances, since they involve a change
in NL. Degeneracy points that do lead to resonances occur
when E(No,NL) = E(No + 1,NL), and the spacings between
those is �φ = 1, the flux period that characterizes also the
weak backscattering regime of the AB limit.

In the extreme CD regime, KI = KIL, and stability requires
KL > KI . Then jumps of NL are separated from jumps of
No. In an interval where φ increases by 1, there will be fT
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resonant events where No decreases by one, while NL is fixed,
and (fT + 1) separate events where NL increases by one while
No is fixed. The resonances are thus separated by �φ = 1/fT .
Again, this is the flux period that characterized the CD regime
in the weak backscattering limit.

The difference in �φ between the AB and CD limits
characterizes also the fractional case. In this case the bulk
accommodates NL quasiparticles of charge e∗

in, and the total
charge in the νin region is quantized in units of e∗

out. The charge
on the interfering edge is given by

nI = Noe
∗
out − NLe∗

in. (48)

Then, the energy functional becomes

E(No,NL) = KI

2
(e∗

outNo − e∗
inNL − �νφ)2

+KIL(e∗
outNo − e∗

inNL − �νφ)

× (e∗
inNL + νinφ − q̄)

+ KL

2
(e∗

inNL + νinφ − q̄)2. (49)

In the CD limit, KIL/KI = 1, and the number of transmis-
sion resonances that occur while φ changes by one is equal to
νout/e

∗
out. This leads to �φ = e∗

out/νout. The leading component
in the Fourier transform of PR(φ) would then correspond to
the g = 0 component of (6), just as in the weak backscattering
limit.

In the extreme AB limit, where KIL = 0, the structure
of transmission resonances is more complicated, due to the
difference between the elementary charges e∗

in and e∗
out. Just

as in the weak backscattering case for the FQHE at KIL = 0,
there is no single dominant value of g. In the case of weak
backscattering, this occurs because � = 2se∗

in �= 0, according
to Eq. (20). Here we note that e∗

out − e∗
in = 2se∗

ine
∗
out.

Over all, we see that in the limit of strong backscattering,
in the CD regime, the number of peaks in the transmission
probability as we increase B by one flux quantum is the same
number νout/e

∗
out as we obtained in the weak backscattering

regime, consistent with the prediction that the period of the
CD oscillations would not change as we vary r1. The strong
backscattering limit may also be understood as a Coulomb
blockade effect: Maxima in the transmission probability occur
at points where the system consisting of the localized states
and the almost totally reflected edge state is about to change
from one integer value to another.

Typically, the reflection coefficient r1 should increase from
near zero to near unity as one decreases the electron density
in the constrictions through the range where the filling factor
νc at the center of the constriction decreases from slightly
below νin to slightly above νout. For an ideal constriction,
the variation in r1 should be smooth and monotonic. In real
constrictions, however, the variation may be more compli-
cated, as the Fermi level may pass through one or more
resonances due to tunneling through localized states in the
constriction.

Our discussion of the variation in r1 should also apply if
νc is varied by changing the magnetic field B rather than
by changing a gate voltage at the constriction. Again, the
field periods for the AB and CD oscillations should remain
fixed as long as νout/e

∗
out does not change. However, the

parameter � which governs the relative strengths of the AB
and CD contributions could conceivably change as the other
parameters are varied.

Under some circumstances, if there is a large region
of intermediate electron density within a constriction, the
number of localized states in the constriction may become
so large that there is a large density of states at low energies
associated with rearrangements of electrons in these states.
Then, backscattering through the constriction could become
incoherent, either because of inelastic scattering from the low
energy modes, or because the path length for tunneling is
changed randomly due to thermally excited rearrangements of
the localized states. We assume that this does not happen in
the system of interest.

VI. MODEL WITH MULTIPLE EDGE STATES

In order to better understand how the presence of multiple
edge states may affect the parameters entering the energy
function (8), we discuss here some simplified models which
may illustrate the physics.

We consider the integer case, with fT fully transmitted edge
states. We define δni to be the charge fluctuation associated
with a fluctuation in area of the ith edge state, for 1 � i �
N , where N = fT + 1, while δni = δnL, for i = N + 1. The
partially reflected edge state has i = N , so δnI = δnN .

We may now write the quadratic part of the energy in the
form

E =
∑
ij

κij

2
δniδnj , (50)

where the sums go from 1 to N + 1. We assume that the
coupling constants κij are known, and we wish to find the
values of the coupling constants KL,KI ,KIL which entered
our earlier computations. We wish to specify the values of δnL

and δnI , and minimize the energy with respect to the other
variables. This means that for 1 � j � N − 1, we have∑

i

κjiδni = 0. (51)

The resulting energy will be quadratic in δnI and δnL, and the
coefficients may be identified with KI , KL, and KIL.

