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Transition between ordinary and topological insulator regimes in two-dimensional resonant
magnetotransport
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In the two-dimensional case the transition between ordinary and topological insulator states can be described
by a massive Dirac model with the mass term changing its sign at the transition point. We theoretically investigate
how such a transition manifests itself in resonant transport via localized helical edge states. The resonance occurs
in the middle of the band gap due to a zero edge-state mode which is protected by the time-reversal symmetry,
also when coupled to the conducting leads. We obtain the explicit dependence of the resonant conductance on the
mass parameter and an external magnetic field. The proposal may be of practical use, allowing one to determine
the orbital g factor of helical edge states in two-dimensional topological insulators.
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I. INTRODUCTION

Two- (2D) and three-dimensional (3D) topological insu-
lators (TIs) are in the focus of current research (see recent
reviews1–3 and references therein). They differ from ordinary
band insulators by the presence of protected edge (in 2D)
or surface (in 3D) states that support electric current and,
for that reason, may have some application potential. The
2D TIs are of special importance because they exhibit the
quantum spin Hall (QSH) state4–7 that, unlike the quantum
Hall (QH) states, does not require any magnetic field and is
characterized by time-reversal invariant gapless edge modes,
while the bulk states are fully gapped. Such edge modes,
called sometimes “helical,” consist of a pair of channels
that propagate in the opposite directions for opposite spin
directions on the same edge. Another interesting feature of
the 2D TIs, which distinguishes them from 3D TIs, is that
their low-energy physics can be described by a massive Dirac
model.5,6 In particular, the transition between the ordinary
and topological insulating regimes corresponds to inversion of
the effective relativistic mass of the Dirac-like fermions. At
the transition the system behaves as a gas of massless Dirac
fermions.8

The first 2D TI was realized experimentally in HgTe
quantum wells.1,6,7 In these experiments, the QSH regime was
detected by measuring the longitudinal conductance of two
spin channels propagating in the same direction on opposite
edges of the sample. This finding was further substantiated
by the observed suppression of the edge transport in a
magnetic field,1,6 which breaks the time-reversal symmetry
of the QSH state, thus revealing the helical nature of edge
channels. Theoretically, the transport in QSH insulators has
been analyzed in both disordered9–12 and ballistic13–17 regimes.

In the present paper, we discuss another transport regime—
resonant tunneling—as an alternative means of probing helical
edge states in 2D TIs. We consider edge states localized on
a finite-length boundary coupled by tunneling to two metallic
leads (see also Fig. 1). The operation of such a device relies
on the fact that gapless helical edge states are protected by
the time-reversal symmetry.4,5 Therefore, for any tunneling
coupling that preserves the time-reversal invariance the edge
spectrum contains a doubly degenerate zero mode in the

middle of the band gap, which provides the resonant level
for tunneling between the leads. If, upon the gap inversion,
the systems go into the ordinary insulating regime, the zero
mode disappears and the transport through the device is
suppressed. This can be described by the following formula
for the tunneling conductance:

g(M,B) = e2

h

[
γRγL

(M + |M| + μB)2 + (
γR+γL

2

)2

+ γRγL

(M + |M| − μB)2 + (
γR+γL

2

)2

]
, (1)

where M is the mass (gap) in the Dirac model5 and γL/h̄

and γR/h̄ are the tunneling rates between the edge and the
left (L) and right (R) contacts. The two terms in Eq. (1) arise
from lifting the Kramers degeneracy of the zero mode in an
external magnetic field B, which involves the effective orbital
magnetic moment of the edge states μ = |e|h̄υ2/2c|M| (υ is
their velocity).

The transition between the topological and ordinary in-
sulator states manifests itself in the strong dependence of
conductance (1) on the sign of M (see, also, Fig. 1(d)). In
the topologically nontrivial state with M < 0, the B-field
dependence of conductance (1) has a resonant (Lorenzian) line
shape around B = 0, while in the ordinary insulator regime
with M > 0 the conductance is small and field independent,
g ≈ (e2/h)γRγL/2M2 for γL,R � |M| and μB � 2|M|.

