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Vibrational and thermodynamic properties of metal clusters with up to 150 atoms calculated
by the embedded-atom method
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The full vibrational spectrum of NiN and CuN clusters for clusters with N from 2 to 150 has been determined.
The vibrational frequencies show a highly irregular behavior as function of cluster size and geometry. Furthermore,
using the obtained results, we determine quantum mechanically the thermodynamics of the clusters using
the superposition approximation. The obtained heat capacity shows clear cluster-size effects. In addition, the
solid-solid transition temperature for several structural changes in nickel and copper clusters has been calculated.
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Clusters, of central importance to nanotechnology, are
interesting materials, both from the point of view of basic
research and from an application point of view. A vital issue
is how the structure of a cluster depends on its size, because
any property is a function of the cluster structure. Unfortu-
nately, experimental studies do not provide this information
unambiguously, nor is global-geometry optimization using
ab initio approaches possible for clusters with more than some
10–20 atoms. Thus, the most promising approach is to use
approximate, theoretical methods, as long as it is verified
that they combine computational simplicity with sufficient
accuracy.

In this context a very useful approach for the study of
transition-metal clusters is the embedded-atom method (EAM)
that was developed by Daw, Baskes, and Foiles1–4 and is valid
for metals with only little directional bonding. The scheme
incorporates many-particle effects and is computationally as
efficient as pair potentials. The EAM has been success-
fully applied to many bulk and low-symmetric problems in
transition metals (see, e.g., Ref. 4). Another version of the
EAM by Voter and Chen5,6 also considers diatomic data as
well as bulk properties in the fitting procedure. Moreover,
the EAM is closely related (mathematically equivalent) to
many other parametrized many-body models as the effective-
medium theory, the glue model of Ercolessi, the Finnis-Sinclair
potential, and the many-body Gupta potential.4

According to the EAM, the total energy of a system relative
to that of the isolated atoms is given through

Etot =
∑

n

Fn

(
ρh

n

) + 1

2

∑
n,m(n�=m)

ϕnm(Rnm). (1)

Here, ρh
n is the local electron density at site n, Fn is the

embedding energy, and ϕnm is a short-range potential between
atoms n and m separated by the distance Rnm. Different
many-body approaches listed in the preceding paragraph use
the same form of Eq. (1) with only different F and ϕ.4 With
this, it has become possible to calculate analytically the first
(force vector) and second (force-constant tensor) derivatives
with respect to the atomic coordinates.2,7,8 This, in turn,
has enabled us to develop high-speed computer programs to
perform global structure optimization for isolated NiN and
CuN clusters with N up to 150 (Refs. 9, 10) using our own
Aufbau/Abbau algorithm.11,12 We could also demonstrate that

the obtained structures were in good agreement with available
experimental and theoretical information. It was also checked
that the two different versions of the EAM give very similar
results.13

It is the purpose of the present contribution to extend those
studies with the determination of the vibrational properties
of the clusters. We thereby present a general scheme for
extracting temperature-dependent properties from studies of
the ground-state properties at T = 0 and subsequently apply
it to the Ni and Cu clusters.

A knowledge of the vibrational spectrum is very important
for the understanding of different properties of a cluster.
They are needed for the determination of the thermodynamic
properties, which in turn determine finite-temperature effects
like the stability, solid-solid structural transitions, and melting
of clusters.14,15 With vibrations one could compute electron-
vibration interaction in clusters and correspondingly study
scattering and kinetic effects in nanocluster devices, which,
however, is beyond the scope of the present work. Furthermore,
vibrational modes are fingerprints of the cluster structure
and, correspondingly, of the bonding between cluster atoms.
Therefore, vibrational spectroscopy could be a very powerful
tool for the analysis of cluster structure. The vibrational
spectra of nickel clusters with N = 2–14, 19, 20, and 55
were calculated using a many-body Gupta potential in a
study.16 Solov’yov et al.17 determined the normal vibration
frequencies of small sodium clusters with N � 20 using the
B3LYP method and obtained qualitative agreement with the
predictions based on the jellium model. Very recent progress in
experimental techniques18 allowed unique infrared absorption
spectra to be obtained for small isolated clusters in the gas
phase via infrared multiple photon dissociation spectroscopy.
Using this method in combination with theory, the geometric
cluster structures of small vanadium clusters in the size range
from 6 to 23 atoms were identified.18 Using the Green’s
function technique and the EAM to model the atom-atom
interactions, the authors of Ref. 19 presented a systematic ex-
amination of the effect of changing elemental composition on
the local structure (bond lengths), vibrational density of states,
and thermodynamics of the bimetallic cluster AgnCu34−n.
Furthermore, vibrations in larger low-dimensional systems,
such as nanoparticles, nanocrystallines, and nanostructured
surfaces, have been intensively studied theoretically20–28 using
different model potentials (EAM, effective-medium theory,
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glue, Sutton-Chen, tight-binding second-moment, empirical
atomistic force models, and Lennard-Jones) and techniques
(slab method, Green’s function approach, diagonalization of
the dynamical matrix, and molecular-dynamics simulations).
For those systems a low- and high-frequency enhancement
of the vibrational density of states as compared to the bulk
materials has been found. Experimental measurements27,29–33

