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The propagation of surface plasmons along rough metal surfaces is investigated with transformation optics.
The roughness is modeled on a nanometer scale either by partly embedding a cylinder of metal into the surface
(convex rough surface) or by excavating a cylindrical cavity from it (concave rough surface). These two structures
can be treated analytically by means of conformal transformation. The interaction of surface plasmons with
the singularities of these structures is shown to induce extreme field enhancements. These modes dominate
the surface-enhanced Raman-scattering response and enhancement factors of the order of 107 are predicted.
Interestingly, concave rough surfaces are shown to be the best candidates for surface-enhanced Raman scattering
due to a stronger field enhancement and a lower sensitivity to the incident light polarization. Our analytical
approach also points out the influence of the contact angle between the asperities and the metal surface on the
bandwidth and the efficiency of the light-harvesting process.
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I. INTRODUCTION

Surface-enhanced Raman scattering (SERS) corresponds to
the significant enhancement (of up to 106) of Raman signals
observed for molecules absorbed on specially prepared metal
surfaces.1–3 The SERS effect has been demonstrated experi-
mentally in a number of noble metals such as copper, silver,
and gold, either in the form of nanoparticles or with structured
surfaces.1–9 Although the basic physics behind SERS is not
completely understood, the huge enhancements of Raman
signals have been mainly attributed to two mechanisms,
namely, a classical electromagnetic (EM) effect and a chemical
effect. To a first-order approximation, the EM contribution to
the Raman signal enhancement can be modeled as the fourth
power of the total electric-field enhancement at the molecule
position.10 This fact has enabled a computational approach
to SERS, where the interaction of light with metal surfaces
is studied through an implementation of Maxwell’s equations
on adaptive meshes.10 Since then, theoretical investigations
of this problem have drawn considerable attention.11–22 It
is now generally agreed that the exotic EM enhancements
in SERS experiments are primarily related to the strongly
localized surface-plasmon modes induced by sharp surface
protrusions or at interstices between nanoparticles.10–12,15–20,22

Further quantitative understanding of such surface-plasmon
modes is strongly dependent on theoretical advances in this
area.

In the literature, theoretical investigations of the plasmonic
structures used in SERS experiments have been mostly limited
to numerical simulations. Analytical treatments have still
remained a challenge, probably because the presence of sharp
surface protrusions or other singularities makes the calculation
more complex. Transformation optics23,24 provides an elegant
and powerful solution to this problem. The general strategy is
as follows: start with a well-understood canonical plasmonic
system whose analytical description is possible, and then
apply a conformal transformation to deduce the solution for
a much more complex geometry.25 This concept was first
deployed to design efficient light-harvesting devices25 and then

extended to examine a general class of singular structures.26

In Ref. 26, we have shown that singular plasmonic structures
(such as metal surfaces with sharp edges or triangular crevices)
generally exhibit a cutoff behavior and a divergent feature.
However, the light-harvesting properties and the Raman-
scattering responses of such singular structures have not been
studied in detail.

This paper will focus on the interaction of surface-plasmon
modes with two typical surface defeats that arise on rough
metal surfaces. The first one is a cylindrical protrusion which
is partly embedded in a metal surface [see Fig. 1(b1)], while
the second one corresponds to a cylindrical groove engraved
onto a planar metal surface [see Fig. 1(b2)]. In the following
part of the paper, we shall refer to the structures depicted
in Figs. 1(b1) and 1(b2) as the convex and concave rough
surfaces, respectively. As we will see, a decisive parameter is
the angle subtended at the apex [e.g., θ depicted in Figs. 1 (b1)
and 1(b2)] which we will refer to as the contact angle between
the asperities and the metal surface. The surface-plasmon
dispersion in these two structures is shown to exhibit a
lower bound cut-off frequency. Around this frequency, the
compression of energy results in a dramatic increase of
electric fields as surface plasmons propagate to the apexes
of the structure. The corresponding surface-enhanced Raman-
scattering response is thus highly localized in the vicinities
of the apexes. On the contrary, close to the surface-plasmon
frequency, the electric field vanishes in the vicinities of the two
apexes due to the decrease of the surface-plasmon velocity
and the increase of the dissipation losses. This gives rise to
a considerable Raman signal enhancement (with a maximum
up to 107 in some cases) which spreads over the whole metal
surface. The influence of other parameters, such as the contact
angle θ and the polarization of the incident light, will be
also studied in detail. In particular, we will show that the
concave rough surface induces a much larger Raman-scattering
response and is more robust to the polarization of the incident
light than a convex rough surface. A small contact angle
between the asperities and the metal surface will be shown to
greatly improve the bandwidth and the efficiency of the SERS
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FIG. 1. (Color online) The schematic of transformation. (a1) and
(a2) Periodic metallic slabs excited by a line dipole array, transporting
SPPs to x → ±∞. The thicknesses of each dielectric media and
metallic slab are d1 and d2, respectively. In (a1) d1 < d2, while in (a2)
d1 > d2. Under a conformal transformation described by Eq. (1), the
convex (b1) and concave (b2) rough surfaces are obtained, and the
line dipole array in (a1)/(a2) is mapped to a uniform electric field
E′

inc in (b1)/(b2).