Apart from the principal possibility to detect the edge zero
mode, the resonant magnetoconductance (1) can be used for
determining the effective orbital g factor of the helical edge
states in a given material. Such a need exists in magnetotrans-
port studies of HgTe quantum wells.1 For the typical velocity
in HgTe wells, υ = 5.5 × 105 ms−1 (Ref. 1), we estimate μ

(in units of Bohr magneton μB) as μ/μB ≈ 1700 meV/|M|,
where M is measured in meV. For the realizable values of
M ∼ 10 meV, the orbital g factor is quite large ∼ 170.

The subsequent sections describe the details of our the-
oretical analysis. In Sec. II we solve the boundary problem
for helical edge states in a QSH insulator subject to a finite
magnetic field. Section III presents a more general formula
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FIG. 1. (Color online) (a) Counterpropagating (helical) edge
states at one of the boundaries (y = 0) of a QSH insulator.
(b, c) Schematics of resonant tunneling via localized edge states
on finite-length linear and circular boundaries in a QSH insulator.
In (c) the edge states appear on the outer boundary of an island
(e.g., suitably chosen ordinary insulator or a hole) surrounded by a
QSH insulator. γL/h̄ and γR/h̄ are tunneling rates between the edge
and the left (L) and right (R) contacts. (d) Magnetoconductance (1)
for topologically nontrivial (M < 0) and ordinary (M > 0) insulator
states for γL = γR = 0.02 |M|. Inset: Enlarged view of g(B) for
M > 0.

for the resonant magnetoconductance in finite magnetic fields,
from which we derive Eq. (1), and finally Sec. IV concludes
the paper.

II. QUANTUM SPIN HALL INSULATOR IN A MAGNETIC
FIELD

A. Boundary problem

We begin by analyzing the edge states on a boundary
of a QSH insulator of finite length L, imposing symmetric

boundary conditions at the ends x = ±L/2 (see Fig. 1(a)). The
symmetric boundary conditions result in a vanishing particle
current density at x = ±L/2, thus providing a confinement for
Dirac fermions in a QSH insulator (see also the Appendix). For
concreteness, we use the effective four-band model derived in
Ref. 5 for HgTe quantum wells. In this approach one works
in the basis of the four states near the � (p = 0) point of
the Brillouin zone: |e1+〉, |h1+〉, |e1−〉, and |h1−〉, where e1

and h1 are the s-like electron and p-like hole QW subbands,
respectively. The index τ = ± accounts for the spin degree of
freedom. The effective two-dimensional Hamiltonian can be
approximated by a diagonal matrix in τ space5

H =
(

hp 0
0 h∗

−p

)
,hp = dpσ , dp = (υpx, − υpy,M), (2)

where Pauli matrices σx,y,z act in subband space, υ ≈ 5.5 ×
105ms−1 is the effective velocity1, and M determines the bulk
band gap at p = 0. In Eq. (2) we omit terms ∝ p2 since our
main results will hold for the vicinity of the p = 0 point. Up
to a unitary transformation, Eq. (2) is equivalent to a massive
Dirac Hamiltonian

HD = υτzσp + Mτzσz, (3)

τz is the Pauli matrix in spin space. We will work with the
corresponding retarded Green’s function defined by

[ε I − HD]Ĝ(r,r′) = Iδ(r − r′), (4)

where

p = −h̄i∇ − eA(r)/c, A(r) = (−By,0,0). (5)

A(r) is the vector potential of an external magnetic field B,
and I = τ0σ0 = diag(1,1,1,1).

The system size in the y direction is considered much
larger than the characteristic decay length of the edge states,
∼ h̄υ/|M|, allowing us to focus on one of the edges (y = 0 in
Fig. 1(a)). At y = 0 we impose the condition,18

G(r,r′)|y=0 = τ0 ⊗ σx G(r,r′)|y=0. (6)

It can be obtained by introducing a large mass term (M →
+∞) outside the physical area of the system. Therefore, with
M < 0 in the bulk of the system the boundary condition (6)
is equivalent to a mass domain wall which is responsible for
the appearance of the edge states in a 2D QSH insulator in
close analogy with the 3D situation considered in Ref. 19.
One can check that the boundary condition (6) indeed ensures
vanishing of the normal component of the particle current

jy(x,0) = ψ†(x,0)τ3 ⊗ σyψ(x,0)

= ψ†(x,0)τ0 ⊗ σx(τ3 ⊗ σy)τ0 ⊗ σxψ(x,0) (7)

= −ψ†(x,0)τ3 ⊗ σyψ(x,0) = −jy(x,0) = 0,

where we switched to the creation and annihilation operators
subject to boundary condition (6): ψ(x,0) = τ0 ⊗ σx ψ(x,0)
and ψ†(x,0) = ψ†(x,0)τ0 ⊗ σx .

