
PHYSICAL REVIEW B 83, 155419 (2011)

Vortex and gap generation in gauge models of graphene
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Effective quantum field theoretical continuum models for graphene are investigated. The models include a
complex scalar field and a vector gauge field. Different gauge theories are considered and their gap patterns
for the scalar, vector, and fermion excitations are investigated. Different gauge groups lead to different relations
between the gaps, which can be used to experimentally distinguish the gauge theories. In this class of models the
fermionic gap is a dynamic quantity. The finite-energy vortex solutions of the gauge models have the flux of the
“magnetic field” quantized, making the Bohm-Aharonov effect active even when external electromagnetic fields
are absent. The flux comes proportional to the scalar field angular momentum quantum number. The zero modes
of the Dirac equation show that the gauge models considered here are compatible with fractionalization.
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I. INTRODUCTION AND MOTIVATION

In a monolayer of graphene,1–5 the single-particle disper-
sion relation near the so-called K and K ′ Dirac points is linear
in |�k| (see, for example, Refs. 6,7). Formally, it is the dispersion
relation of a massless relativistic fermion. Furthermore, the
description of the low-energy electronic excitations can be
accommodated in a Dirac-type equation. Indeed, starting
from a tight-binding Hamiltonian with a hopping parameter
independent of the lattice site, one can compute exactly the
dispersion relation and expand around the two inequivalent
Dirac points to rewrite the dynamical equations of motion for
electrons and holes as a Dirac equation in two dimensions with
the four-component spinor given by

� =

⎛
⎜⎜⎜⎝

ψb
+

ψa
+

ψa
−

ψb
−

⎞
⎟⎟⎟⎠ . (1)

The indices a and b refer to the two triangular sublattices,
and the + and − indices refer to the two Dirac K and
K ′ points, respectively. For a perfect graphene crystal struc-
ture the fermions behave as massless relativistic particles,8

which translates into the well-known ballistic behavior of the
electrons,9–11 and there is no gap between valence and conduc-
tion bands. However, if the two-dimensional honeycomb array
of carbon atoms is distorted due to the presence of impurities
or to the distortion of the crystal structure, for example, the
fermions acquire an effective gap given by half the mass
gap. Besides fermion mass generation, the quantum Hall
effect,8,12–17 fractionalization,18–20 and Berry phases12 have
been observed in two-dimensional graphene-like structures.

Fractionalization in one-dimensional models was investi-
gated more than three decades ago21–23 within polyacetylene.
A similar phenomenon like the fractional quantum Hall
effect due to quasiparticle fractional charge and/or fractional
statistics can take place in two-dimensional systems.12,16,17

A dynamic theory for two-dimensional graphene should
describe, of course, its phenomenology and should be able
to accommodate for the possibility of gap generation and
fractionalization. In Ref. 18 the authors presented a mechanism

for electron fractionalization in graphene-like systems keeping
time-reversal symmetry. Invoking a Kekulé texture, a complex
order parameter �0 was introduced. �0 couples the two
Dirac points and changes the electron dispersion relation to
ε(�k) = (�k2 + |�0|2)1/2. Assuming a vortex-like profile �(�r) =
�(r)einθ , where n is an integer, with �(r) vanishing as r |n| for
small r and approaching �0 at large r , fractionalization was
associated with the presence of a zero mode of the Dirac
kernel. Although fractionalization was connected with the
vortex shape of �(�r), in Ref. 18 the authors do not specify
the dynamics for the complex vortex profile.

In Ref. 19 a dynamic content to the vortices was introduced
through a chiral gauge theory which is compatible with
electron fractionalization, extending the work of Hou et al.18 In
the language of Ref. 19, vortices are associated with a complex
scalar field ϕ which couples linearly to the fermions. Although
a dynamical equation was written [see equations (13) and (14)
in Ref. 19], the potential V (ϕ∗ϕ) was left unspecified. From
the point of view of quantum field theory (QFT), there is no
reason to exclude other types of symmetries and couplings,
not present in the model discussed by Jackiw and Pi, without
destroying fractionalization.

Indeed, field-theoretical models have been applied to
describe nanotubes and graphene physics and have had some
success in reproducing their quantum properties (see, e.g.,
Refs. 24 and 25). In this work, we elaborate on derivative-free
fermion-boson and boson self-interactions allowed by QFT
principles and discuss possible gauge interactions. The models
considered here are a generalization of the results of Ref. 19
and, besides the fermionic field, they consider a complex scalar
field ϕ and a single-gauge vector Aμ field. Moreover, possible
ways to distinguish between the different gauge symmetries
are discussed.

Our interpretation for the complex scalar field and gauge
field is that ϕ and Aμ resume all the dynamics of the self-
interaction of the carbon background and the mean fermionic
self-interaction.

The use of scalar and vector potentials to describe some
of the graphene properties is not new. Indeed, scalar and
vector potentials, including gauge fields, have been used
in the literature to describe disorder phenomena, including
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distortions of the lattice honeycomb, structural defects, point
defects, and self-doping effects associated with the breaking
of electron-hole symmetry near the Dirac points, among other
properties. A detailed discussion can be found in Refs. 6 and 26
and references therein.