process. Such a broadband nature of the enhancement would
be particularly important in SERS experiments since it would
lead to an efficient concentration of the exciting radiation at the
molecular site and an efficient collection of emitted radiation,
even if emitted at a very different frequency.

The organization of this paper is as follows: in Sec. II, the
transformation of geometries is first presented; then in Sec. III,
the coupling of a dipole array to a periodic metallodielectric
system (which is equivalent to the problem of convex/concave
rough surfaces under plane-wave illumination) is discussed
in detail; in Sec. IV, closed-form expressions of the field
enhancement and of the power absorbed by convex/concave
rough surfaces are derived analytically. The surface-plasmon
modes responsible for SERS responses are investigated and
the optical responses of the two structures are studied as a
function of the contact angle θ ; finally, a conclusion is drawn
in Sec. V.

II. TRANSFORMATION OF GEOMETRIES

The original geometry is a line dipole array embedded in
periodic metallic slabs, as shown in Figs. 1(a1) and 1(a2). Each
metallic slab with a thickness d2 is separated by a distance
d1 from the adjacent one. Each element of the line dipole
array is located at the position x = 0, y = md (where m is an
arbitrary integer). These dipoles couple to the surface-plasmon
polaritons (SPPs) supported by the surrounding metal slabs
and transport their energy out to infinity. Now we apply the
following conformal transformation:

z′ = a

exp(2πz/d) − 1
+ a

2
, (1)

where z = x + iy and z′ = x ′ + iy ′ are the usual complex
number notations. The configurations shown in Figs. 1(a1)

and 1(a2) are mapped to the convex [Fig. 1(b1)] and concave
[Fig. 1(b2)] rough surfaces, respectively. In this process, two
singularities are created at z′ = a/2 and z′ = −a/2 in the
transformed geometry, corresponding to x → +∞ and x →
−∞ in the original coordinate system. Therefore, similarly
to the initial metallodielectric system which supports SPPs
transporting the energy to infinity [Figs. 1(a1) and 1(a2)],
the transformed structure [Figs. 1(b1) and 1(b2)] supports
localized surface plasmons propagating toward the structure
apexes (singularities) where energy accumulates.25,26 The
angle subtended at the apex, which will be referred to as the
contact angle, is denoted as θ . It takes the following form:

θ = 2πd1/d, when d1 < d2,

θ = 2πd2/d, when d1 > d2,
(2)

where d = d1 + d2. The radius of the embedded
cylinder/extracted cavity shown in Figs. 1(b1) and 1(b2) is
given by

R = a

2 sin θ
. (3)

The transformation of the sources is equally important. The
location of each dipole z = imd is transformed to z′ = ∞,
indicating that the two charges comprising each element of the
line dipole array in the original coordinate are also mapped to
infinity. As pointed out in Ref. 25, these two charges (separated
by an infinite distance) give rise to a uniform electric field in
the transformed space. If each element of the dipole array in
the z frame has a dipole moment p = pxx + pyy, the incident
electric field in the z′ frame has a strength

Ē′inc = 1

ε0ad
(xpx − ypy). (4)

When the dimensions of the structures are sufficiently
small compared with the wavelength of the probe light (e.g.,
R < 50 nm), solving the Helmholtz equation (∇′2 + k2)φ′ = 0
(in the transformed space) is equivalent to solving the Laplace
equation ∇′2φ′ = 0. This indicates that the surface plasmon
modes can be well described in the near-field approximation
and the uniform electric field can be considered as an
incident plane wave. In the case of two-dimensional conformal
transformations, the permittivity of the material remains
unchanged. The form invariance of the Laplace equations
insures the preservation of the electrostatic potential φ(x,y) =
φ′(x ′,y ′), thus solving the problem in the original frame
[Figs. 1(a1) and 1(a2)] will provide an analytical solution for
the concave/convex rough surface problems [Figs. 1(b1) and
1(b2)].