B. Green’s function solution

The solution of this boundary problem can be obtained
following the same steps as in the problem of the edge states
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in graphene20,21. The Green’s function is block-diagonal in
Kramers partner (τ ) space

Ĝ =
(

Ĝ+ 0
0 Ĝ−

)
, Ĝτ =

(
G11|τ G12|τ
G21|τ G22|τ

)
, τ = ±, (8)

where Ĝτ is a matrix in space of the two QW subbands (or,
generally, in space of the upper and lower components of the
Weyl spinor), labeled by indices 1 and 2. Writing Eq. (4) in
components, it is easy to express the off-diagonal elements
G12|τ and G21|τ in terms of the diagonal ones as follows

Ĝτ =
(

G11|τ
υp−

τε−M
G22|τ

υp+
τε+M

G11|τ G22|τ

)
, p± = px ± ipy, (9)

where for G11|τ and G22|τ we have

[ε2 − M2 − υ2p−p+]G11|τ = (ε + Mτ )δ(r − r′),
[ε2 − M2 − υ2p+p−]G22|τ = (ε − Mτ )δ(r − r′).

Expanding

Ĝτ (r,r′) =
∞∑

n=−∞
Gτn(y,y ′) eikn(x−x ′)/L, kn = 2πn/L,

we obtain ordinary differential equations for G11|τn(y,y ′) and
G22|τn(y,y ′)[

∂2

∂Y 2
− (Y − Y0)2

4
− a1

]
G11|τn = ε + Mτ

h̄2υ2/λ
δ(Y − Y ′),

(10)

a1 = M2 − ε2

(h̄υ/λ)2
− sgn(eB)

2
,

[
∂2

∂Y 2
− (Y − Y0)2

4
− a2

]
G22|τn = ε − Mτ

h̄2υ2/λ
δ(Y − Y ′),

a2 = M2 − ε2

(h̄υ/λ)2
+ sgn(eB)

2
, (11)

where position Y = y/λ is measured in units of magnetic
length λ = (ch̄/2|eB|)1/2, and Y0 = −2λ kn sgn(eB) is the
center of the oscillator. The boundary conditions for Eqs. (10)
and (11) are derived from Eq. (6) by writing it in components
and using Eq. (9)

∂G11|τn(Y,Y ′)
∂Y

∣∣∣∣
Y=0

= κ1 G11|τn(0,Y ′), (12)

κ1 = τε + M

h̄υ/λ
+ Y0 sgn(eB)

2
, (13)

∂G22|τn(Y,Y ′)
∂Y

∣∣∣∣
Y=0

= κ2 G22|τn(0,Y ′), (14)

κ2 = −τε − M

h̄υ/λ
− Y0 sgn(eB)

2
. (15)

We seek the solution to Eq. (10) in the form of the linear
combination

G11|τn(Y,Y ′) = G∞
11|τn(Y,Y ′) + A1U (a1,Y − Y0). (16)

The first term is the Green’s function of the unbounded system
(source term),

G∞
11|τn = C1

{
U (a1,Y − Y0)U (a1, − Y ′ + Y0)|Y�Y ′ ,

U (a1,Y
′ − Y0)U (a1, − Y + Y0)|Y ′�Y ,

C1 = −λ(ε + Mτ )�(a1 + 1/2)√
2πh̄2υ2

, (17)

where U (a1,Y − Y0) is the parabolic cylinder function (see,
e.g., Ref. 22) and �(a1 + 1/2) is Euler’s gamma function. The
second term in Eq. (16) is the solution of the corresponding
homogeneous equation, decaying for Y → ∞. The coefficient
A1 can be found from boundary condition (12), which finally
yields

G11|τn(Y,Y ′) = G∞
11|τn(Y,Y ′) − C1

(Y0/2 + κ1)U (a1,Y0) − U (a1 − 1,Y0)