We illustrate further with two examples. In our first model,
we consider a situation where

κij = U + κ1δij , (52)

for 1 � i,j � N , and

κij = κL, for i = j = N + 1,

κij = V, if either i or j = N + 1, but i �= j.

In this model, the interaction between the edge states is
entirely determined by the total edge charge

∑
j�N nj , and

the interaction with NL involves only that charge. After some
straightforward algebra, one obtains the results

KI = κI + Ũ , KIL = Ṽ , (53)
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where

Ũ ≡ U − fT U 2

κ1 + fT U
, (54)

and Ṽ = V Ũ/U . We see from these results that KIL/KI =
Ṽ /(κ1 + Ũ ). If V � U and fT > 0, this ratio is necessarily
less than 1/2, so the model will be in the AB regime. For
fT = 0, the model leads to the CD regime if and only if κ1 +
U < 2V .

The second model we consider is the opposite extreme,
where edges are coupled only to their nearest neighbors. We
choose the diagonal coupling constants κjj as the previous
model, while for off-diagonal couplings we choose κij =
κ12, if |i − j | = 1, and κij = 0 otherwise. Now, we find
that couplng to the fully transmitted edges renormalizes the
coefficient KI but has no effect on KL and KIL, which remain
equal to κL and κ12, respectively. In the case fT = 1, we find

KI = κ1 − κ2
12

/
κ1. (55)

The value of KI will be reduced further with increasing fT ,
but the value remains finite in the limit of large fT , where one
finds

KI → κ1

2
+

(
κ2

1 − 4κ2
12

)1/2

2
. (56)

We see that in this model, KI is reduced by up to a factor of 2 as
a result of coupling to additional edges. Stability of the model,
in the limit of large fT , requires that κ12/κ1 < 1/2, and we see
that KIL/KI < 1. At the same time, if 2/5 < κ12/κ1 < 1/2,
the ratio KIL/KI will be greater than 1/2, for sufficiently
large fT , so the system may be pushed from AB into the
CD regime. Of course, the CD regime could be reached more
easily if the model is modified so that the coupling κN,N+1

between the localized charge and the partially reflected edge
state is made larger than the other coupling energies, or if the
diagonal element κNN is made smaller than the coefficients κii

for the fully transmitted edge states.
For a uniform edge of length L, we expect that the constants

κij should be proportional to 1/L, for 1 � i,j < N . If we write

κij = 2πh̄

e2L
vij , (57)

then coefficients vij have the dimensions of velocity. If we
can neglect the response of all other degrees of freedom in
the system, then fluctuations in the densities δni for the edge
modes will propagate with velocities that are given by the
eigenvalues of the velocity matrix vij . In actuality, however,
the situation is more complicated, as coupling to charges in
localized states may reduce the coupling constants κij and the
propagation velocities by different amounts. The propagation
velocities are only affected by rearrangements of charge or
polarization that can take place on time scale faster than the
time L/v for a pulse to propagate around the interferometer,
whereas the constants κij entering our formulas are defined for
fluctuations on a longer time scale.

VII. CONNECTION TO PREVIOUS THEORETICAL AND
EXPERIMENTAL WORKS

Oscillations in the transport properties of quantum Hall
devices, associated with interference effects, were already
observed in the 1980s, in both IQHE and FQHE regimes.20 The
possible importance of Coulomb blockade effects37 in these
experiments, and of fractional statistics38 for the FQHE situa-
tion, was noted by theorists around that time. Interpretation of
the early experiments was difficult, however, as the interfering
paths were not the result of a deliberate construction but were,
presumably, the result of random fluctuations in the doping
density, whose geometry was not known. In a typical case, one
might see oscillations in the resistance of a micrometer-scale
Hall bar, on the high-field side of a quantized Hall plateau,
which might be attributed to backscattering through a “dot” or
an “antidot” inclusion, where the electron density was higher
or lower than in the surrounding electron gas. The strength
of tunneling into and out of the dot or antidot was generally
assumed to be weak, and the oscillations were associated with
resonances as additional electrons or quasiparticles were added
to the inclusion.39 In later years, improved experiments were
carried out using fabricated antidots with controlled areas, in
which one could investigate systematically the dependence on
magnetic field and on electron density, controlled by a back
gate.40

Quantum Hall interferometers with the Fabry-Pérot ge-
ometry studied in the present paper have been explored
experimentally by several groups. In several early works,
Coulomb blockade effects in a dot weakly coupled to leads
were studied, in a region with several filled LLs.41,42 The
crossover between the AB and CD regime for a weakly coupled
dot was analyzed in Ref. 43. Both integer and fractional
quantum Hall interferometers in the absence of charging
effects were discussed in Ref. 1.