III. COUPLING OF A LINE DIPOLE ARRAY TO PERIODIC
METALLIC SLABS

To calculate the potential induced in the periodic metal-
lodielectric structure, we first expand the incident potential of
each dipole array element by a Fourier transform along the
x direction:

φinc(k) =
∫

φinc(x,y)e−ikx dx

= 1

2πε0

∫ ∞

−∞

xpx + ypy

x2 + y2
e−ikx dx = a(k)e−|ky|, (5)
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with

a(k) = py sgn(y) − ipx sgn(k)

2ε0
. (6)

sgn(·) represents the sign function. Since the structure shown
in Figs. 1(a1) and 1(a2) is completely periodic along the y
direction, solving the potential in one period will give the
solution in the whole space. Here, we focus on the period −d <

y < 0 and write the potential in the dielectric medium (−d1 <

y < 0) and the metallic slab (−d < y < −d1) as follows:

φsca(k) = b−(k)eikx+|k|y + b+(k)eikx+|k|y, (7)

φm(k) = c−(k)eikx+|k|y + c+(k)eikx+|k|y, (8)

where b−(k) and b+(k) are the Fourier coefficients associated
with the scattering potential, while c−(k) and c+(k) correspond

to the potential inside the metal. The boundary conditions at the
metal/dielectric interface and the periodicity of the problem
yield the following equations:

a(k)e−|k|d1 + b−(k)e−|k|d1 + b+e|k|d1

= c−(k)e−|k|d1 + c+(k)e|k|d1 , (9)

a(k)e−|k|d1 + b−(k)e−|k|d1 − b+(k)e|k|d1

= εc−(k)e−|k|d1 − εc+(k)e|k|d1 , (10)

a(k) + b−(k) + b+(k) = c−e−|k|d + c+e|k|d, (11)

a(k) − b−(k) + b+(k) = −εc−(k)e−|k|d + εc+(k)e|k|d . (12)

Then the four unknown coefficients can be determined by
solving Eqs. (9)–(12):

b−(k) = (1 − e|k|d ) + (e|k|d1 − e|k|d2 )e|k|d2+2α + (e2|k|d2 − 1)e2|k|d1+α

e2α(e|k|d1 − e|k|d2 )2 − (e|k|d − 1)2
a(k), (13)

b+(k) = (1 − e|k|d ) + (e|k|d1 − e|k|d2 )e|k|d2+2α + (e2|k|d2 − 1)eα

e2α(e|k|d1 − e|k|d2 )2 − (e|k|d − 1)2
a(k), (14)

c−(k)= 2e|k|d

ε + 1

(1 − e|k|d ) + (e|k|d2 − e|k|d1 )e|k|d1+α

e2α(e|k|d1 − e|k|d2 )2 − (e|k|d − 1)2
a(k), (15)

c+(k)= 2

ε + 1

(1 − e|k|d ) + (e|k|d2 − e|k|d1 )e−|k|d1+α

e2α(e|k|d1 − e|k|d2 )2 − (e|k|d − 1)2
a(k),

(16)

where we have introduced a constant

α =
{

ln[(ε − 1)/(ε + 1)], when Re{ε} > −1
ln[(ε − 1)/(ε + 1)], when Re{ε} < −1.

(17)

Equations (13)–(16) indicate that the four unknown coeffi-
cients diverge under the same condition:

e2α(e|k|d1 − e|k|d2 )2 − (e|k|d − 1)2 = 0. (18)

This is the dispersion relation of surface plasmons sup-
ported by periodic metallic slabs under the near-field approx-
imation. Substituting the expressions of d1 and d2 [Eqs. (2)]
into Eq. (18) yields

sinh

[
(1 − θ/π )|k|d

2

]
= e−α sinh

( |k|d
2

)
. (19)

Equation (19) indicates that |k|d is a complex number
uniquely determined by α and θ . Let us assume |k|d = f (α,θ ).
Its exact value can be obtained by applying a computational
recurrence method to Eq. (19). However, a simple closed form
of f (α,θ ) is not available. In the following, we shall make
some effort to find its approximate solution by considering
the asymptotic limits of f (α,θ ) when f (α,θ ) → 0 and

f (α,θ ) � 1.27 A detailed calculation shows that to a first-order
approximation, f (α,θ ) can be written as

f (α,θ ) =
{ 2πα

θ
, f (α,θ ) � 1

2
√

6
√

1−(1−θ/π)eα

1−(1−θ/π)3eα−1 , f (α,θ ) → 0.
(20)

