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Landau levels and band bending in few-layer epitaxial graphene
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The carrier density distributions in few-layer-graphene systems grown on the carbon face of silicon carbide
can be altered by the presence of a scanning tunneling microscope (STM) tip used to probe top-layer
electronic properties, and by a perpendicular magnetic field which induces well-defined Landau levels. Hartree
approximation calculations in the perpendicular field case show that charge tends to rearrange between the layers
so that the filling factors of most layers are pinned at integer values. We use our analysis to provide insight into
the role of buried layers in recent few-layer-graphene STM studies and discuss the limitations of our model.
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I. INTRODUCTION

Progress in the preparation and isolation of highly ordered
graphene sheets over the past few years1,2 has led to an
explosion of interest in the properties of these two-dimensional
electron systems which are remarkably simple, yet rich in
interesting mechanical and electronic properties. One type of
graphene system2 that is potentially suitable for applications
is prepared by thermal decomposition of silicon carbide (SiC).
The unique feature of these epitaxial graphene systems is that
they tend to grow not as single layers but as few-layer-graphene
(FLG) systems. The layers tend to be electrically isolated to
a reasonable degree3–7 because of partially controlled relative
rotations.8,9 FLG systems on SiC can be grown as large area
films that are extremely highly ordered, at least locally, and
doped by charge transfer from a carbon buffer layer, which is
a nongraphitic carbon layer between the SiC and the graphene
layers.

This paper addresses the distribution of charge carriers
across the FLG system. Recent measurements of Landau-level
spectra10,11 and angle-resolved photoemission12 for FLG sys-
tems grown on the carbon face of SiC show characteristics of
decoupled monolayer graphene rather than coupled graphene
multilayers. This behavior is likely due to the relative rotations
between the layers. Our work is motivated in part by an interest
in understanding the confusing13 transport properties of these
systems, which must be strongly dependent on carrier charge
distribution across the weakly coupled layers. Our immediate
motivation, however, is provided by recent11,14 scanning tun-
neling microscopy (STM) Landau-level spectroscopy studies
of FLG in the presence of an external magnetic field. Traces of
the Landau-level positions can be extracted from such spectra
as is illustrated in Fig. 1. Although STM directly probes
electronic properties in the top layer of a FLG system, there
is evidence that top-layer properties can be altered, sometimes
qualitatively, by correlations with electrons in submerged
layers.

If the density in the top layer were fixed, the Fermi level
would be pinned to one of the Landau-level energies except at
the discrete field strengths which yield integer filling factors
when the Fermi level is in between Landau levels. In practice,
experiment shows the opposite behavior. The Landau levels

tend to be pinned away from the Fermi energy, an effect that
is particularly striking in the field range between 8 T and 10 T.
At higher fields, the Landau levels split through valley and
spin splitting so that even in the field range near 12 T, the split
Landau levels avoid the Fermi energy.

The most dramatic effect seen in these experiments is
splitting within spin- and valley-split N = 1 peaks in the
density of states (DOS) as they pass through the Fermi level.14

This peculiar, fractionally filled Landau level gives evidence
for a correlated-electron state that is stable when the N = 1
Landau level of the top layer is half filled.

While the precise nature of this state remains mysterious, its
formation might depend only on correlations among top-layer
electrons; however, if one of the submerged layers is also
partially filled under the same tip-biasing and field conditions,
then this fractionally filled Landau level could depend essen-
tially on correlations between electrons in different layers.
Since half filling does not favor the formation of especially
stable states in an isolated layer, the latter possibility appears
likely. In the strong-magnetic-field quantum Hall regime with
fully formed Landau levels only weakly broadened by disorder,
correlations are strongest when Landau levels are partially
filled. One goal of the model developed in this paper attempts
to provide a basis for estimating which layers contain partially
filled Landau levels as the magnetic field strength varies.