Graphene is an electrically neutral system. On the other
hand, graphene has charge carriers. Therefore, it seems natural
to associate a charged field with the carbon background. Fur-
thermore, if ϕ resumes the carbon background self-interactions
it should be able to accommodate for the propagation of
phonons in the carbon lattice. Phonons feel the density of
states of the fermionic degrees of freedom and one expects ϕ

to couple to the density of electron and holes, [i.e., to ψψ =
−(ψb

+)†ψa
− − (ψa

+)†ψb
− − (ψa

−)†ψb
+ − (ψb

−)†ψa
+]. Throughout

this paper, we will use the chiral representation for the Dirac
matrices, where

γ 0 =
(

0 −1

−1 0

)
, �γ =

(
0 �σ
−�σ 0

)
, (2)

and

γ5 =
(

1 0

0 −1

)
, (3)

where the σ j stand for the Pauli matrices. Besides the coupling
to the density of electron or holes, QFT allows also for
a pseudoscalar-like interaction, described by a coupling of
ϕ to ψγ5ψ = (ψb

+)†ψa
− + (ψa

+)†ψb
− − (ψa

−)†ψb
+ − (ψb

−)†ψa
+.

The scalar and pseudoscalar interactions couple the two
triangular sublattices and the two Dirac points K and K ′
in different ways. The models discussed in the present work
explore contributions coming from both types of interactions
(i.e., ψψ and ψγ5ψ).

The potential energy for the complex scalar field ϕ can
accommodate a nonvanishing vacuum expectation value 〈ϕ〉.
If 〈ϕ〉 �= 0, then the model generates a fermion mass via spon-
taneous symmetry breaking. On the other hand, if 〈ϕ〉 = 0,
the electrons in graphene remain gapless. Therefore, we
identify pure graphene with the vacuum state where 〈ϕ〉 = 0,
with all other graphene distorted and/or doped states begin
described by a different vacuum, and for these 〈ϕ〉 �= 0.

In what concerns the bosonic fields, the model can accom-
modate mass gaps both for the scalar and vector excitations. In
general, for the gauge theories considered here, a fermion mass
gap implies also a vector mass gap. This comes directly from
the Higgs mechanism for mass generation. The gap for the
scalar excitations is linked with the details of the potential
V (ϕ†ϕ) and is not directly coupled with the fermion and
vector gaps. Indeed, we found that the scalar gap can vanish
independently of the fermion and vector gaps.

In this paper we also discuss a number of different gauge
models which, in principle could be suitable to describe
graphene properties. The relation between the spectrum of
the scalar and vector excitations with the fermionic spectra
depends on which symmetry is gauged. Furthermore, the
different connections between fermion, scalar, and vector
gaps opens the possibility to check experimentally which
of the gauge symmetries, if any, is realized in graphene.
Changing the fermion mass gap; for example, by modifying the
concentration of impurities and or the distortion of the lattice,

and looking at how the scalar or vector mass excitations adjust
themselves, one can distinguish between the different gauge
models. Besides the pattern of the mass gaps, in general, the
models also allow for vortex-like solutions and are compatible
with fractional statistics.

These gauge models have finite-energy vortex solutions.
For one example, we show that the vortex solution implies
the quantization of the “magnetic field” flux. In this case, the
Abelian gauge field is connected with the angular momenta
of ϕ along an axis perpendicular to the graphene sheet and,
in this sense, the flux of the “magnetic field” is a measure
of the angular momenta of ϕ. This particular solution can
be interpreted as consequence of topological defects in the
graphene structure and, in principle, phenomena like the
Bohm-Aharonov27–29 effect can occur even when external
electric and magnetic fields are absent.

We show that the vortex solutions of nonchiral gauge
models presented here have normalizable zero modes of the
Dirac equation. The presence of the normalizable zero modes
implies fractionalization for graphene, and the quantum Hall
effect in graphene sheets could become possible even without
chiral gauge symmetry and without external electric and
magnetic fields. The observation of the quantum Hall effect
in two-dimensional materials without external electromagnetic
fields was also discussed within the framework of tight-binding
models in the work of Haldane30 and Hill et al.31 According
to the later work, the observation of the quantum Hall effect
without an electromagnetic field requires the breaking of the
sublattice symmetry, where the two sublattices a and b are
interchanged, and the opening of a mass gap at one of the Dirac
points, let us say K , while the other Dirac point K ′ remains
gapless. In the class of models discussed here, the mass gap is
open, or not, simultaneously at K and K ′. Then, according to
Ref. 31, the quantum Hall effect without an external magnetic
field is not measurable because the contributions from K

and K ′ to the Hall conductivity cancel exactly. The models
considered in the present work, although reproducing the
tight-binding model in the appropriate limit (see, for example,
Ref. 6), give dynamics to all the fields that represent the carbon
graphene background and excitations ϕ and the gauge field.
Recall that ϕ is charged and can give rise to an electric current.
In this sense, the models go beyond the tight-binding model,
opening the possibility of having a dynamic situation where the
conditions explored in Ref. 31 do not apply and, perhaps, may
allow the measurement of the quantum Hall effect in graphene.
We plan to address this question in a future presentation.

We would like the reader to note that, within the class of
gauge models discussed in the present work, fractionalization
is allowed without breaking any of the usual discrete symme-
tries like, for example, time reversal. We do not compute the
rich set of zero modes of the Dirac equation but those obtained
here are, again, connected with the angular momentum of the
complex scalar field ϕ.

This paper is organized as follows: In Sec. II the effective
QFT for graphene is discussed, including its global symme-
tries. In Sec. III, the different global symmetries are gauged
and we discuss how these change the spectra of the scalar,
vector, and fermion excitations. Furthermore, combining the
information on the different types of gaps, we are able to
suggest an experimental test to disentangle which of the gauge
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symmetries apply to graphene. In Sec. IV the equations of
motion are derived and the vortex solutions for the gauge
models are discussed. The short-distance and long-distance
properties of the vortex are computed explicitly. The gauge
models predict the flux quantization of the “magnetic field”
associated with the gauge field. Furthermore, the flux quanti-
zation is connected with the angular momenta of ϕ. In Sec. V
the zero-mode solutions of the Dirac equation for a vortex
configuration are investigated. Finally, in Sec. VI we resume
and conclude.