In Fig. 2 we plot the exact value of f (α,θ ) (the blue
solid line) as well as its large-scale approximation (the
black dashed line) and small-scale approximation (the red
dash-dotted line). Here the metal is assumed to be silver,
with the permittivity taken from experimental data.28 The
agreement between the exact and approximate results indicates
that by appropriately combining the small- and large-scale
limits of f (α,θ ) (at the intersection point of the blue dashed
line and red dashed-dotted line), an approximate closed-form
solution can be obtained at any frequency. Interestingly, Fig. 2
also shows that surface-plasmon excitations in the periodic
metallodielectric structure have a lower bound cutoff at a
finite frequency ωc and an upper bound cutoff below the
bulk plasma frequency ωp. This phenomenon is quite different
from what happens in a single metallic slab, where the SPPs
dispersion relation does not show any lower bound cutoff while
an upper bound cutoff is expected at ωp. Note that due to the
relatively narrow band of the mode excited above the surface-
plasmon frequency ωsp, the upper bound is not prominent in
Fig. 2.

The cutoff behavior can also be understood by taking the
limit k → 0 in Eq. (18), which yields

(
d1 + d2

d1 − d2

)2

=
(

ε − 1

ε + 1

)2

. (21)
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The lower bound cutoff frequency ωc and upper bound
cutoff frequency ω′

c can then be determined through a
simplification of Eq. (21),

ε(ωc) = 1

ε(ω′
c)

= −max{d1,d2}
min{d1,d2} , (22)

where ε(ωc) and ε(ω′
c) are the permittivity of the metal at ωc

and ω′
c, respectively. When d1 � d2 (or d1 � d2), the periodic

metallodielectric structure is equivalent to a single metallic
slab (or two semi-infinite metal surfaces separated by a thin
dielectric film). In this case, Eq. (22) is reduced to ε(ωc) →
−∞ and ε(ω′

c) → 0, indicating that the lower bound cutoff
occurs at zero frequency (ωc = 0) and the upper bound cutoff
occurs at the bulk plasma frequency (ω′

c = ωp).
Now that we have solved the problem in k space, the induced

potentials can then be deduced in the real space by applying
an inverse Fourier transform to Eqs. (7) and (8):

φsca(x,y) = 1

2π

∫
[b−(k)e|k|y + b+(k)e−|k|y]eikx dk, (23)

φm(x,y) = 1

2π

∫
[c−(k)e|k|y + c+(k)e−|k|y]eikx dk. (24)

To perform the integrals in Eqs. (23) and (24), we have to
evaluate the poles in the integrand and a cut which runs from
k = 0 to either k = +i∞ or k = −i∞.29 The poles are related
to the excitation of propagating surface plasmons, while the
cut is associated with lossy surface waves, which dissipate
no energy if ε is real.30 Since the SPPs excitation above the
surface-plasmon frequency ωsp is relatively narrow band (e.g.,
Fig. 2 shows that the bandwidth of this mode is smaller than
40 THz for silver), we shall focus on the frequency range below
ωsp in the following discussions. In this case, the imaginary
part of ε is relatively small compared with the real part. Thus,
we can neglect the contribution from the cut and only evaluate
the contribution of the poles in b−(k), b+(k), c−(k), and c+(k).
It is worth pointing out that the sum of the residues of the poles
diverges at the point x = 0, y = 0, indicating that the electric
field is infinite at the dipole position. In the rest of the space,
the integrals in Eqs. (23) and (24) are dominated by the pole
with the smallest imaginary part. A detailed calculation shows
that when x2 + y2 	= 0 the induced potentials in the real space
take the following form:

φsca(x,y) = − 1

4ε0d

[
[i�ypy + sgn(x)�xPx]ef (α,θ)y/d + [i	ypy + sgn(x)	xPx]e−f (α,θ)y/d

]
eif (α,θ)|x|/d , (25)

φm(x,y) = − 1

2ε0(ε + 1)d

[
[i
ypy + sgn(x)
xpx]ef (α,θ)y/d + [i�ypy + sgn(x)�xpx]e−f (α,θ)y/d

]
eif (α,θ)|x|/d , (26)

where

�x = d[eα+2f (α,θ)(d1+d2)/d − eα+2f (α,θ)d1/d − e2α+2f (α,θ)d2/d + (e2α − 1)ef (α,θ) + 1]

(ef (α,θ) − 1)[eα(d1ef (α,θ)d1/d − d2ef (α,θ)d2/d )sgn(d1 − d2) − def (α,θ)]
,

�y = d[eα+2f (α,θ)(d1+d2)/d − eα+2f (α,θ)d1/d + e2α+2f (α,θ)d2/d − (e2α − 1)ef (α,θ) − 1]

(ef (α,θ) − 1)[eα(d1ef (α,θ)d1/d − d2ef (α,θ)d2/d )sgn(d1 − d2) − def (α,θ)]
,

	x = d[(eα+2f (α,θ)d2/d + 1)(1 − eα) + (e2α − 1)ef (α,θ)]