Our paper is organized as follows. In Sec. II, we explain
our model for carrier distribution in a few-layer-graphene
system in which the buffer layer acts as a reservoir for carriers.
We assume that the growth-dependent buffer-layer properties
determine the position of the Fermi energy relative to the
Dirac point of the bottom graphene layer. Electron-electron
interactions are included only at the Hartree level. At zero
magnetic field carriers reside mainly in the layers closest
to the buffer and the density of states in the top layer is
small. When a perpendicular magnetic field is applied, the
Fermi level tends to be pinned near one of the filling factors
(ν = ±2, ± 6, ± 10, . . .) at which the integer quantum Hall
effect occurs in a graphene layer, implying that charge must be
transferred between layers as a function of field. In Sec. III, we
discuss how an STM tip can be included in such a model. When
an STM tip is introduced to study the electronic properties
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FIG. 1. (Color online) Landau-level peak positions of epitaxial
graphene on C-face SiC as a function of magnetic field obtained from
the STM measurements in Ref. 14. The position of each Landau
level is averaged over spin and valley split dI/dV peaks when these
can be separately resolved (Ref. 15). dI/dV peak positions at finite
tip-sample bias can be influenced by tip-sample band bending and
by redistributions of charge in the FLG system as explained in detail
below.

of the top layer, its carrier density tends to be altered with
a sign and magnitude that is strongly dependent on the tip
work function. The STM studies in Refs. 11,14 show that the
top layer is n type for the tip used in those experiments, so
that carrier densities peak not only near the buffer layer but
also near the top layer. In Sec. IV, we use this basic theoretical
picture to develop a theory of STM Landau-level spectroscopy
in FLG, comparing where possible with STM data. We find that
as the sample-tip bias and the magnetic field are varied, charge
tends to rearrange to achieve integer filling factors in as many
of the FLG layers as possible. In Sec. V, we conclude with a
brief summary and some suggestions for future experimental
and theoretical work.

II. FEW-LAYER-GRAPHENE MODEL

We estimate carrier charge distribution in a FLG system
grown on carbon-face SiC substrates using the model sum-
marized schematically in Fig. 2. Earlier work considered the
charge distribution on mono- and bilayer graphene16 and for
multilayer graphene17 in the continuum limit, both in the
absence of a magnetic field, our main interest. In Fig. 2, the
graphene layers are labeled by integer numbers starting from
label 1 for the layer closest to the buffer layer to M for the
top layer. (The buffer layer between the SiC and the graphene
layers, which acts as a reservoir for carriers, was omitted for
simplicity.) In equilibrium all layers share the same chemical
potential μ. The Dirac point in layer i is shifted by its local
electric potential ui . The energy spectrum of each layer is that
of monolayer graphene with the Dirac point shifted by ui . It
follows that the charge density in layer i, σi , satisfies

σi = sgn(μ − ui)

π

(
μ − ui

h̄v

)2

. (1)

FIG. 2. (Color online) Schematic illustration of a few-layer-
graphene system without an STM tip. The buffer layer between the
SiC and the graphene layers was omitted for simplicity.

The potential energy ui is in turn evaluated from the charge
densities using the Poisson equation which implies that the
electric field Ei between layer i and layer i + 1 satisfies

ε (Ei − Ei−1) = 4π (−e)σi. (2)

The dielectric constant ε in Eq. (2) accounts for the polariz-
ability between graphene sheets. Here we choose ε = 1; we
have found that changing the value of ε does not qualitatively
alter the main results of this paper.

Since the electric field in the vacuum above the top (Mth)
layer Evac must vanish in the absence of an STM tip, the
electric fields between all graphene sheets are readily evaluated
iteratively given the charge densities σi . Starting from layer 1
and adding a contribution due to the electric field between a
layer and the layer above gives

ui+1 = ui + edEi, (3)

where d = 0.335 nm is the interlayer separation between
graphene layers. Our neglect of interaction effects beyond
electrostatics is supported in the zero magnetic field limit by
recent Green’s function screened Coulomb (GW) many-body
calculations18 by Profumo et al. As we discuss below, ex-
change and correlation effects are likely to be more important
in large magnetic fields.