In an earlier experiment,44 a strong dependence of the
magnetic-field period �B on the constriction filling factor was
found but interpreted in terms of a magnetic-field-dependent
interferometer area. In a reanalysis45,46 of that experiment, it
was pointed out that, under the assumption of a magnetic-
field-independent interferometer area, the data agree with
�B ∼ 1/νin.

More recently, several groups have conducted systematic
investigations of interferometers of different sizes, with and
without top gates, in which they could set the filling factor
in the constriction independently of the density in the bulk,
and data has been collected as a continuous function of both
magnetic-field and side-gate voltage.13,16 The AB regime, the
CD regime, and the intermediate regime were all observed
in these experiments. In the CD regime, when lines of equal
RD were plotted in the B-VG plane, they were found to have
positive slope for νout �= 0, or zero slope for νout = 0. The
CD flux period, in the integer case, was found to be �φ =
1/νout, independent of the strength of the backscattering.
The AB regime, observed in the IQHE, was characterized
by lines of equal RD that had a negative slope in the B-VG

plane and flux periodicity of �φ = 1. Intermediate regimes,
where AB and CD behaviors combined together, were also
observed, giving a checkerboard pattern of the type seen in
Fig. 2(c).
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In the fractional case a flux periodicity of �φ = 1/νout was
observed in the cases (νin,νout) = ( 1

3 ,0) and ( 4
3 ,1), where νout

is an integer and νin is a fraction. In the case of ( 2
5 , 1

3 ), a period
of �φ = e∗

out/νout = 1 was observed.16

In an earlier work,6 in which two of us analyzed the inter-
ference patterns in a Fabry-Pérot interferometer, a parameter
�x/� characterizing the strength of bulk-edge coupling was
introduced. In the present notation, it corresponds to the ratio
KIL/KI . Here, we have gone beyond the approach of Ref. 6
by studying the directions of lines of constant phase and the
temperature dependence of the interference terms, and by
allowing for arbitrary strength of backscattering.

A first-principles approach to the study of interferometers
was described in Ref. 47. Possibly due to the approximations
chosen in that approach, an influence of Coulomb interactions
on the magnetic field period of resistance oscillations was not
found.

A situation in which the area of the interfering loop is
small compared to the lithographic area, and where it is highly
dependent on the magnetic field, was discussed in Ref. 48. In
this parameter regime, the coefficient λ, defined in our Eq. (42),
can be larger than 2, so (1 − λ)−1 can be negative, with a
magnitude smaller than 1. This would cause the AB constant-
phase lines to have a reversed slope, and a period smaller
than one flux quantum. However, under this assumption, the
magnetic-field period would vary continuously, rather than
being quantized at a flux quantum divided by an integer, so
this mechanism does not seem to explain the experimental
findings.13,16 Also, this would not explain the simultaneous
appearance of AB and CD lines, as observed in several cases.

The influence of anyonic statistics on magnetic-field period-
icities of Fabry-Pérot interferometers was discussed in Ref. 49,
although the results obtained there disagree in some cases with
our findings.

Observations of a magnetic-field superperiod, correspond-
ing to an addition of five flux quanta to the interferometer
area have been reported in Refs. 9,10 and 50 for a sample in
which the bulk is in a quantized Hall state with ν = 2/5,
while the constrictions have a filling fraction of 1/3. We
do not have an explanation for these results. However, we
do not accept the theoretical explanation put forth in these
papers or in Ref. 49. Although we agree with the arguments
which show that addition of five flux quanta should leave the
interference pattern unchanged, we believe this should also
hold for the addition of a single flux quantum, in the physical
model presented in these papers.51

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a general framework
for discussing the electronic transport in a quantum Hall
Fabry-Pérot interferometer. Our aim was to understand the
oscillatory dependence of the interferometer resistance RD on
the magnetic field B and voltage applied to a side gate VG,
when these parameters are varied by an amount large enough
to change the number of flux quanta or the number of electrons
by a finite amount, but small enough so that there is not a large
fractional change in either the flux or the electron number.
A central assumption was that the resistance arises from the

partial reflection of one quantum Hall edge state in the two
constrictions. We also restricted our analysis to the integer
quantum Hall states or a subset of fractional states, where all
modes at a given edge propagate in the same direction. Our
understanding of the physics of the problem was described in
general terms in the introduction, Sec. I, and in detail in the
body of the paper. In this summary we focus on the results we
obtained.