II. THE EFFECTIVE MODEL

Let us assume that the charge carries (i.e., electrons and
holes) are relativistic fermions described by a four-component
spinor ψ . The Lagrangian density describing the interaction
between fermions ψ and ϕ can be written as

L = ψiγ μ∂μψ + ∂μϕ†∂μϕ − P (ϕ)ψψ − P5(ϕ)ψγ5ψ

−V (ϕ†ϕ), (4)

where the polynomials P (ϕ) and P5(ϕ) define the type of
interaction between fermions and the carbon crystal structure
and V (ϕ†ϕ) defines the self-interactions of the background
structure.

The reader should note the linear combination of Pψψ

and P5ψγ5ψ couplings. Such a freedom would allow to set
different couplings to each of the possible fermion chiralities
and, in this way, build a chiral theory. Moreover, other Dirac γ

matrices are allowed. However, to keep it as simple as possible
and to avoid derivative couplings, we will consider in the
following only scalar- and pseudoscalar-type interactions.

In a system of units where the action is dimensionless, space
and time have dimensions of inverse mass, and for two spatial
dimensions and one temporal dimension, ψ has dimensions
of mass ([ψ] ∼ M) and ϕ has dimensions of the square root
of mass ([ϕ] ∼ M1/2). Requiring that the theory described
by L is perturbatively renormalizable, then for polynomial
interactions, naive power counting forbids coupling constants
[g] ∼ Mα with α < 0. This fixes unambiguously the interac-
tion terms to be

P (ϕ) = g1(ϕ + ϕ†) + g2ϕ
†ϕ, (5)

P5(ϕ) = h1(ϕ − ϕ†) + ih2ϕ
†ϕ, (6)

and

V
(
ϕ†ϕ

) = μ2
(
ϕ†ϕ

) + λ4

2

(
ϕ†ϕ

)2 + λ6

3

(
ϕ†ϕ

)3
, (7)

up to a constant V0.
If, in P (ϕ) and P5(ϕ), one takes h1 = −g1 and g2 =

h2 = 0, one recovers the Jackiw-Pi theory with their ϕr =
2Re(ϕ) and ϕi = 2Im(ϕ) [see equation (8) in Ref. 19]. In this
sense L generalizes the results of Ref. 19.

Let us discuss now the global symmetries of the model
described by the Lagrangiandensity (4).

A. Global UA(1) symmetry

One of the motivations of Ref. 19 was to build a chiral
gauge theory. So let us consider the same type of chiral
transformation; that is,

ψ −→ eiωγ5ψ, ϕ −→ eiηϕ. (8)

To first order in ω and η, the corresponding variation of the
Lagrangian density reads

{2iω[h1(ϕ − ϕ†) + ih2(ϕ†ϕ)] + iηg1(ϕ − ϕ†)}ψψ

+ {2iω[g1(ϕ + ϕ†) + g2(ϕ†ϕ)] + iηh1(ϕ + ϕ†)}ψγ5ψ. (9)

Requiring invariance of L under the transformation (8), it
follows that g2 = h2 = 0, as in the Jackiw-Pi theory, and
g1 = ±h1 and η = ±2ω, with the minus sign recovering the
original Jackiw-Pi theory. Note that, from the point of view
of (8), invariance of the theory means that the chiral charge
associated with ϕ is, up to a sign, twice the fermionic charge.

The set of transformations (8) with η = ±2ω form a group
that, from now on, will be called UA(1). Recall that the
Lagrangian density is invariant under UA(1) if and only if
g2 = h2 = 0 and g1 = ±h1.

B. Global U(1) symmetries

Besides the chiral transformation just discussed, the
Lagrangian density (4) has further nonchiral U (1) global
symmetries. The set of transformations

ψ −→ eiωψ (10)

defines the Uf (1) global symmetry of L and the set

ϕ −→ eiωϕ (11)

defines the Ub(1) global symmetry of L if g1 = h1 = 0.
Furthermore, if g1 = h1 = 0 in (5) and (6), then the set of
transformations

ψ −→ eiωψ, ϕ −→ eiηϕ, (12)

where ω and η are independent parameters, defines another
global symmetry of L called Uf (1) ⊗ Ub(1) in what follows.
Gauging this symmetry requires the introduction of two gauge
fields unless one imposes an additional discrete symmetry
with respect to the interchange of the gauge fields. Note that
the discrete symmetry gives no constraint on the coupling
constants for the fermionic g and bosonic gϕ fields. Indeed,
the fermionic covariant derivative reads Dμ = ∂μ + igAμ,
while the bosonic covariant derivative is Dμ = ∂μ + igϕAμ,
where Aμ is the gauge field. For the sake of simplicity (i.e.,
to avoid considering more than one gauge field), we will
analyze only the Uf (1) ⊗ Ub(1) symmetry supplement with
the discrete symmetry. Anyway, we will keep using the name
Uf (1) ⊗ Ub(1) for the symmetry.

C. On the various global symmetries

The various global symmetries are distinguished by the
nature of the ϕ-ψ interaction and by the number of independent
coupling constants associated with the gauge field required to
define the model.
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TABLE I. Global symmetries of the Lagrangian density (4).
Recall that, for Uf (1) ⊗ Ub(1), we impose an additional discrete
symmetry. See text for discussions.

Symmetry Constraints

UA(1) g2 = h2 = 0, g1 = ±h1

Uf (1) none
Ub(1) g1 = h1 = 0
Uf (1) ⊗ Ub(1) g1 = h1 = 0

The UA(1) symmetry is not compatible with the interactions
(ϕ†ϕ)ψψ and (ϕ†ϕ)ψγ5ψ and only linear-in-ϕ terms are
allowed in the interaction with fermions. Furthermore, the
model defines a unique coupling constant.