(Y0/2 + κ1)U (a1,Y0) + U (a1 − 1,Y0)
U (a1,Y − Y0)U (a1,Y

′ − Y0). (18)

We have also used the recurrence relation U ′(a,x) = (x/2)U (a,x) − U (a − 1,x) (Ref. 22). G22|τn(Y,Y ′) is obtained similarly
and has the form

G22|τn(Y,Y ′) = G∞
22|τn(Y,Y ′) − C2

(Y0/2 + κ2)U (a2,Y0) − U (a2 − 1,Y0)

(Y0/2 + κ2)U (a2,Y0) + U (a2 − 1,Y0)
U (a2,Y − Y0)U (a2,Y

′ − Y0), (19)

with the source term

G∞
22|τn = C2

{
U (a2,Y − Y0)U (a2, − Y ′ + Y0)|Y�Y ′ ,

U (a2,Y
′ − Y0)U (a2, − Y + Y0)|Y ′�Y ,

(20)

C2 = −λ(ε − Mτ )�(a2 + 1/2)√
2πh̄2υ2

.

C. Transition between ordinary and topological regimes in
weak magnetic fields

Let us now demonstrate how the Green’s function formal-
ism describes the transition between ordinary and topological
regimes. We will assume that energy ε and magnetic field B

are small in the sense that
|ε| � |M|, h̄υ/λ � |M|. (21)

This corresponds to the positive and large a1 [see Eq. (10)],
when the parabolic cylinder functions in Eq. (18) assume the
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FIG. 2. (Color online) Energies of spin-up ε+,n and spin-down
ε−,n edge states (in meV) vs. wave number n for M = −5 meV,
υ = 5.5 × 105ms−1, and L = 1 μm. (a) In a vanishing magnetic field
the spectrum is gapless with the Kramers-degenerate zero mode at
n = 0. (b) The degeneracy is lifted in a finite field opening a gap at
n = 0. For B = 60 mT the gap energy is approximately 1 meV.

form U (a,x) ≈ √
π/(2a/2+1/4�[3/4 + a/2])e−√

a x (Ref. 22).
Using then Stirling’s expansion for �(x), we find

G11|τn(y,y ′) ≈ G∞
11|τn(y,y ′)

+ ε + τM

2h̄υ|M|
M − |M| − hυ

L
n + μB + τε

M + |M| − hυ
L

n − μB + τε

× e−|M|(y+y ′)/h̄υ . (22)

The nontrivial dependence of the edge (second) term on the
mass sign describes the transition between the ordinary and
topological insulator states. Indeed, the gapless edge modes
appear only when M reverses its sign from positive to negative

ετ,n = hv

L
τn + μτB, M < 0. (23)

Unlike the conventional quantum Hall systems23 such edge
states exist in a zero or weak magnetic field, when their

localization length h̄υ/|M| is determined by the band gap |M|
rather than the magnetic field B (Ref. 24). The weak magnetic
field results in a Zeeman-like term μτB in Eq. (23) where the
effective magnetic moment μ = |e|h̄υ2/2c|M| has an orbital
origin: It is related to the magnetic flux through the finite width
h̄υ/|M| of the edge state. The magnetic field lifts the Kramers
degeneracy ε−τ,−n = ετ,n, splitting the Kramers partners by
2μB in energy.

In the general case, the analytical results for the edge-
state spectrum are corroborated by the numerical solution
of equation (Y0/2 + κ1)U (a1,Y0) + U (a1 − 1,Y0) = 0, which
corresponds to the pole of Green’s function (18). For positive
M we again find no subgap states, while for M < 0 the solution
is shown in Fig. 2. In a vanishing magnetic field (see Fig. 2(a)),
the spectrum contains a Kramers-degenerate zero mode with
n = 0 in the middle of the band gap. The finite field lifts the
Kramers degeneracy, opening a gap at n = 0 (see Fig. 2(b)).
We emphasize that the gap opening is the consequence of the
discreteness of the spectrum. For the continuum spectrum (i.e.,
for L → ∞) the effect of the orbital magnetic field reduces to
a shift of the crossing point of the τ = ± branches17.