We found that δR, the oscillatory part of RD , is, in general,
a two-dimensional periodic function in the plane of B and
VG. It is useful to describe this function in terms of its
two-dimensional Fourier transform, which means that we
should specify a set of reciprocal lattice vectors 
Ggh and the
associated amplitudes Rgh, where g,h are arbitrary integers,
and 
Ggh = g 
G10 + h 
G01. Explicit formulas for the reciprocal
lattice basis vectors 
G10 and 
G01 were given in Sec. III E,
in terms of the smoothly varying secular area Ā enclosed by
the interfering edge mode, the filling factors νin and νout of
the quantum Hall states separated by this edge mode, and
parameters β,λ,γ,η describing the derivatives of Ā and the
enclosed “background charge” q̄ with respect to VG and B.
Our most general expression for δR is

δR(B,VG) =
∑
gh

Rghe
i(G(b)

ghδB+G
(v)
gh δVG), (58)

with basis vectors given by (37) and (38). However, in cases
where the radius of the interferometer is large compared to the
widths of the density transition regions at the edges, one may
be able to neglect the magnetic-field dependence of Ā and q̄,
in which case λ and η may be set equal to zero. Then the basis
vectors 
G10 and 
G01 are given by the simpler expressions (33)
and (34).

For the remainder of this summary, we shall limit ourselves
to the case λ = η = 0. Then, if VG is held fixed, we find that δR
is a periodic function of the magnetic field, with a fundamental
period corresponding to the addition of one flux quantum to
the area Ā. However, the fundamental period may not have the
largest Fourier amplitude, so the most visible oscillations may
correspond to a harmonic, with a period that is the fundamental
period divided by an integer.

For noninteracting electrons, in the integral quantized
Hall effect, the observed interference pattern will reflect the
fundamental AB period, where the phase increases by 2π

when the dimensionless magnetic flux φ ≡ BĀ/φ0 changes
by one, due to variation of B or of VG or both. In our current
notation, this means that nonzero Fourier components Rgh

will correspond to reciprocal lattice vectors where g = h. In
the case of weak backscattering at the constrictions, or at high
temperatures, the oscillations are simply sinusoidal, and the
dominant contributions are R11 and its conjugate R−1,−1. On
a a color-scale map of δR in the B-VG plane, AB oscillations
would appear as a series of parallel stripes with negative slope.
For stronger backscattering, at low temperatures, we may get
higher Fourier components due to multiple scattering events
across the two constrictions.

In the case of weak backscattering, Fourier components
at additional reciprocal lattice vectors can arise from electron-
electron interactions. For the IQHE, this is due to the Coulomb
interaction between electrons on the interfering edge state and
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localized electrons or holes which exist in the bulk of the
interferometer. Because the number of localized particles is
required to be an integer, the net number of localized particles
NL will jump periodically, as B or VG is varied. Interactions
with the edge then cause small variations δAI in the area
AI enclosed by the interfering edge state, which will cause
the actual number of flux quanta enclosed by AI to fluctuate
about the nominal value φ, and thus lead to an additional
modulation of the interference phase. For FQHE states, there
is an additional jump θa in the interference phase, arising
from the fractional statistics, whenever there is a change in the
number of localized quasiparticles.

If the Coulomb coupling between NL and the edge-state
charge is sufficiently strong, one finds that the dominant terms
in the Fourier expansion have g = 0, both for the IQHE and the
FQHE. In this limit, the color-scale map will show a series of
stripes which have a positive slope and �φ = e∗

out/νout, except
when νout = 0, in which case the stripes will be horizontal on
a B-VG plot.

In between the AB and CD limits, the two sets of
stripes occur simultaneously, and a map of δR will show a
checkerboard pattern, as seen in Fig. 2 above. The absolute
strengths of the various Fourier coefficients will depend on the
backscattering amplitudes in the individual constrictions and
on the temperature, as well as on three energy parameters,
which we denote KI ,KL,KIL. At high temperatures, the
Fourier amplitudes will fall off exponentially with T with
varying rates, so generally a single pair of Fourier amplitudes
will dominate at large T . This may be either the AB term
(g = h = ±1) or the CD term (g = 0,h = ±1). Then, for a
fixed gate voltage, the interference pattern in δR will be a
simple sine function of magnetic field, with either the AB or
CD period.