(ef (α,θ) − 1)[eα(d1ef (α,θ)d1/d − d2ef (α,θ)d2/d )sgn(d1 − d2) − def (α,θ)]
,

	y = −d[(eα+2f (α,θ)d2/d − 1)(1 + eα) − (e2α − 1)ef (α,θ)]

(ef (α,θ) − 1)[eα(d1ef (α,θ)d1/d − d2ef (α,θ)d2/d )sgn(d1 − d2) − def (α,θ)]
,


x = d[(eα − 1)ef (α,θ) − eα+2f (α,θ)d1/d + 1]

(ef (α,θ) − 1)[eα(d1ef (α,θ)d1/d − d2ef (α,θ)d2/d )sgn(d1 − d2) − def (α,θ)]
,


x = d[(eα + 1)ef (α,θ) − eα+2f (α,θ)d1/d − 1]

(ef (α,θ) − 1)[eα(d1ef (α,θ)d1/d − d2ef (α,θ)d2/d )sgn(d1 − d2) − def (α,θ)]
,

�x = d[1 − ef (α,θ) + eα+f (α,θ)(d2−d1)/d − eα]

(ef (α,θ) − 1)[eα(d1ef (α,θ)d1/d − d2efε,θ d2/d )sgn(d1 − d2) − def (α,θ)],

�y = d[1 − ef (α,θ) − eα+f (α,θ)(d2−d1)/d + eα]

(ef (α,θ) − 1)[eα(d1ef (α,θ)d1/d − d2ef (α,θ)d2/d )sgn(d1 − d2) − def (α,θ)]
.
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FIG. 2. (Color online) The dispersion relation of SPPs supported
by the periodic metallodielectric structure for d1/d2 = 20 (upper
panel) and d1/d2 = 5 (bottom panel). In both figures, the blue
solid line corresponds to the exact solution to Eq. (19) using a
computational recurrence method,26 while the black dashed line
and the red dash-dotted line are the large-scale and the small-scale
approximation of f (a,θ ), respectively. Here, the metal is assumed to
be silver, with the permittivity taken from Palik’s experimental data.27

The two frequencies ωc and ωsp depicted in the figures represent the
cutoff frequency and the surface-plasmon frequency, respectively.

Now that the solution to the original metallodielectric
structure is obtained, the problem can be solved in the
transformed space.

IV. SOLUTION TO THE TRANSFORMED STRUCTURES

A. The cutoff and divergent features

From the induced potential obtained in Sec. III, we can
study the convex/concave rough surface in the transformed
geometry. As pointed out in Ref. 26, singular plasmonic
structures exhibit a cutoff behavior and a divergent feature.
Here we first specify two characteristic frequencies for the
structures shown in Figs. 1(b1) and 1(b2). The first one is the
cutoff frequency ωc (which is related to the cutoff behavior)
and the second one is the critical frequency ω0 (which is
associated with the divergent feature).

The cutoff behavior has already been pointed out in the
original frame. Replacing d1 and d2 by θ [Eq. (2)] into Eq. (22),

FIG. 3. (Color online) The dependence of ωc and ω0 on the
contact angle θ .

one can show that the cutoff frequency ωc only depends on the
contact angle θ :

ε(ωc) = 1 − 2π

θ
. (27)

The above relation of ωc and θ is shown by the blue dashed
line in Fig. 3. We can see that ωc shows a blueshift as the angle
θ increases. Therefore, a larger θ corresponds to a narrower
frequency band. In particular, when θ = 180◦ (flat surface), all
the surface-plasmon modes degenerate at the surface-plasmon
frequency ωsp.

The critical frequency ω0 is defined as26

Im

{
ln

[
ε(ω0) − 1

ε(ω0) + 1

]}
= θ. (28)

Beyond ω0, the electric field vanishes as surface plasmons
propagate toward the apexes of the structure, whereas below
ω0, the electric field diverges at the two apexes even when
the metal is highly dissipative. Here, we should point out that
the nonlocal properties of the permittivity encountered at small
length scales31,32 will also impair the divergence of the electric
field. However, as long as we can fabricate the structures with
very sharp apexes, the electric field can still be remarkably
increased at the singularities. The red solid line in Fig. 3 shows
the dependence of ω0 on the angle θ . Similar to ωc, ω0 is found
to increase with θ . And for any given angle θ , ω0 is always
larger than ωc. It is worth pointing out that for silver,28 ω0 is
equal to ωsp at the angle θ = 67.8◦ and ω0 only exists when
θ � 67.8◦ [Eq. (28) is only valid for θ � 67.8◦]. Otherwise,
a dramatic increase of the electric field is expected in the
vicinities of the singularities over the whole spectrum.