have supported these findings. Similar enhancements have
been observed in computer simulations.34,35

Experimental studies of the melting of free sodium clusters
have demonstrated that thermodynamic properties of clusters
depend nontrivially on the cluster size.36–38 Specifically, it
was found that the melting temperatures are about 30% lower
than the bulk value, that they show strong size-dependent
effects in that one additional atom can change the melting
temperature by ±10 K, and that the geometric structures
of the clusters are crucial for the melting properties. Other
experiments of the thermodynamic properties of clusters39,40

showed that small tin and gallium clusters have higher melting
temperatures than the bulk. Despite much theoretical effort, a
general understanding of those phenomena is still lacking.41

Since melting is connected both to the structure and to the
dynamics of the atomic lattice, a knowledge of the cluster
ground-state configuration and the structures of a set of isomers
(in some cases this number may be large) in combination with
the full vibrational spectrum of the isomers is essential for an
understanding.

Using the global-minima structures obtained before,9,10 we
determine the full vibrational spectrum of nickel and copper
clusters with N up to 150 atoms. Furthermore, using those
structures we determine the free energy, the entropy, the inner
energy, and the heat capacity of the clusters as functions of
their size. Finally, the solid-solid transition temperature Tss

for some structural changes in nickel and copper clusters is
presented as well.

The vibrational spectrum was calculated by using the har-
monic approximation, i.e., from the eigenvalues of the 3N ×
3N dynamical matrix Dni;mj = M−1(∂2Etot/∂Rni∂Rmj ),
where M is the atomic mass and Rni is the ith (i.e., x, y, or z)
coordinate of atom n. The harmonic approximation is good41

in most cases and often even up to melting temperatures.
The full vibrational spectrum of nickel and copper clusters
was calculated for each cluster size ranging from 2 to 150
atoms. For the dimers, we found frequencies of 412 and 292
cm−1 for nickel and copper, respectively, in good agreement
with experimental spectroscopic values42,43 of 381 (Ni) and
266 cm−1 (Cu).

The size dependencies of the frequencies are not simple
and cannot be described by scaling laws, but the general
trend is qualitatively similar for nickel and copper clusters.
Figure 1 shows the largest, lowest, and (geometrical) averaged
frequencies of NiN and CuN for each cluster size in comparison
with the maximum phonon frequency in the bulk. The largest
frequency possesses strong oscillations. Thus, for N less than
approximately 40, the strong oscillations are related partly to
radical changes of the structure (e.g., a transition from the
icosahedral geometry to the fcc one), but even for smaller
structural changes the addition of a single atom can change this
frequency markedly. For larger N only significant structural
changes lead to the strong oscillations in the highest vibrational

FIG. 1. The maximum, minimum, and geometric mean normal-
mode frequencies of the nickel (top left) and copper (bottom left)
clusters as functions of cluster size. The horizontal dashed lines
in both left-hand graphs display the maximum phonon frequency
in bulk. The full vibrational spectrum of the two lowest-energy
structures of Ni38 (top right, narrow panels) and Cu38 (bottom right,
narrow panels). The numbers to the right of the left-hand graphs
display the normal frequencies at N = 150 in different units.

frequencies. Furthermore, the maximum frequency is lower
in clusters with a structure resembling the fcc structure of
the crystal (i.e., Ni38, Cu38, Cu79) as well as in clusters with
decahedral motifs [around N = 75 (Ni, Cu), N = 101–103
(Cu), and N = 104 (Ni)] and higher in the icosahedral ones.
The overall largest values of the maximum frequency are found
for 17 < N < 28 with the global maximum at N = 23 (whose
structure is a triple icosahedron) for both nickel and copper
clusters. The global-maximum values are 45–50% larger than
those in bulk. All the structures for N = 17 − 28 possess
polyicosahedral packing.9,10 On the average, the maximum
vibrational frequency in the nickel and copper icosahedral
clusters exceeds that in bulk by 25–30%.