At lower temperatures, where many Fourier components
maybe present the situation is more complicated. We discuss
here the limit of weak backscattering, where h is limited to
h = ±1. Then, at low temperatures, one finds that the phase
θ of the interference path is a sawtoothed function of the
magnetic field, varying linearly with B most of the time, but
with periodic jumps by an amount 2π�, which occur each
time the number of localized quasiparticles NL changes by
−1. There will be νin/e

∗
in equally spaced phase jumps per

flux quanta change in the loop, which give rise to Fourier
components of 〈eiθ 〉 with arbitrary values of g. For h = 1, at
T = 0, the Fourier amplitudes vary with g as (g + � − 1)−1,
according to Eq. (25). At higher temperature the jumps will be
smeared, giving a more gradual change of 〈eiθ 〉 as B is varied.
This smearing causes the Fourier amplitudes at the higher g’s
to vanish exponentially.

We see from the above that at low temperatures, the
AB Fourier amplitude will be larger than the CD amplitude
if the jump parameter � satisfies 0 < � < 1/2, while the
reverse is true if 1/2 < � < 1. We find similarly at high
temperatures that the AB component will be larger than the
CD component if, and only if, � < 1/2. For the IQHE � is
purely a consequence of bulk-edge coupling, and it is equal to
KIL/KI . It vanishes in the extreme AB |imit (KIL → 0) and
approaches 1 in the extreme CD limit (KIL → KI ). For the
FQHE, the value of � depends on the statistical phase angle
θa and the ratio KIL/KI , according to Eq. (20), going from

|θa| /2π , in the absence of bulk-edge coupling, to 1, when this
coupling is strong. This suggests the possibility that one could
obtain a direct measure of θa by observing the discrete jump
in the interference phase θa as an additional quasihole enters
the interferometer at low temperatures. In order to extract
the value of θa , however, one would have to independently
find a measure of KIL/KI , or be able to vary KIL (say,
by varying the area of the interferometer) and extrapolate to
KIL = 0.

We have said little about the actual values of the parameters
β and γ which determine the gate-voltage periods of the AB
and CD stripes, nor have we estimated the energy parameters
KI ,KL,KIL, which determine the ratio between the AB and
CD amplitudes and the temperature dependence of these
amplitudes.

One might try to estimate β and γ by using a simplified
model, where the electron density in the sample depends on VG

but is independent of B. According to Eq. (11), this means that
if one considers a sample with fixed gate voltage, at various
values of B, corresponding to different bulk filling factors,
the parameter β will be proportional to B, while γ will be
independent of B. Using Eq. (34) we find that the VG period
for a CD stripe should be equal to e∗

out/(γ − βνout). The filling
factor νout will depend on the magnetic field, but also may
be varied by changing the voltage on the gates defining the
quantum point-contact constrictions of the interferometer. It
appears that the dependence of the gate period on B and VG

predicted by these considerations is only partly in agreement
with experiment, and that significant effects are omitted from
this simple model.13,16

Although the energy KL may be largely determined by the
geometric capacitance of the island, the parameters KIL and
KI should be sensitive to the detailed structure of the edge and
are difficult to estimate without a detailed microscopic model
and a numerical calculation. The values of these parameters
should depend also on the value of the magnetic field and on
the setting of the constrictions, which determines which edge
mode is the interfering one. For a dot of sufficiently large area,
covered by a top gate, the parameter KIL should decrease
inversely as the area, so for an integer quantized Hall state,
one would be necessarily in the AB regime. However, the
converse is not true; for a small area dot one could be in the
CD or AB regime depending on details. Further investigation
of these points will be left for future work.

It should be noted that the quantities νin and νout, which
entered our discussion in a most fundamental way, and which,
together with the area Ā, determined (at least approximately)
the field period of the CD components, are properties of the
constrictions, and are not sensitive to the filling factor in the
bulk. We have only assumed that the bulk electron density
is not smaller than the density in the constrictions, and that
the RC time for relaxation of charge inhomogeneities inside
the interferometer is shorter than the experimental time scale
for variations of the magnetic field or gate voltage.52 The
values of νin and νout may be determined experimentally by
varying the voltage on the pincer electrodes that define one of
the two constrictions in the interferometer, while the second
constriction is kept open. As the pincer voltage is varied,
one will typically pass through a sequence of intervals where
the diagonal conductance R−1

D of the device has a plateau at
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quantized values νie
2/h. If the pincer voltage is now chosen

to lie at an intermediate value between two successive plateau
values, with νi < νi+1, we expect there to be a partially
reflected edge state in the constriction, separating νout = νi

from νin = νi+1. The filling factor in the constriction can also
be varied by changing the magnetic field, with the pincer
voltage held fixed.
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