B. Power absorbed by the convex/concave rough surface

We now consider the power absorbed by the
convex/concave rough surface. Since the total energy is con-
served under conformal transformations, the power absorbed
by the transformed structures is equivalent to the power dis-
sipated by the dipole in the original metallodielectric system.
It can be calculated with the electric field (due to the excited
surface-plasmon modes) backscattered at the dipole.33 As it
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has already been pointed out in Sec. III, this field diverges, in-
dicating that the power absorbed by the whole convex/concave
rough surface is infinitely large. However, since we are only
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interested in the vicinity of the protuberance/indentation, the
surface-plasmon mode propagating in this region is dominated
by the pole with the smallest imagninary part. Thus, the power
absorbed by the convex/concave rough surface in the small
region around the protuberance/indentation is calculated as

p′
a = pd = −ω

2
Im{p∗ · E(x = 0,y = 0)}

= ω Re

[
f (α,θ )(�x + 	x)

8ε0d2

]
p2

x

+ω Re

[
f (α,θ )(�y + 	y)

8ε0d2

]
p2

y

= ε0a
2

8
Re[f (α,θ )(�x + 	x)]

∣∣E′inc
x

∣∣2

+ε0a
2

8
Re[f (α,θ )(�y + 	y)]

∣∣E′inc
y

∣∣2
. (29)

Renormalizing Eq. (29) by the incident power flux P ′
inc =

cε0|E′inc|2/2, the power absorbed from an incident beam
polarized along the x or the y axis can then be deduced:

P ′x
a

P ′x
inc

= k0a
2

4
Re[f (α,θ )(�x + 	x)],

(30)
P

′y
a a

P
′y
inc

= k0a
2

4
Re[f (α,θ )(�y + 	y)],

where �x , �y , 	x , and 	y are constants defined in Sec III.
k0 = ω/c is the wave number in vacuum. Figure 4 displays the
power absorbed by rough surfaces with different angles θ (or
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different surface roughness). Here, the power is normalized by
the characteristic dimension of the protuberance/indentation
D (D = a when θ � 90◦; D = a/ sin θ when θ < 90◦), as
defined in the insets of Fig. 4. The metal is still assumed to be
silver with the permittivity taken from Ref. 28.

The upper three panels of Fig. 4 show that the convex
rough silver surface exhibits an anisotropic behavior: it shows
a strong EM response to y-polarized illumination but a weak
interaction with x-polarized incident fields. On the contrary,
the concave rough silver surface interacts with x- and y-
polarized fields with nearly equal strength, especially for
small θ angle cases, as shown by the bottom three panels
of Fig. 4.

Both the convex and concave rough silver surfaces exhibit
a continuous absorption behavior over a broadband spectrum.
This property originates from the fact that the group velocity of
surface plasmons vanishes at the two apexes (singularities).25

Hence, the surface plasmons are stopped at the singularities
without being reflected, which prevents from any resonant
feature. It is worth noticing that the presence of the singularities
is decisive for the continuous absorption behavior. Otherwise,

the two structures tend to absorb light energy efficiently just at
a few resonant frequencies, which is the case in nanoparticle
dimers.17–19,34–38 In addition, Fig. 3 shows that the power
absorbed by the two structures increases as the angle θ

decreases, and the maximum always occurs at the surface-
plasmon frequency ωsp.26 In other words, the more pronounced
the singularity is (small angle θ ), the more broadband and
efficient the light-harvesting process is.

C. Field enhancement on convex and concave rough surfaces

Apart from the distinct absorption behavior, the convex and
concave rough surfaces can also create a considerable field
enhancement which can be exploited for surface-enhanced
Raman scattering. In this section, the dependence of Raman
signal enhancements on the contact angle between the asperi-
ties and the metal surface and on the incident light polarization
will be discussed in detail.

By injecting the expression of x, y, px , and py [Eqs. (1)
and (4)] into Eqs. (25) and (26), the potential can be expressed
in the transformed frame:

φ′sca(x ′,y ′) = −a

4

[[−i�yE
′inc
y + sgn(x ′)�xE

′inc
x

]
e−f (α,θ)L(x ′,y ′) + [ − i	yE

′inc
y + sgn(x ′)	xE

′inc

x

]
ef (α,θ)L(x ′,y ′)]eif (α,θ)K(x ′,y ′),

(31)

φ′m(x ′,y ′) = − a

2(ε + 1)

[[ − i
yE
′inc
y + sgn(x ′)
xE

′inc
x

]
e−f (α,θ )L(x ′,y ′)

+ [−i�yE
′inc
y + sgn(x ′)�xE

′inc
x

]
ef (α,θ )L(x ′,y ′)]eif (α,θ )K(x ′,y ′), (32)

where

K(x ′,y ′) = 1

4π
sgn(x ′) ln

(x ′ + a/2)2 + y ′2

(x ′ − a/2)2 + y ′2 , L(x ′,y ′) = 1

2π
arctan

(
ay ′

x ′2 + y ′2 − a2/4

)
.