The special features of the maximum frequency plots
of Fig. 1, discussed above, can be qualitatively understood
from structural considerations. The energy of the higher-
frequency modes is mostly defined by the local strains in
the surroundings of an oscillating atom. On the other hand,
a Mackay icosahedron can be obtained from 20 tetrahedra
sharing a common vertex. The tetrahedra have to be distorted
to be able to fill out the entire volume of the icosahedron.
Thus, an icosahedron is a highly strained structure. Even
more strained structures possess polyicosahedra composed
of interpenetrated icosahedra. In turn, a decahedron can be
constructed out of five tetrahedra sharing a common edge. To
close the gap between two connecting surfaces, they have to
be distorted. As a result, one obtains a perfect decahedron
with internal strains which are less than in an icosahedron.
There are no internal strains in fcc clusters that involve
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almost (see later) nondeformed tetrahedra. Therefore, the
restoring forces acting on vibrating atoms in icosahedral or
polyicosahedral structures are larger. The latter respectively
leads to the larger normal frequencies according to the present
study. In addition it should be mentioned that the tetrahedra
in fcc clusters are slightly deformed compared with those in
bulk due to the contraction effect—the average bond length in
metal clusters is slightly less than that in the bulk (see, e.g.,
Refs. 9, 10). That leads in turn to small internal strains even
in fcc clusters and respectively to larger restoring forces and
larger maximum frequencies in fcc clusters as compared with
the bulk. As shown in Fig. 1, this effect is slightly stronger
for fcc copper clusters. A similar effect of an enhancement of
the high-frequency modes and the appearance of modes above
the top of the bulk band also was found in nanostructured
surfaces and nanoparticles.20,21,23–25,28 The effect is due to a
stiffening of the force field around the low-coordinated atoms,
resulting from a shortening of the nearest-neighbor distances
or a capillary pressure.

When turning to the lowest frequency ω1(N ), we see very
strong size effects. For example, in going from Ni33 to Ni34,
the lowest frequency changes from 2.6 to 7 × 1012 s−1. The
geometric mean of the frequencies [important for classical
thermodynamics in calculations of different thermodynamic
potentials; see the short discussion following Eq. (2)], ω̄(N ) =
Nv
√∏Nv

i=1 ωi(N ) with Nv being the number of vibrational
modes, shows a strong size dependence but without any
important oscillations up to N around 30. For larger cluster
sizes it is almost constant. Finally, Fig. 1 also shows, through
the example N = 38, that the frequencies depend strongly
on the structure type. The narrow panels of Fig. 1 display
the full vibrational spectrum of the first (fcc structure, point
group Oh) and the second-lowest (icosahedral structure, point
group C5v) isomers of Ni38 and Cu38. As evident from the
figures, the frequencies of the second, icosahedral isomers
(for both nickel and copper), are shifted to larger values
in accord with the structural considerations of the previous
paragraph. However, it should be noted that the geometric
mean frequency (that depends on the distribution of normal
frequencies over the complete vibrational spectrum) for the
first (fcc) isomer is larger than that for the icosahedral one:
ω̄(N ) = 3.290 × 1013 s−1 for Ni38.1 and 3.283 × 1013 s−1 for
Ni38.2.

Once the vibrational properties have been determined, it
is possible to determine further vibrational thermodynamic
properties over a wide temperature range up to melting
temperatures. Since for bulk copper the specific heat shows a
deviation from the cubic temperature dependence that follows
from the Debye phonon model only at a very low temperature
of about 5 K, we assume for the metallic clusters of the
present study that the electronic degrees of freedom can also
be ignored when determining the thermodynamic properties.
The approach used, based on statistical physics44 and described
further below, is to calculate the partition function Z and
subsequently the Helmholtz free energy F , the entropy S, the
inner energy E, and the heat capacity C. Thereby, we consider
a canonical ensemble, which is similar to the experiments
of the Haberland group.37 Moreover, we use the harmonic
superposition approximation15,45,46 (SA) in the calculations