The Uf (1) symmetry allows linear and quadratic ϕ cou-
plings to the fermionic field and requires a unique gauge
coupling constant.

The local symmetries Ub(1) and Uf (1) ⊗ Ub(1) are com-
patible only with a quadratic ϕ coupling to the fermion fields.
If Ub(1) requires a unique gauge coupling constant, the gauge
model with Uf (1) ⊗ Ub(1) as a symmetry group includes two
independent gauge couplings.

Table I summarizes the global symmetries of Lagrangian
density (4) and the corresponding constraints on the ϕ-ψ
coupling constants.

III. GAUGE MODELS AND MASS GAP

The various U (1) symmetries of L (see Table I), can
be made local. Different symmetries will lead to different
gauge theories for graphene, after replacing the derivatives
by covariant derivatives and adding the corresponding kinetic
term for the gauge field. Naturally, the different symmetries
will introduce different dynamics which can be seen, for
example, at the level of the theory spectra (i.e., at the various
mass gaps).

Recall that we are excluding derivative-type couplings.
In what concerns the gauge field, not including derivative
couplings means that a priori we are excluding a Chern-
Simons term32–34

εαβγ Aα(∂βAγ ) (13)

in L. This type of interaction is allowed by gauge invariance
and, in 2 + 1 dimensions, is not excluded by the renormaliz-
ability requirement.

A. Scalar mass gap

We start our discussion by looking at the scalar excitations
in graphene; that is, looking at the mass spectra for the complex
scalar field ϕ.

The self-interactions of ϕ are described by the potential
energy V (ϕ†ϕ) [see equation (7)]. Depending on the values for
μ2, λ3, and λ6, V can have either one, two, or three minima. The
discussion of the V (ϕ†ϕ) extrema is relatively straightforward
and will not be reproduced here. The relation between potential
parameters and number of extrema is summarized in Table II.

The mass gap for the scalar excitations; that is, the mass
associated with the complex scalar field, can be computed

TABLE II. The number of extrema of V (�) as a function of the
potential parameters. Our definition for δ is δ = λ2

4 − 4μ2λ6.

Item

μ2 λ4 λ6 δ # Extrema

<0 >0 <0 0 1 Maximum
>0 <0 >0 0 1 Minimum
>0 >0 >0 >0 1 Minimum
>0 <0 >0 >0 5 Extrema
<0 any >0 >0 3 Extrema

from (7) by writing ϕ = v + �, where v = 〈ϕ〉 is the vacuum
expectation value of ϕ and is assumed to be real. If ϕ can be
rotated in such a way that it becomes a real field, then it follows
that the quadratic term in V (�2) is given by

1
2M2

��2 = 2v2(λ4 + 2v2λ6)�2, (14)

and one can define the mass gap for scalar excitations as

�� = M� = 2|v|
√

λ4 + 2v2λ6. (15)

The scalar mass gap is, then, independent of the gauge
symmetry.

A nonvanishing M� requires either a nonvanishing expec-
tation value for 〈ϕ〉 or 〈ϕ〉 = 0 and μ2 > 0. Furthermore, a
nonvanishing scalar gap requires also that λ4 + 2v2λ6 > 0, if
〈ϕ〉 �= 0.

From equations (14) and (15) it follows that the model is
compatible with a nonvanishing ϕ vacuum expectation value
(i.e., 〈ϕ〉 �= 0), in combination with a vanishing scalar gap if
and only if λ4 = −2v2λ6. In this case, the theory predicts a
fermionic mass gap proportional to 〈ϕ〉, with no gap formation
for the scalar excitations (i.e., the dispersion relation for the
scalar excitations is linear in |�k|).

B. Fermionic mass gap

For the fermions fields, if ϕ and/or ϕ†ϕ acquire a nonvan-
ishing vacuum expectation value, then L acquires a mass term
and a chiral mass term [see equations (4), (5), and (6)].

Let us assume that 〈ϕ〉 = v �= 0, with v being a real number.
From the point of view of the fermions themselves, the
interaction with the carbon structure shows up as

m̃ψψ + ih2v
2ψγ5ψ, (16)

where m̃ = 2g1v + g2v
2. There is no reason a priori to require

the positivity of m̃ or h2. Indeed, solving the free Dirac
equation, with a mass term given by (16), gives the following
dispersion relation:

ε( �p2) =
√

�p2 + m̃2 + h2
2v

4; (17)

that is, the effective fermion mass is given by
√

m̃2 + h2
2v

4 and
the corresponding mass gap between valence and conducting

bands is 2
√

m̃2 + h2
2v

4. The above reasoning is valid even

when 〈ϕ〉 = 0 and 〈ϕ†ϕ〉 �= 0. In this case m̃ = g2〈ϕ†ϕ〉 and
h2〈ϕ†ϕ〉 replaces h2v

2.
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The coupling of the complex scalar field ϕ to the fermion
degrees of freedom is given by

[g1(ϕ + ϕ†) + g2ϕ
†ϕ]ψψ + [h1(ϕ − ϕ†) + ih2ϕ

†ϕ]ψγ5ψ,

(18)

which has exactly the same structure as the mass term given
by equation (16). Therefore, the status of the field ϕ can be
translated into a dynamic fermion mass (i.e., a dynamic mass
gap), which is both time- and space-dependent. The model
accommodates graphene states where, for certain space-time
regions, the system is gapless (i.e ϕ �= 0) and others where
ϕ = 0 and there is no gap. We are currently exploring the
implications of this dynamic gap for graphene properties and
will report the results elsewhere.

In graphene the fermionic mass gap � is a function of gauge
symmetry. It follows that

UA(1) � = 4|g1v|, (19)

Uf (1) � = 2
√

m̃2 + h2
2v

4, (20)

Ub(1), Uf (1) ⊗ Ub(1) � = 2
√

g2
2 + h2

2v
2, (21)

where � is twice the fermion mass.