We model the role of the buffer layer by assuming that its
equilibration with the bottom graphene layer fixes the value
of μ − u1. It is known that the carrier density of the graphene
system is sensitive to the microstructure of the disordered
buffer layer, and hence to FLG growth conditions. For a given
sample, some carriers remain after the bonding between the
buffer layer and the SiC substrate is established. Energy in
the system is lowered as these electrons are transferred to the
π bands of the first graphene layer. u1 is determined by a
balance between the chemical driving force for the transfer
and the band and electrostatic energy cost of adding electrons
to the graphene. In assuming that u1 is independent of field,
as we do below, we are taking advantage of the fact that
the Landau-level separation at the Fermi energy of the first
graphene sheet is small compared to μ − u1. In modeling
STM data on a particular sample, imperfect knowledge
of the most appropriate value for μ − u1 is an important
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source of uncertainty that limits predictive power. For the
calculations described below we choose μ − u1 = 360 meV,
an estimate that is motivated by spectroscopic measurements19

in multilayer graphene grown on the C face of the SiC
substrate. In the rest of this paper we choose our zero of energy
so that u1 = 0.

To explain how band and electrostatic energies combine to
determine carrier distributions, we first consider double-layer
graphene with a chemical potential μ > 0. From the Poisson
equation with Evac = 0, the electric field between layers, E,
satisfies εE = 4πeσ2. The potential energy of the top layer is
u2 = eEd. It follows that

σ1 = 1

π

(
μ

h̄v

)2

, (4)

σ2 = sgn (μ − u2)

π

(
μ − u2

h̄v

)2

= sgn (μ − u2)

π

(
μ

h̄v

)2

f (β),

where

f (β) = (
√

β2 + 2β − β)2 (5)

and β = ε(h̄v)2/(8e2dμ) is a unitless quantity which controls
the energy balance of charge moving between layers. Here v

is the π -band velocity at the Dirac point which is proportional
to the intralayer hopping energy γ0. For μ = 360 meV, ε = 1,
and γ0 = 3 eV, β ≈ 0.29 and f (β) ≈ 0.28; thus the top layer
has 28% of the bottom-layer charge.

For multilayers with more than two layers, the distribution
follows from a simple numerical calculation. The layer charge
density is calculated by integrating the Landau-level density
of states weighted by the Fermi factor for the appropriate
chemical potential. Then from the resulting layer densities,
layer potentials are calculated using the Poisson equation in
Eq. (2). This process is repeated until a self-consistency is
reached.

The charge distribution for a decoupled 6-layer graphene
stack at B = 0 T and B = 10 T calculated with the same

FIG. 3. (Color online) Charge density vs layer index for a 6-layer
FLG system at B = 0 T and B = 10 T. Here chemical potential
μ = 360 meV and temperature T = 30 K were used.

parameters used in the double-layer graphene is shown in
Fig. 3. For B = 0 T, layers above the bottom layer have in
total 32% of the bottom-layer charge and this ratio is almost
independent of the number of layers. As the magnetic field is
turned on, the charge distribution is altered due to the formation
of Landau levels, particularly in the low-density layers with
a Fermi level near the Dirac point. Because a Landau level
appears precisely at the Dirac point in a graphene sheet, a
magnetic field causes a peak in the density of states to appear
at the same energy at which the density of states vanishes
in the absence of a magnetic field. This feature of graphene
physics strengthens magnetoelectric effects associated with
Landau-level quantization.

III. STM TIP MODEL

Figure 4 shows a schematic illustration of a FLG system
with an STM tip. We model an STM tip as an additional layer

Layer M
DOS

Layer M-1
DOS

Layer M-2
DOS

eV

Φtip

Φgr

e Etip d

μ

μtip

u1 = 0

uM
uM-1

uM-2

FIG. 4. (Color online) Upper panel shows schematic illustration
of a few-layer-graphene system with an STM tip. The buffer layer
between the SiC and the graphene layers was omitted for simplicity.
Lower panel is the energy level diagram for this system.