of the thermodynamic properties. Furthermore, our treatment
of the cluster thermodynamics is quantum mechanical. The
main advantage of the SA method is that it is significantly
faster than the more commonly used Monte Carlo approaches
and it is ergodic. The high reliability of the harmonic SA for
low-temperature thermodynamics of Lennard-Jones clusters
was demonstrated expressively recently by two advanced
Monte Carlo studies47,48 using the improved replica exchange
method. In the SA, the canonical partition function is written
as a sum over contributions from all M significant minima of
the potential energy surface (PES) as Z(T ) = ∑M

j=1 njZj (T )
(T is the temperature), where Zj is the partition function for
minimum j . The term nj is a degeneracy factor that takes
into account the identical contributions from all the 2N !/oj

permutation-inversion isomers of structure j ; oj is the order of
the point group, which is, for example, 114 for an icosahedron
(Ih), 48 for a fcc structure (Oh), and 20 for a decahedron (D5h).
Furthermore, the probability Pj1 of finding cluster structure j1
is given by Pj1(T ) = nj1Zj1(T )/

∑M
j=1 njZj (T ).

First we present the results for a one-minimum model of
the PES where only the global-minimum structures contribute
to Z(T ). Our computations of different solid-solid transition
temperatures have shown that for T < 250 K this approxima-
tion is good for the majority of Ni and Cu clusters from the
cluster-size region N = 2–150. Then

Z =
∑

n

e−En/kBT = e−E0/kBT

Nv∏
i=1

[2 sinh(αi/2)]−1,

F = −kBT ln Z = E0 + kBT

Nv∑
i=1

[αi/2 + ln(1 − e−αi )],

S = −∂F/∂T = kB

Nv∑
i=1

[αi/(eαi − 1) − ln(1 − e−αi )], (2)

E = F + T S =
(

E0 +
Nv∑
i=1

h̄ωi/2

)
+

Nv∑
i=1

h̄ωi/(e−αi − 1),

C = ∂E/∂(kBT ) =
Nv∑
i=1

[
α2

i e
αi /(eαi − 1)2

]
.

In these equations, kB is the Boltzmann constant and E0 is
the optimized total energy of a cluster at T = 0. Different
En = E0 + ∑Nv

i=1 h̄ωi(ni + 1/2) with n = {n1,n2, . . . ,nNv
}

are the different vibrational energy levels of the cluster;
αi = h̄ωi/kBT . The formulas above include the zero-point
contributions. Finally, the heat capacity is given in units of
kB . For αi � 1 (high temperatures), 2 sinh(αi/2) ≈ αi and
Z = e−E0/kBT /(h̄ω̄/kBT )3N−6. Thus, in a classical limit the
partition function of an N -atomic cluster and, therefore, all
the thermodynamic properties depend only on the geometric
mean vibrational frequency ω̄(N ) and not the details of the
vibrational spectrum of a cluster. Hence, in this case the
geometric mean of normal-mode frequencies, which is of
course a fictive mathematical magnitude, determines cluster
vibrational thermodynamics.

At sufficiently elevated temperatures kBT � h̄ωi , C ap-
proaches the classical value of Nv . For very low temperatures
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(a) (b)

(c) (d)

(e) (f)

(h) (i)

FIG. 2. Heat capacity of (a–d) Ni and (e–i) Cu clusters as a
function of cluster size for different temperatures: (a, e) T = 10 K,
(b, f) T = 20 K, (c, h) T = 40 and 70 K, and (d, i) T = 100, 150,
and 250 K.

kBT � h̄ωi , C approaches (h̄ω1/kBT )2 exp(−h̄ω1/kBT ),
which differs markedly from the bulk cubic (Debye)
temperature dependence. Thus, the vibrational heat capacity
in clusters approaches zero faster than in bulk with decreasing
temperature.

Figure 2 shows the average heat capacity per vibrational
mode, CVM = C/Nv , for nickel [Figs. 2(a)–2(d)] and copper
[Figs. 2(e)–2(i)] clusters for different temperatures. For the
lowest temperatures, we see a very strong dependence on
cluster size. Thus, Ni clusters with, e.g., 33, 37, and, to a
lesser degree, 83 and 86 atoms and Cu clusters with N = 16,
30, 44, 74, 95, and 111 (clusters with either low-symmetrical
structures with incomplete geometrical shells or decahe-
dral/fcc structures) have very large heat capacities, whereas
the particularly stable, magic-numbered icosahedral clusters
with N = 13, 23, 55, and 147 show the most pronounced
minima at low temperatures. Thus, in the temperature range of
our study we can identify a correlation between the maxima
of the vibrational energy of Fig. 1 and the minima of the heat
capacity. This correspondence is mathematically clear for very
low temperatures because of the factor exp(−h̄ω1/kBT ) in the
heat capacity formula at this limit. As Fig. 2 suggests, the size