C. Vector mass gap

It remains to discuss the mass gap for the vector excitations
in graphene. The mass term for Aμ is generated by the scalar
kinetic part of L [i.e., by (Dμϕ)†Dμϕ]. Therefore, unless
the gauge transformation changes ϕ, the gauge field remains
massless. It follows that

UA(1) �A =
√

2|g1v|, (22)

Uf (1) �A = 0, (23)

Ub(1), Uf (1) ⊗ Ub(1) �A =
√

2|gϕv|, (24)

where �A is the vector mass (i.e., the vector mass gap).

D. Gauge symmetries and gap relations

The mass (i.e., the gaps) for each of the fields in the model
are generated via the Higgs mechanism. Besides the mass, the
Higgs mechanism also provides a relation, dependent on the
symmetry group, between the different gaps—see Table III for
a summary of the results discussed in the previous sections.

A UA(1) chiral gauge theory implies a linear relation
between the vector and fermion mass gaps �A = �/

√
8,

while Ub(1) or Uf (1) ⊗ Ub(1) relate the two mass gaps by

TABLE III. Mass gaps as a function of the gauge symmetry. See
text for discussion. The scalar mass gap is independent of gauge
group and for a nonvanishing vacuum expectation value if given by
�� = 2|v|√λ4 + 2v2λ6.

Symmetry � �A

UA(1) 4|g1v| √
2|g1v|

Uf (1) 2
√

m̃ + h2
2v

4 0
Ub(1) 2

√
g2

2 + h2
2v

2
√

2|gϕv|
Uf (1) ⊗ Ub(1) 2

√
g2

2 + h2
2v

2
√

2|gϕv|
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FIG. 1. (Color online) �A and �� as function of the fermionic
mass gap �. The curves were computed setting all the coupling
constants and the potential parameters to one and using arbitrary
units.

a quadratic equation �2
A = �g2

ϕ/

√
g2

2 + h2
2. For the gauge

theory associated with the Uf (1) symmetry, there is a mass
gap for the fermionic and scalar degrees of freedom, but no
gap for the vector excitations.

A nonvanishing fermionic mass gap requires 〈ϕ〉 �= 0 or
〈ϕ†ϕ〉 �= 0, which by itself implies a scalar mass gap in
graphene. The connection between the scalar mass gap �ϕ

and the remaining gaps is slightly more complicated than the
relation between � and �A.

The scalar, fermion, and vector mass gaps are functions of
the coupling constants and of the ϕ vacuum expectation value.
The connection between the mass gaps and the fundamental
parameters of the theory depend on which global symmetry
is gauged, as summarized in Table III. Moreover, all the mass
gaps can be written in terms of the fermionic gap �. Therefore,
if one is able to build graphene with different mass gaps, for
example changing its doping and/or distortion, one can test
which of the symmetries discussed before applies to graphene,
if any, simply by looking at how �A and �� change with �. As
an illustration, in Fig. 1 we show �A and �� as a function of �

when all the coupling constants are set to unity. The figure uses
arbitrary units. Clearly, the functional behavior distinguishes
between a chiral gauge theory and a Ub(1) or Uf (1) ⊗ Ub(1)
gauge symmetry. Having �A = 0 for all values of � clearly
points toward a Uf (1) gauge theory.

Of the gauge theories discussed here, the mass gap relations
do not distinguish between the two symmetries Ub(1) and
Uf (1) ⊗ Ub(1) because they provide similar types of ϕ-Aμ

interactions. However, if Ub(1) does not couple the fermions
directly to the vector excitations, the Uf (1) ⊗ Ub(1) gauge
symmetry has such a direct coupling between electrons and
gauge field. Of course, if the strength of this coupling is
extremely small, then the two theories will give exactly the
same predictions for graphene. However, if the coupling
ψγ μψAμ is sizable enough, then the fermionic interaction
with the vector excitations will give relevant contributions to
the dynamics of graphene and the two symmetries will provide
different physics for vector and fermion excitations.
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In the models discussed above, the gap in graphene is
generated via spontaneous symmetry breaking. This is not the
only way of having massive particles in a theory. For example,
as discussed in Ref. 25, a fermionic gap can also be generated
via dynamic symmetry breaking.

IV. EQUATIONS OF MOTION, VORTICES, AND FLUX
QUANTIZATION

The equations of motion associated with the various fields
are derived from L in the usual way. For fermions, they are
given by

iγ μDμψ − P (ϕ)ψ − P5(ϕ)γ5ψ = 0, (25)

where Dμ = ∂μ + igAμ is the covariant derivative and Aμ is
the gauge field. The corresponding equation for ϕ is

DμDμϕ = −(g1 + g2ϕ)ψψ + (h1 − ih2ϕ)ψγ5ψ

−μ2ϕ − λ4(ϕ†ϕ)ϕ − λ6(ϕ†ϕ)2ϕ, (26)

with the covariant derivative given by Dμ = ∂μ + igϕAμ. The
gauge field equation of motion reads

∂μF νμ = −gψγ νψ − igϕϕ†(Dνϕ) + igϕ(Dνϕ)†ϕ. (27)

Equations (25), (26), and (27) are the equations of motion
derived from L taking into account all the possible coupling
constants. In order to study each of the gauge theories
considered previously, one has to take into account the
corresponding constraints associated with the gauge group and
summarized in Table I.

A. Vortex solutions

Let us now discuss vortex-like solutions for the bosonic
sector of the theory, disregarding the coupling to the fermionic
degrees of freedom. This provides a consistent solution for the
field equations for the Dirac zero modes discussed in the next
section.