D. Zero-dimensional case

Hereafter we focus on the zero-dimensional (0D) case
which admits a simpler analytical treatment at finite magnetic
fields. This limit is realized when the level spacing hυ/L

is much larger than both thermal activation energy kBT

and level broadening γ (due to the coupling to metallic
leads, see Sec. III)

hυ/L > kBT , γ. (24)

Under such conditions, the transport at energy ε = 0 is
determined by the presence (or absence) of the Kramers-
degenerate zero mode with n = 0 (see Fig. 2). Consequently,
in Green’s functions (18) and (19) one can set Y0 = 0 and
use U (a,0) = √

π/2a/2+1/4�(3/4 + a/2) (see Ref. 22), which
yields

G11|τ0(Y,Y ′) ≈ −C1
λ(ε + Mτ )B(1/2,1/4 + a1/2) − √

2πh̄υτ

λ(ε + Mτ )B(1/2,1/4 + a1/2) + √
2πh̄υτ

U (a1,Y )U (a1,Y
′), (25)

G22|τ0(Y,Y ′) ≈ −C2
λ(ε − Mτ )B(1/2,1/4 + a2/2) + √

2πh̄υτ

λ(ε − Mτ )B(1/2,1/4 + a2/2) − √
2πh̄υτ

U (a2,Y )U (a2,Y
′), (26)

where B(1/2,1/4 + a/2) is Euler’s beta function (we
have omitted the bulk terms since they do not have
the poles inside the band gap). Next, we integrate Eqs.
(25) and (26) over the remaining variable y and intro-

duce the 0D functions as G11|τ0(ε) = ∫ ∞
0 G11|τ0(Y,Y )dY

and G22|τ0(ε) = ∫ ∞
0 G22|τ0(Y,Y )dY . The integrals can be

expressed in terms of the digamma, ψ , and gamma functions
using the identity

∫ ∞
0 U 2(Y )dY = √

π/2[ψ(3/4 + a/2) −
ψ(1/4 + a/2)]/2�(1/2 + a) (see, Ref. 25)

G11|τ0(ε) ≈ λ2(ε + Mτ )[ψ(3/4 + a1/2) − ψ(1/4 + a1/2)]

2πh̄2υ2

λ(ε + Mτ )B(1/2,1/4 + a1/2) − √
2πh̄υτ

λ(ε + Mτ )B(1/2,1/4 + a1/2) + √
2πh̄υτ

, (27)

G22|τ0(ε) ≈ λ2(ε − Mτ )[ψ(3/4 + a2/2) − ψ(1/4 + a2/2)]

2πh̄2υ2

λ(ε − Mτ )B(1/2,1/4 + a2/2) + √
2πh̄υτ

λ(ε − Mτ )B(1/2,1/4 + a2/2) − √
2πh̄υτ

. (28)
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In the next section we will use these equations to calculate the
resonant magnetoconductance through the zero edge mode.

III. RESONANT MAGNETOTRANSPORT

Transport through the localized helical edge states can be
realized in the geometries shown in Figs. 1(b) and 1(c)26

where the edge is coupled to two metallic leads (L and R)
via tunneling. Following the general approach of Ref. 27 we
describe the coupling by the tunneling Hamiltonian,

HT =
∑

k,α∈L,R

∑
n,τ

(Vkα,nτ c
†
kαdnτ + H.c.), (29)

where operator c
†
kα (ckα) creates (destroys) an electron with

momentum k and spin α in lead L or R, and d
†
nτ and dnτ are

the creation and annihilation operators for a localized edge
state with quantum numbers n and τ . The tunneling matrix
elements Vkα,nτ are assumed spin independent. Further, we
will work in the 0D limit (24) where only the zero edge mode,
described by d

†
0τ and d0τ in Eq. (29), needs to be taken into

account. Since the problem is similar to the tunneling through
a resonant level, we can apply the known formula for the
zero-temperature two-terminal conductance27

g = −e2

h

2γRγL

γR + γL

Tr Im Ĝ(ε = 0), (30)

where the tunneling energies γL,R are expressed in terms of the
tunneling matrix elements and Green’s functions of the leads.27