dependence of CVM becomes less pronounced with increasing
temperature. Here, clusters with less than roughly 30 atoms
represent an exception. The heat capacity cluster-size effects
remain important even at medium temperatures ∼250 K for
both nickel and copper clusters. In the mean, the heat capacity
plots for copper clusters show stronger oscillations and larger
values than those for Ni clusters. The temperature dependence
of the heat capacity, within the one-minimum model of the
PES, is monotonic and CVM increases with increasing T ,
approaching the classical value of 1 for large T .

In our earlier structure optimizations,9,10 we determined
not only the energetically lowest structure but also the second-
and third-lowest ones. We can, therefore, use the vibrational
spectra of those to study, e.g., a solid-solid transition tempera-
ture within a two-minima model of the PES. Two minima, “1”
and “2,” with E

(1)
0 < E

(2)
0 can represent, e.g., two competing

structural types as a decahedron and an icosahedron or a
truncated octahedron and an icosahedron. In the superpo-
sition approximation15,45 and at the transition temperature
Tss(1 ⇔ 2), the two probabilities to find cluster structures
1 and 2, P1 and P2, have to be equal. The corresponding
equation for the transition temperature of the structural change
from 1 to 2 is given by P1[Tss(1 ⇔ 2)] = P2[Tss(1 ⇔ 2)] or
n1Z1[Tss(1 ⇔ 2)] = n2Z2[Tss(1 ⇔ 2)]. Using this expression
and the lowest-energy structures of Ni and Cu clusters together
with their vibrational spectra, we have studied the structural
changes from fcc to icosahedral structure in 38-atom Ni and
Cu clusters as well as from decahedral (Ni79.1) to fcc (Ni79.2)
and from fcc (Cu79.1) to decahedral (Cu79.2) structures. As
transition temperatures, we found 482 K for Ni38.1 ⇔ Ni38.2,
587 K for Cu38.1 ⇔ Cu38.2, and 87 K for Cu79.1 ⇔ Cu79.2.
Furthermore, we found that, despite the small total-energy
difference of 0.04 eV between the two lowest isomers of
Ni79, the structural transition between them does not take
place up to melting temperatures. Finally, we examined the
phase transition between the two lowest-energy isomers of
Ni33 and Cu33. The first isomers do not show any dominant
morphology—icosahedral, decahedral, tetrahedral, or fcc.9,10

The second isomers are polyicosahedral. Both isomers are low
symmetric. As the computations have shown, the structural
changes occur at 675 K for Ni and 231 K for Cu.

Temperature or entropy effects are the driving forces which
permit solid-solid transitions or transitions to the structures
with larger entropy. Within the two-minima model there are
two main contributions to the entropy that might enable
such transitions in clusters: (1) vibrational entropy, which
in the quantum-mechanical case is defined through a factor∏Nv

i=1[2 sinh(αi/2)]−1, and (2) configuration entropy, which is
defined by the number of the permutation-inversion isomers.
In turn, this number depends on the symmetry of the structure
and is determined by the order of the point group of a
minimum (factor oj ). This second term favors transitions from
more symmetrical structures to less symmetrical ones. Of
course, contributions (1) and (2) yield reasonable transition
temperatures below the melting temperatures only if both
structural minima under consideration are energetically close
to each other. The interplay of the above factors can provide
a very wide range of transition temperatures, as has been
obtained in the current study. For example, the extremely
low transition temperature of 87 K for the structural change
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from fcc (Cu79.1) to decahedral (Cu79.2) structures results from
(i) both first isomers of Cu79 being energetically extremely
close to each other; the total-energy difference between them
makes up only 0.02 eV. (ii) Vibrational entropy at T = 87 K is
larger by a factor of 1.49 for the decahedral isomer, and finally
(iii) the configuration entropy, which is defined by the ratio of
48 (Oh, fcc) to 4 (C2v , decahedral), is greater for the decahedral
structure by a factor of 12. Hence, all three reasons (i)–(iii)
strongly favor the fcc-to-decahedral structural transition in
Cu79.