In this section we will consider static solutions for equa-
tions (26) and (27) with

ϕ(�r) = ϕ0(r)einθ , (28)

and

A0 = 0, Ai = εij ∂j a = εij xj

r
a′(r), (29)

where

a′(r) = da(r)

dr
= b(r). (30)

The equation of motion for ϕ then becomes

1

r

d

dr

[
r
dϕ0

dr

]
−

(
n

r
+ gϕb

)2

ϕ0 =μ2ϕ0 + λ4ϕ
3
0 + λ6ϕ

5
0 , (31)

and the gauge field equation simplifies to

1

r

d

dr

[
r
db

dr

]
− b

r2
= 2gϕ

(
n

r
+ gϕb

)
ϕ2

0 . (32)

Note that, only for the UA(1), Ub(1), and Uf (1) ⊗ Ub(1) gauge
theories (i.e., when gϕ �= 0) are the scalar and gauge fields

coupled. In this section we will consider only the Ub(1) and
Uf (1) ⊗ Ub(1) symmetries.

Let us first discuss the solutions of equations (31) and (32) at
small distances. For r � 1, the gauge field equation becomes

1

r

d

dr

[
r
db

dr

]
− b

r2
= 0, (33)

provided that ϕ0(r) is regular at the origin. The solution is

b(r) = b1r + b−1

r
, (34)

where b1 and b−1 are constants of integration. If b−1 = 0,
equation (31) becomes

1

r

d

dr

[
r
dϕ0

dr

]
− n2

r2
ϕ0 = 0, (35)

and its power-law solution reads

ϕ0(r) = r |n|. (36)

On the other hand, if b1 = 0 in (35), n2 should be replaced
by (n + gϕb−1)2 and the corresponding scalar-field solution at
small r is

ϕ0(r) = r |n+gϕb−1|. (37)

It follows that ϕ0(r) is always regular at the origin.
At large distances, for finite-energy solutions, ϕ approaches

a constant value, a minimum of V (ϕ2
0), and the left-hand side

of equation (31) vanishes. If ϕ0 �= 0, then

b(r) = − n

gϕr
, (38)

and b(r) is also a solution of equation (32). Note that this
solution can be extended to the full range of r values, with the
exception of the origin where a delta function sets in, coming
from the Laplacian of b. On the other hand, if ϕ0 = 0 (i.e.,
for pure graphene), one still has a solution for b as in (34).
However, the requirement of finite energy demands b1 = 0.

The vortex solutions include, as a particular case, the type of
configurations considered in Ref. 19, where b(r) is regular and
ϕ0(r) ∼ r |n| for r � 1 and, for large r , ϕ0 becomes constant
and b(r) ∼ 1/r . A class of vortices whose short-distance
behavior is given by (37) was found. Furthermore, the zero
modes of the Dirac equation computed in the next section
require a vortex solution with ϕ0 constant and nonvanishing
and b(r) = a′(r) given by (38) over all space, with the
exception of the origin, as discussed previously. From the
point of view of the gauge models, the singular behavior at
r = 0 does not raise any conceptual problems. Indeed, we
are using a continuous model to describe graphene and the
dimensions of the unit cell provide a natural short-distance
cutoff below which the model is no longer valid or, at best,
should be corrected to take into account the crystal structure
of the carbons and lattice defects.

If one takes the usual definition for the “magnetic field,”
�B = ∇ × �A, it follows that �B vanishes at large r . Close to the
origin, �B approaches a constant for a solution of the type of
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(36) and vanishes for configurations such as (37). For both
types of configurations, the vortex energy∫

d2x

{
1

2
B2 +

∣∣∣∣ �Dϕ

∣∣∣∣2

+ V (ϕ†ϕ)

}
(39)

is finite.
Despite the vanishing of �B at large distance, the “magnetic

flux” of the vortex configuration (29) over a sufficiently
large-radius closed surface is quantized. Indeed, for a spherical
surface centered at the origin,

� =
∫

�B · �dS =
∫

�A · �dl = −2πrb(r) = 2nπ

gϕ

, (40)

where n = 0, ± 1, . . . is the component of the angular
momentum on an axis perpendicular to the graphene plan
associated with the complex scalar field ϕ. Flux quantization
opens the possibility of having Bohm–Aharonov-type effects
in graphene without external electromagnetic fields, where
electrons are scattered by a vector potential, which can be
associated with a “topological defect” on the carbon structure,
and acquire an extra phase. We call the reader’s attention to the
Bohm-Aharonov phases that have been observed in suspended
graphene in association with mesoscopic deformations, where
the measured charge-carrier mobility is substantially larger
than in graphene on a substrate (see Ref. 26 and references
therein).

V. FRACTIONALIZATION, DIRAC EQUATION,
AND ZERO MODES

As discussed at the beginning of the present work, electron
fractionalization is related to the normalizable zero modes of
the Dirac kernel. The presence of these zero modes opens the
possibility of observation of the fractional quantum Hall effect
in graphene. A nice discussion connecting the Dirac equation
zero modes with electron fractionalization can be found, for
example, in Ref. 18.

For the UA(1) gauge theory, the proof of the presence of
normalizable zero modes can be found in Ref. 19. The Uf (1)
gauge theory includes, as a particular case, the Dirac equation
discussed by Hou, Chamon, and Mudry in Ref. 18. Therefore,
for Uf (1) gauge theory, fractionalization is possible. It remains
to discuss the Ub(1) and Uf (1) ⊗ Ub(1) gauge theories. In the
following, it will be assumed that the bosonic sector is in a
static vortex configuration with A0 = 0,

Ai = εij ∂j a(r), and ϕ(�r) = ϕ0(r)einθ . (41)

For a general gauge field, the Dirac equation associated
with the Ub(1) and Uf (1) ⊗ Ub(1) gauge theories is given by

{−i �α · (∇ − ig �A) + g2(ϕ†ϕ)β + ih2(ϕ†ϕ)βγ5}ψ = Eψ.