155430-3



MIN, ADAM, SONG, STROSCIO, STILES, AND MACDONALD PHYSICAL REVIEW B 83, 155430 (2011)

which acts as a top gate electrode. The distance between the
tip and graphene surface is taken as dvac = 1 nm.20

Experimentally, it is found that the graphene work function,
i.e., the energy to take an electron from the Fermi energy to
vacuum, depends on the charge on the surface layer. However,
it is also found that the energy to take a graphene electron
from the Dirac point to vacuum does not change as a function
of the charge density.21 We denote the latter as �gr. In
general, the work function of the tip (�tip) and the graphene
layer [�gr − (μ − uM )] are different. This difference in work
functions, �gr − (μ − uM ) − �tip ≡ � − (μ − uM ), leads to
charge transfer between the surfaces when they are electrically
connected and induces an electric field between the surface
and tip. As seen in the bottom panel of Fig. 4, the electric field
satisfies

μ + eV = μtip = uM + eEvacdvac + � (6)

as a voltage V is applied between tip and sample.
In STM spectroscopy a new tunneling transport channel

opens up, giving rise to a dI/dV peak whenever the chemical
potential of the STM tip is aligned with one of the top-layer
Landau levels. The experimental dI/dV peaks therefore
identify the tip-sample bias voltages at which the following
resonant tunneling conditions are satisfied:

μ + eV = uM + εN (B), (7)

where εN (B) = sgn (N )
√

2|N |eh̄v2B/c is the graphene-sheet
Landau-level energy. To illustrate the effect of the tip, in Fig. 5
we calculate the charge distribution of each layer at B = 10
T for � = +0.4 eV, 0 eV, and −0.4 eV when the tip-sample
bias V is zero.

For � = 0 eV and V = 0 V, the FLG charge distribution
is identical to the distribution without an STM tip at B = 10
T shown in Fig. 3. For nonzero �, however, an electric field
between the tip and sample surface is induced and distorts the
layer charge distribution even at zero tip-sample bias.

FIG. 5. (Color online) Charge density in the layers of a six-layer
stack at B = 10 T for � = +0.4 eV, 0 eV, and −0.4 eV when the tip-
sample bias is zero. These curves were obtained using μ = 360 meV
and T = 30 K. By construction, electrons have a positive carrier
density, while holes have negative density (see text for details).

FIG. 6. (Color online) The field dependence of the N = 0
Dirac-point Landau level for different work-function parameters �

(Ref. 15). Here μ = 360 meV and T = 30 K were used.

IV. FLG LANDAU-LEVEL TUNNELING SPECTROSCOPY

At weak fields, uM and Evac are approximately constant
so that the spacing in electronvolts between dI/dV peaks
matches the energetic separation between top-layer Landau
levels. The spectroscopy data can therefore be used to measure
the Dirac velocity parameter which characterizes the energy
scale of the graphene layer’s Dirac cones. In the strong-field
limit, however, the density of states in each graphene layer is
altered, and this in turn alters the densities at which equilibria
are established between adjacent layers. It follows that both
uM and Evac depend on field. One goal of our calculations is
to estimate the magnitude and character of this effect.

To illustrate this effect we first examine the field dependence
of the N = 0 Dirac-point Landau-level feature, plotted in
Fig. 6. Since εN=0(B) ≡ 0, the field dependence of this spectral
feature is due entirely to the field dependence of charge
distributions in the FLG system. The calculations in Fig. 6 were
carried out at a finite temperature T = 30 K, in part to crudely
model the Landau-level smearing influence of disorder. At
weak fields the N = 0 dI/dV peak’s position is independent
of field as expected. The position of these peaks is primarily
dependent on the model’s work-function parameter �.