Then the electric field E′(x ′,y ′) can be easily deduced from the potential (e.g., E′
u′ = ∂φ′/∂u′, where u′ = x ′,y ′)

E′sca
x ′ (x ′,y ′) = af (α,θ )

4
eif (α,θ)K(x ′,y ′)

{
L(x ′,y ′)

∂L

∂x ′
[[

i�yE
′inc
y − sgn(x ′)�xE

′inc
x

]
e−f (α,θ )L(x ′,y ′)

+ [
i	yE

′inc
y − sgn(x ′)	xE

inc′
x

]
ef (α,θ )L(x ′,y ′)] + K(x ′,y ′)

∂K

∂x ′
[[

i�yE
′inc
y + i sgn(x ′)�xE

′inc
x

]
e−f (α,θ )L(x ′,y ′)

+ [
i	yE

′inc
y + i sgn(x ′)	xE

′inc
x

]
ef (α,θ )L(x ′,y ′)]

}
, (33)

E′sca
y ′ (x ′,y ′) = af (α,θ )

4
eif (α,θ)K(x ′,y ′)

{
L(x ′,y ′)

∂L

∂y ′
[[

i�yE
inc′
y − sgn(x ′)�xE

inc′
x

]
e−f (α,θ )L(x ′,y ′)

+ [
i	yE

inc′
y − sgn(x ′)	xE

inc′
x

]
ef (α,θ )L(x ′,y ′)] + K(x ′,y ′)

∂K

∂y ′
[[

i�yE
inc′
y + i sgn(x ′)�xE

inc′
x

]
e−f (α,θ )L(x ′,y ′)

+ [
i	yE

inc′
y + i sgn(x ′)	xE

inc′
x

]
ef (α,θ )L(x ′,y ′)]

}
, (34)
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E′m
x ′ (x ′,y ′) = af (α,θ )

2(ε + 1)
eif (α,θ)K(x ′,y ′)

{
L(x ′,y ′)

∂L

∂x ′
[[

i
yE
inc′
y − sgn(x ′)
xE

inc′
x

]
e−f (α,θ )L(x ′,y ′)

+ [
i�yE

inc′
y − sgn(x ′)�xE

inc′
x

]
ef (α,θ )L(x ′,y ′)] + K(x ′,y ′)

∂K

∂x ′
[[

i
yE
inc′
y + i sgn(x ′)
xE

inc′
x

]
e−f (α,θ )L(x ′,y ′)

+ [
i�yE

inc′
y + i sgn(x ′)�xE

inc′
x

]
ef (α,θ )L(x ′,y ′)]

}
, (35)

E′m
y ′ (x ′,y ′) = af (α,θ )

2(ε + 1)
eif (α,θ)K(x ′,y ′)

{
L(x ′,y ′)

∂L

∂y ′
[[

i
yE
inc′
y − sgn(x ′)
xE

inc′
x

]
e−f (α,θ )L(x ′,y ′)

+ [
i�yE

inc′
y − sgn(x ′)�xE

inc′
x

]
ef (α,θ )L(x ′,y ′)] + K(x ′,y ′)

∂K

∂y ′
[[

i
yE
inc′
y + i sgn(x ′)
xE

inc′
x

]
e−f (α,θ )L(x ′,y ′)

+ [
i�yE

inc′
y + i sgn(x ′)�xE

inc′
x

]
ef (α,θ )L(x ′,y ′)]

}
. (36)

Figure 5 displays our analytical calculation of the nor-
malized electric-field distributions for silver surfaces with a
half-cylinder-shaped protuberance/indentation (e.g., θ = 90◦)
at the cutoff and surface-plasmon frequencies. The surface-
plasmon modes in the transformed frame are excited at the
middle point of the protrusion/indentation surface, and then
propagate towards the two singularities of the structure. In this

process, SPPs are compressed and energy accumulates at the
vicinities of the two singularities. Thus, the field enhancement
depends on a balance between the dissipation losses and
the compression of surface plasmons. From Figs. 5(a1) and
5(a2), we see that at the cutoff frequency ωc, the energy is
highly confined around the two apexes of the structures and
the field is relatively small on the rest of the metal surface,
indicating that the surface plasmons reach the two apexes
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before being absorbed. On the contrary, Figs. 5(b1) and 5(b2)
show that at the surface-plasmon frequency ωsp, the electric
field vanishes at the singularities: the dissipation losses in the
metal are important around ωsp and the surface plasmons are
absorbed before reaching the apexes. However, the efficient
coupling of the incoming light to SPPs at this frequency also
results in a relatively large field enhancement over the whole
protrusion/indentation surface.