(42)

Let us define the following function:

�(�r) = zϕ2
0(r)eiα,z =

√
g2

2 + h2
2, (43)

where

tan α = −h2

g2
. (44)

With the above definitions and for the Dirac spinor

ψ =

⎛
⎜⎜⎜⎝

�b
+

�a
+

�a
−

�b
−

⎞
⎟⎟⎟⎠ , (45)

the Dirac equation becomes

e−iθ

(
− i∂r − ∂θ

r
− iga′

)
�a

+ + �(�r)�a
− = E�b

+,

−eiθ

(
− i∂r + ∂θ

r
+ iga′

)
�a

− + �∗(�r)�a
+ = E�b

−,

(46)

eiθ

(
− i∂r + ∂θ

r
+ iga′

)
�b

+ + �(�r)�b
− = E�a

+,

−e−iθ

(
− i∂r − ∂θ

r
− iga′

)
�b

− + �∗(�r)�b
+ = E�a

−,

where a′ means the derivative with respect to r of the function
a(r). These equations are invariant under the interchange of
the two sublattices a ↔ b provided that θ → −θ and a′ →
−a′. This symmetry generalizes the sublattice symmetry of
the Dirac equation already discussed in Ref. 18. We proceed
by assuming that �b

± = 0. Note that, for zero modes, given a
solution of the Dirac equation in sublattice a, the generalized
sublattice symmetry generates another zero mode but leaving
in sublattice b, or vice versa. If one writes

�a
+ = φ+(r)ei(mθ+β+),

(47)
�a

− = φ−(r)ei(kθ+β−),

the zero-mode equations become

φ′
+ +

(
m

r
+ ga′

)
φ+ + zϕ2

0(r)φ− = 0, (48)

φ′
− −

(
k

r
+ ga′

)
φ− + zϕ2

0(r)φ+ = 0, (49)

if the relations

k = m − 1 and β+ = π

2
+ α + β− (50)

are satisfied. From equation (48) one can write

φ− = − 1

�0(r)

[
φ′

+ +
(

m

r
+ ga′

)
φ+

]
, (51)

where �0(r) = zϕ2
0(r). Replacing this expression for φ−

in equation (49) one arrives at the following second-order
differential equation:

φ′′
+ +

[
1

r
− �′

0

�0

]
φ′

+ +
[
ga′′ −

(
m

r
+ ga′

)

×
(

k

r
+ ga′ + �′

0

�0

)
− m

r2
− �2

0

]
φ+ = 0. (52)

The computation of a solution of equation (52) requires the
knowledge of ϕ0(r) and a′(r). Let us look for configurations
where ϕ0(r) is a nonvanishing constant [i.e., a minimum of
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V (ϕ2
0)]. Then, �′

0 = 0 and �0 = zϕ2
0 is also a nonvanishing

constant. The equation of motion of the scalar field (31) gives

b(r) = a′(r) = − n

gϕr
. (53)

This particular gauge configuration solves the equation of
motion for the gauge field (32), except at the origin where
a Dirac delta function sets is due to the Laplacian operator.
Our vortex solution requires a short-distance cutoff, which
is provided by the dimensions of the graphene unit cell
or the length scale associated with a defect. Indeed, for
distances smaller than the unit-cell dimensions, the continuum
description of graphene should break down.

For these vortex solutions, the gauge field is linked with
the angular momenta, relative to an axis perpendicular to the
graphene sheet, of ϕ. Furthermore, recall that the “magnetic
field” associated with this type of vortex solution vanishes and,
therefore, the energy associated with the vortex also vanishes.

For a vortex with a constant ϕ0, equation (52) simplifies to

φ′′
+ + 1

r
φ′

+ +
[

− 1

r2

(
m − g

gϕ

n

)2

− �2
0

]
φ+ = 0. (54)

The solutions of this equation are the modified Bessel functions
I and K of argument �0r for particular combinations
of angular momenta associated with ϕ, φ+, and φ− (see
Appendix A for details).

The gauge model has, at least, one normalizable zero-
mode state of the Dirac equation. Therefore, the Ub(1) and
Uf (1) ⊗ Ub(1) gauge models can accommodate electron frac-
tionalization without the presence of external electromagnetic
fields. What is more, given the vortex solution and relation
(53), besides fractionalization, the gauge models also incorpo-
rates flux quantization associated with the “magnetic field.”
The phase shifts coming from the Bohm-Aharonov effect
associated with the vortex are connected with the component
of the angular momenta of ϕ along an axis perpendicular to
the graphene layer.

A. Zero modes and conformal invariance breakdown

The Sturm-Liouville form of the zero-mode equation is
found by setting φ+ = F/

√
z with z = �0 r in equation (54),

which becomes

F ′′ + 1

z2

[
1

4
− ν2

]
F = F, (55)

where ν2 = (m − g

gϕ
n)2. This equation is equivalent to a one-

dimensional Schrödinger eigenvalue problem with a potential
1/z2 which expresses invariance under scale change. The
conformal symmetry is broken by the ultraviolet physics
associated with defects or unit cell scales. Given that ν2 � 0,
the potential strength for the Schrödinger problem is above
the Breitenlohner-Freedman bound35 and the corresponding
quantum mechanical model is free from instabilities (i.e., the
zero-mode state does not collapse). In other contexts (for
example, in ultracold atomic physics), the violation of this
bound gives rise to the Efimov effect.36

We observe the connection between the fermionic Sturm-
Liouville equation and the dynamics of fermion fields in a su-
pergravity anti-de-Sitter (AdS) background (see, for example,