As illustrated in Fig. 6, the position of the experimental
peak at eV ≈ −135 meV and at B = 5 T is reproduced
approximately by setting μ = 360 meV, which leads to
uM ≈ 225 meV and � ≈ 400 meV. The slow downward drift
in the weak-field N = 0 Dirac point peak with increasing
magnetic field is not reproduced by our calculation, and
could be due to an increase in the strength of exchange and
correlation effects in FLG with magnetic field. The strong
variations in peak positions with field that begin at around 6
T are the quantizing-magnetic-field effects on which we will
focus in the remainder of this paper.

The influence of Landau quantization on dI/dV spectra is
illustrated in more detail in Fig. 7, which shows the prediction
of the theoretical model for � = 400 meV and μ = 360 meV
at T = 30 K.

When the Landau-level energies in a particular layer are
far away from the Fermi energy, the layer filling factor
νi = 2π
2σi , where 
 = √

h̄c/eB is pinned at one of the
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FIG. 7. (Color online) Theoretical prediction of top-layer
Landau-level peak positions as a function of magnetic field for
� = 400 meV and μ = 360 meV at T = 30 K.

full-Landau-level filling factor values: νi = ±2, ± 6,

± 10, · · ·. For a fixed filling factor the carrier density in a layer
increases with field and its Landau level energies therefore
increase due to electrostatic repulsion. The increase in density
must be achieved by charge transfer from other layers. When
a Landau level in a layer is close to the Fermi level, the density
in that layer will tend to decrease as its Landau level empties
with increasing field. This is the source of charge transferred
to other layers. This behavior contrasts with that of an isolated
system with fixed charge density in which integer filling factors
occur only at isolated field values and successive Landau-level
energies are pinned to the Fermi level.

We refer to layers which have partially filled Landau levels
as active and to layers which have full Landau levels as
inactive. Since the total filling factor is a smooth function
of field, at least one layer must be active at generic field
values. Strong interlayer correlations are likely when two or
more layers are active. It would be surprising if interlayer
correlation effects were not important, given the relationship
between the important length scales in the problem. At 10 T,
the total graphene-layer thickness Md ≈ 2 nm is typically
much less than the average separation of electrons within
one layer 1/

√
σi ≈ 10 nm as well as the magnetic length


 = √
h̄c/eB ≈ 8.1 nm. Such correlations could give rise to

a state with spontaneous interlayer coherence14 among other
possibilities. As shown below, our model calculations provide
estimates of the field ranges at which two or more layers
become active.

For the parameters of Fig. 7 the model predicts that the top
layer is active between B = 5 T and B = 7 T. In this field
range the N = 2 Landau level is pinned to the Fermi level
and the filling factor varies between ν = 10 and ν = 6.22 The
top layer is then briefly inactive before becoming active again
above 8 T when the N = 1 Landau level is pinned to the Fermi
level. In inactive field ranges, the density in the top layer is
proportional to magnetic field and the energies of all levels in
that layer increase. In the active regions, the density tends to
decrease and the rate at which energy levels increase with field
for N > 0 is suppressed by the decrease in density. This is
only a tendency, however, since the electrostatic energy in the

FIG. 8. (Color online) Electrostatic energy, density, and filling
factor of each layer as a function of magnetic field for � = 400 meV,
μ = 360 meV, and T = 30 K at zero tip-sample bias voltage. The
filling factor of the bottom layer (not shown) exceeds ν = 12 over
the field range considered. Numbers indicate layer numbers, with 6
being the topmost layer.

top layer depends on the densities at all layers. The evolution
of the STM spectrum also depends on the evolution of charge
density in the submerged layers that are not directly probed by
the STM. Note that the distribution of charge among the FLG
layers also depends somewhat on the tip-sample bias voltage.
Figure 8 shows the electrostatic energy, density, and filling
factor of each layer as a function of magnetic field at zero
bias voltage. These results are consistent with the preceding
discussion.
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FIG. 9. (Color online) Landau-level separations between N =
0 and the N = 1 (N = 2), denoted as LL10 (LL20) for theoretical
calculations and STM measurements (Ref. 15). For the theoretical
calculations, � = 400 meV and μ = 360 meV at T = 30 K were
used.