Figure 6 shows the Raman signal enhancement (calculated
as |E′|4) along the protrusion/indentation surface for different
frequencies. From Figs. 6(a1) and 6(b1), we see that a convex
rough surface exhibits different EM responses according to
the polarization of the incident field. However, this difference
seems to diminish as the frequency increases. For instance,
Fig. 6 (c1) shows that at the surface-plasmon frequency
ωsp the solid and dotted lines (corresponding to the EM
enhancements under x- and y-polarized illumination) nearly
overlap.

Another interesting result of our calculation is the compari-
son between the convex and concave rough surfaces. Although
the analysis in the former section [see Figs. 4(b1) and 4(b2)]
shows that for a y-polarized incident field the convex rough
surface can harvest light energy more efficiently than the
concave one, it does not necessarily mean that the convex
rough surface can induce larger Raman signal enhancements.
For instance, at ωsp, the overall Raman signal enhancement
on the convex rough surface is about 105 [see Fig. 6(c1)],
whereas for the concave rough surface, the EM enhancements
in the Raman signal reaches 107 [see Fig. 6(c2)]. This result
can be understood by inspecting the field distributions in
Fig. 5. For the convex surfaces [Figs. 5(a1) and 5(b1)], a
large amount of the energy is confined inside the metal,
while for the concave ones [Figs. 5(a2) and 5(b2)], most of
the energy remains in the air. Therefore, the concave metal
surfaces show a poorer light-harvesting efficiency but a better
Raman-scattering response, compared with the convex ones.

To study the influence of the contact angle θ = 9◦,
we have also calculated the field enhancements for silver
surfaces with different protuberances/indentations. Figure 7
depicts the normalized electric-field distributions E′/E′

inc
at three different frequencies (790, 850, and 884 THz)
for the convex and concave rough surfaces when θ = 9◦.
The corresponding Raman signal enhancements along the
protuberance/indentation surface are shown in Fig. 8. In
contrast to the case discussed above (where θ = 90◦), a critical
frequency ω0 emerges in this case. Figures 8(a1), 8(a2), 8(b1),
and 8(b2) show that below ω0 surface-plasmon modes are
highly confined in the vicinitiy of the singularities. On the con-
trary, above ω0 the electric field vanishes at the singularities.

As the frequency increases, the location of the maximum
of the Raman signal enhancement moves continuously from
the singularity (where γ = 171◦) to the middle point of the
protrusion/indentation surface (where γ = 0◦), which can be
seen from Figs. 8(c1) and 8(c2). The comparison between
Figs. 6 and 8 highlights the importance of the contact angle
between the asperities and the metal surface. A small contact
angle implies a larger and more broadband SERS response.

It is worth noticing that the Raman signal enhancement
obtained at the apexes of the structures may be unrealistic
in practice. This is because at such small-length scales,
continuum electrodynamics is no longer valid19 and shorter
electron scattering lengths close to the apexes will play an
essential role, especially for small contact angles. In this case,
the bulk permittivity of metals has to be corrected to take into
account this effect. This will increase the imaginary part of
the dielectric function and will reduce the field enhancement
at the apexes as compared to our analytical prediction.

V. CONCLUSION

In conclusion, we have presented a transformation optics
approach to investigate systematically two conventional plas-
monic structures, which are widely used in SERS experiments.
An analytical relationship has been established between a
canonical metallodielectric system and the two examined
structures. Compared with traditional computational methods,
our analytical approach does not require an implementation of
adaptive meshes around the singularities (e.g., sharp edges
or surface protrusions), thereby allowing a more compre-
hensive understanding of surface-plasmon modes responsible
for SERS responses. The diverse EM characteristics of the
structures in different frequency ranges have been studied
quantitatively in terms of the contact angle between the
asperities and the metal surface and of the incident light
polarization. Metal surfaces with a cylindrical indentation are
found to exhibit stronger Raman signal enhancements than
those with a complementary protrusion. Moreover, a small
contact angle between the asperities and the metal surface
greatly improves the bandwidth and the efficiency of the SERS
process. We believe that analytical approaches, such as the one
considered in this paper, give a unique insight into the EM
mechanism in SERS.
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