Ref. 37). In this description, the metric embodies conformal
invariance leading to a 1/r2 potential associated, in our case,
with the vortex solutions. The mass term of the fermionic
field in the corresponding supergravity action contains the
factor ν2 (see, e.g., Ref. 38). Within this framework, the
required short-range regularization (see the appendix) could be
performed at the expense of introducing a dilaton field coupled
to gravity, deforming the AdS metric.39,40 This suggests
that the Maldacena conjecture of the AdS-CFT (conformal
field theory) duality41,42 may well provide fresh insights to
graphene physics. For example, the vector mass gap could be
a consequence of breaking exact symmetries in holographic
ten-dimensional backgrounds, encoding mass gaps for the
fermionic field and vector fluctuations.43

VI. RESULTS AND CONCLUSIONS

In this paper we discuss gauge theories for graphene.
The building of the gauge models starts by assuming that
graphene dynamics can be described by fermion fields together
with a complex scalar field ϕ. The field ϕ resumes the self-
interaction of the carbon background and the mean fermionic
self-interaction. After exploring the global symmetry of the
most general Lagrangian, excluding derivative-like couplings,
the corresponding gauge models are investigated.

The gauge models are compatible with a gap for fermion,
vector, and scalar fields. The mass gaps are generated via
a Higgs mechanism. Furthermore, the mass gaps associated
with each gauge model are connected in different ways, which
opens for the possibility of experimentally distinguishing
between the models. Indeed, as claimed in Sec. III D for
example, by changing the concentration of impurities in
graphene, one can change the fermionic gap and check how
the scalar and vector gaps adjust and, in this way, check which
of the gauge models, if any, reproduce the graphene results.
Furthermore, in what concerns the fermionic gap, within the
models considered here, the mass gap is a dynamic quantity
associated with the field ϕ.

The gauge models have finite-energy vortex solutions.
Therefore, phenomena like the flux quantization of the
“magnetic field,” in association with topological defects of
the carbon structure, and/or Bohm–Aharonov-type effects
become possible within the description of graphene by gauge
models. Several types of vortex solutions were discussed and,
in general, the gauge field is linked with components of the
angular momenta, along an axis perpendicular to the graphene
plane, of ϕ. For this type of solution the phases associated with
Bohm–Aharonov-type effects are a measure of the ϕ angular
momenta.

Finally, we have investigated the two-dimensional Dirac
equation for the vortex solutions. A generalization of the
sublattice symmetry was discussed and we showed that all
gauge models have normalizable zero modes together with a
nonvanishing fermionic gap. Fractionalization is then possible
in all the gauge models considered here. Within this theoretical
background one expects that the fractional quantum Hall effect
can take place in graphene in connection with the zero-mode
solutions, even when there are no external electromagnetic
fields. See also the discussion at the end of Sec. I.
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The models investigated are potentially useful to describe
graphene. Indeed, they unify, under the same dynamic
principle, several features of graphene and predict others.
The models have multiple parameters whose values should
be found by reproducing experimentally known graphene
properties. We are currently engaged in performing such an
investigation and will report the results elsewhere.
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APPENDIX : ZERO MODES OF THE DIRAC EQUATION

Let us discuss the solutions of equation (54), reproduced
here:

φ′′
+ + 1

r
φ′

+ +
[

− 1

r2

(
m − g

gϕ

n

)2

− �2
0

]
φ+ = 0. (A1)

Introducing the adimensional distance z = �0r , after multi-
plying this equation by z2 one gets the following differential
equation:

z2φ′′
+ + zφ′

+ −
[(

m − g

gϕ

n

)2

+ 1

]
φ+ = 0, (A2)

whose solutions are the modified Bessel functions I±ν(z) and
Kν(z) (see Ref. 44 for definitions), where

ν2 =
(

m − g

gϕ

n

)2

. (A3)

Note that ν can be a real number. Between I±ν(z) and Kν(z),
only the latter tends to zero as r → +∞. Indeed, in this limit

Kν(z) =
√

π

2z
e−z, (A4)

with its first derivative having a similar functional behavior.
Therefore, modulo the behavior for small r , in principle,
setting φ+ proportional to Kν the differential equation (54)
is solved and the spinor is normalizable.

For small r

Kν(z) = 1
2�(ν)( 1

2z)−ν, (A5)

and the spinor diverges.
The divergence of φ+ can be resolved as described in Ref. 45

in connection with the potential −β/r2 with β > 0. A short-
distance cutoff r0 is introduced and the “potential” is replaced
by its value at r0. However, if φ+ can be made regular at
the origin, φ− as given by (51) will diverge near the origin.
Due to this short-distance divergence, φ− is not normalizable
unless the model has a minimal distance beyond which the
continuum description of graphene no longer makes sense.
The dimensions of the unit cell provide such an infrared cutoff.
Remember that, in graphene, the carbon atoms are separated
by a ≈ 1.42 Å, and for r < a one can set φ±(r) ≈ φ±(a) and
have a continuous and normalizable spinor.

We call the reader’s attention to the introduction of a
short-distance (i.e., ultraviolet) cutoff for the fermion fields
that does not change the results of Sec. IV A. Indeed, the
Dirac zero modes give no contribution to the equations of
motion associated with the vortex solution of Sec. IV A. In
this sense, the flux quantization of the gauge field and the
Bohm-Aharonov effect discussed there (i.e., the topological
properties of the vortex solution), are independent of the Dirac
spinors. On the other hand, the requirement that the Dirac
spinors are normalizable is a necessary condition to have
electron fractionalization (see, for example, the discussion in
the work of Hou et al.18).

The singular behavior at r = 0 seems to be an indication
of a “hole” at the center of the unit cell. This “hole”
is a topological obstruction and is at the origin of the
topological properties of the model analyzed in the present
work.
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