V. DISCUSSION AND CONCLUSIONS

Our theoretical model does not account for exchange
and correlation effects, which can alter the energy change
associated with adding electrons to empty (or partially filled)
Landau levels and the energy change associated with removing
electrons from full (or partially full) Landau levels. Systematic
discrepancies between present theory and experiment likely
signal these neglected interaction effects. These discrepancies
include the low field variation of the zeroth-Landau-level
energy (Fig. 6) and the pinning of the first Landau level away
from the Fermi energy rather than at it (Fig. 1).

In Fig. 9, for example, we compare experimental and
theoretical energy separations between N = 0 and the N =
1,2 dI/dV features as a function of magnetic field strength.
Even at the Hartree level there are additions to the

√
B band

energy contribution due to changes in electrostatic energies
with tip-sample bias voltages indicating overestimation of the
electrostatic tip-gating effects.

We note that the filling-factor-dependent features in the
field dependence of the Landau-level energies [Fig. 8(c)] are
weaker in experiment than in this Hartree theory. We believe
that these differences mainly reflect exchange and correlation
energies which mitigate electrostatic effects. The presence of
strong correlation effects in this field range is apparent in
the experimental interaction-induced Landau-level splittings
which have been suppressed in Fig. 9 by averaging over all
experimental features identified with N = 0 and N = 1.

The approximately linear reduction with field (at weak
fields) of the bias voltage at which the N = 0 peak is observed
(see Fig. 6) is completely absent in theory and unexplained at
present.

In addition to effects associated with exchange and cor-
relation within a layer, we expect that interlayer correlations
play an essential role when more than one layer is active, at
least when the magnetic field is strong and Landau levels are
well developed. In Fig. 10 we plot the field dependence of the
partial filling factor (per layer and spin) of the active Landau
level: νmod

i ≡ |(ν/4 mod 1) − 1/2|, which we refer to as the

FIG. 10. (Color online) Filling factor modulus νmod
i as a function

of magnetic field for � = 400 meV and μ = 360 meV at T = 30 K,
where νmod

i = |(ν/4 mod 1) − 1/2|. Note that νmod
i = 0 for νi =

±2, ± 6, ± 10, · · ·, while νmod
i = 1/2 for νi = 0, ± 4, ± 8, · · ·. The

points were evaluated at zero bias voltage.

modular filling factor. νmod
i is defined so that it vanishes when

a Landau level is either completely filled or completely empty,
namely at total filling factors νi = ±2, ± 6, ± 10, · · ·. Note
that the layer is inactive when νmod

i = 0, and most active when
νmod

i = 0.5. Around B = 11 T, we see that the top (6th) layer
and the 2nd layer have filling factors close to half-filled filling
factors, ν6 = 4 and ν2 = 8, respectively (in this field range
the intervening layers all have total Landau-level filling factor
ν = 2). This is precisely the field range in which a gap appears
to open in the top layer N = 1 tunneling density of states in
STM studies.14 The gap could therefore be due to correlations
between N = 1 electrons in the top layer and N = 2 electrons
in layer 2. The participation of electrons in another layer could
explain the appearance of a gap at a partial filling factor which
is not known to support large gaps in a single-layer system.
One possible state that is consistent with experiments is one
in which coherence is spontaneously23 established between
layers 2 and 6. Around B = 5 T and below, the top layer and 5th
layers become active, but due to the smaller field magnitude,
strong correlation effects are more easily suppressed by
disorder.

The analysis presented in this paper highlights both advan-
tages and disadvantages of few-layer-graphene systems for
physics studies. Because the electronic degrees of freedom
in all layers can play an active role, particularly at strong
magnetic fields, the physics is extremely rich. On the other
hand, the same property makes it more challenging to
uniquely interpret observations using surface physics probes,
like STM, which are directly sensitive mainly to top-layer
properties.
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