Next we want to check whether the suggested solid-solid
transitions occur before melting. To do this requires the
determination of the melting temperature of a cluster, which is
generally a function of cluster size. The creation of a consistent
melting theory of clusters is a very challenging problem and is
not a purpose of the recent study. So we made the estimation of
the cluster melting temperatures, using a formula from Ref. 49:

Tmc = Cc

Cb

Tmb, (3)

where Tmc and Tmb are the melting temperatures of the
cluster and the bulk, accordingly, and Cc and Cb are the
(average, for clusters) coordination numbers of the atoms
in the cluster and in the bulk, correspondingly. The results
for Tmc predicted by Eq. (3) were in good agreement with
those obtained via molecular-dynamics simulations.49 For the
average coordination number in 33/38/79-atomic clusters, the
values of 7.82, 7.58, and 8.51, respectively, were obtained in
our earlier works.9,10 With Cb = 12 for fcc metals and the
bulk melting temperatures of 1728 K (Ni) and 1358 K (Cu),
the following cluster melting temperatures have been derived:
(i) 1126 and 1092 K for Ni33 and Ni38, respectively, and
(ii) 885, 858, and 963 K for Cu33, Cu38, and Cu79, respectively.
All the calculated cluster melting temperatures are higher than
the corresponding solid-solid transition temperatures. Hence,
the predicted solid transitions might happen before the cluster
melting.

Solid-solid temperature structural transitions have been
intensively studied in Lennard-Jones (LJ) and essentially
less in Morse and metal clusters. Some selected references
represent these studies: Refs. 47, 48, and 50 (LJ, and both
Monte Carlo and SA approaches), Refs. 51–54 (Morse,
LJ, Sutton-Chen, and Gupta potentials; SA approach), and
Refs. 55–57 [EAM-like potentials (Ag, Au, Cu, Ni), molecular
dynamics simulations, and the Monte Carlo method]. More
studies on solid-solid transitions can be found in an excellent
review article41 and in recent studies.47,48

None of these studies considered structural changes from
fcc to decahedral structure and vice versa, so we try to compare

the obtained results for Tss for only 33 and 38 clusters with
previous calculations. However, such a comparison has to be
done with care. Only one example illustrates that approach:
phase diagrams for silver clusters derived in studies52,54

using Sutton-Chen and Gupta potentials, respectively, are very
different. None of the above studies use the EAM potential
along with the SA. In a Monte Carlo study56 by Vlachov
et al., part of the calculations were performed using the EAM
potential. In particular, they could find that for Ni33 a structural
change occurs at ∼600 K (actually the transition temperature is
between 600 and 700 K, as may be seen from Fig. 1 of Ref. 56),
which is in good agreement with the temperature of 675 K
derived in the present study. Furthermore, using the values of
0.5168 eV (Ni)56 and 0.4093 eV (Cu)58 for the parameter ε

of the LJ potential and the dimensionless solid-solid transition
temperature of 0.121 for LJ38 (Ref. 52) [Tss = T LJ

ss (εk−1
B )], the

transition temperatures of 726 and 575 K have been found
for the 38-atom nickel and copper clusters within the LJ
model. Good agreement between the EAM and LJ transition
temperatures for Cu38 is surprising and rather accidental,
whereas the significant disagreement for nickel clusters is
understandable. That is because the many-body EAM potential
describes the bonding in metal clusters more realistically than
the simple pair (LJ) potential.4 Furthermore, in an earlier study
of NiN clusters (N = 2–150),9 we found excellent agreement
between the obtained EAM structures of nickel clusters and
those from the chemical-probe experiments of Parks et al. (see
references in Ref. 9). Next, in a molecular dynamics study,57

Balleto et al. modeled the interatomic interaction in Cu38

and Ag38 via many-body Gupta potential. They found that in
Cu38 the structural changes occur at intermediate temperatures
of 300 < T < 450 K, which are lower than those discussed
above. Thus, for a consensus, more studies are needed.

In summary, we have determined the full vibrational
spectrum of nickel and copper clusters with up to 150
atoms for the first time. Furthermore, using those spectra
and the superposition approximation, we have calculated the
thermodynamic properties of the clusters quantum mechani-
cally, including their heat capacity and solid-solid transition
temperatures for several structural changes in the Ni and Cu
clusters. Both the vibrational spectrum and the thermodynamic
functions show strong cluster-size effects. We emphasized that
the approach used is general. It is based only on the (common)
EAM form of the total energy [Eq. (1)] and is applicable to
many other many-body potentials.

This work was supported by the Deutsche Forschungsge-
meinschaft (DFG) through Project No. Sp439/23-1.
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