In Eq. (30) Tr Im denotes the trace in τ ⊗ σ space of the
imaginary part of the retarded Green’s function Ĝ(ε), which is
related to the Green’s function Ĝ(ε) calculated above through
the Dyson equation, Ĝ(ε) = Ĝ(ε) + Ĝ(ε)�̂Ĝ(ε), involving the
tunneling self-energy �̂. For metallic leads and in the absence
of spin scattering, �̂ is energy independent and diagonal in
τ ⊗ σ space27

� = −iγ I, γ = (γR + γL)/2. (31)

The solution of the Dyson equation takes the form Ĝ(ε) =
Ĝ(ε + iγ ). This self-consistently accounts for the edge-
spectrum broadening due to the presence of the leads. With
the 0D Green’s functions (27) and (28), Eq. (30) reads

g = −e2

h

2γRγL

γR + γL

∑
τ=±1

Im[G11|τ0(iγ ) + G22|τ0(iγ )], (32)

or, explicitly,

g(M,B) = 2e2

h

[
�1(x)�′

1(x) γRγL

(M + |M|�1(x)/
√

x)2 + γ 2

+ �2(x)�′
2(x) γRγL

(M + |M|�2(x)/
√

x)2 + γ 2

]
x=B

M
/|B|

, (33)

where B
M

= cM2/(4|e|h̄υ2) and the functions �1,2(x) and
their derivatives �′

1,2(x) are expressed in terms of the gamma
functions

�1(x) = �(x + 1/2)/�(x), �2(x) = x/�1(x). (34)

Let us analyze the results for the magnetoconductance.
Equation (33) is valid for arbitrary ratio of B and the

M (meV)

(2e /h)2

210−2 −1

0.5

1

−1 0−2 21

B=100 mTB=1 mT

0.01
(2e /h)2

g

g

FIG. 3. Conductance (33) in units of 2e2/h versus gap M (meV)
for B = 1 mT. Inset shows the same dependence for higher field
B = 100 mT; υ = 5.5 × 105ms−1 and γL = γR = 0.3 meV.

characteristic field, B
M

, related to the band gap M . Equation
(1), presented in the Introduction, follows from Eq. (33) in
the case of weak fields (or sufficiently large gap |M|) where
x−1 = |B|/B

M
� 1. To see this we use Stirling’s formula to

obtain the expansions �1(x) ≈ √
x(1 − x−1/8) and �2(x) ≈√

x(1 + x−1/8) and then insert them into Eq. (33).
As |M| becomes smaller (i.e., x = B

M
/|B| � 1) one should

use Eq. (33) instead of Eq. (1). Figure 3 shows the dependence
g(M) given by Eq. (33). The conductance varies smoothly
from 2e2/h in the inverted regime (M < 0) to zero in the
ordinary insulator state with M > 0. Interestingly, there is a
local minimum at M = 0. To demonstrate this analytically, let
us examine Eq. (33) for M � γ and x = B

M
/|B| � 1. Using

asymptotics �1(x) ≈ π1/2x and �2(x) ≈ π−1/2, we expand
g(M) ≈ g(0) + �g(M), where the correction �g(M) is given
by

�g(M)

e2/h̄
= γRγL

γ 2

B
M

|B| = γRγL

γ 2

cM2

4h̄υ2|eB| . (35)

It is quadratic in M reflecting the analyticity of the conductance
in the limit M → 0 at finite B and γ . Therefore, on both sides
of the transition the conductance initially increases with M .
However, for M > 0 the quadratic growth is followed by the
suppression when the ordinary insulator regime with the gap
M > γ is reached.

IV. CONCLUSION

We have proposed a model for resonant magnetotrans-
port via localized helical edge states in a quantum spin
Hall system. To calculate the magnetoconductance we used
the Green’s function formalism allowing us to treat the
topological and ordinary insulator regimes on equal foot-
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ing. In the topologically nontrivial state, the magnetic-field
dependence of the conductance has a resonant (Lorenzian)
line-shape explicitly depending on the orbital magnetic mo-
ment of the helical edge states. One could use this to extract
the orbital g factor of the helical edge states in a given
material. The necessary condition to test our predictions is
a sufficiently large edge level spacing hυ/L [see Eq. (24)].
For HgTe wells with υ = 5.5 × 105 ms−1 and L = 1 μm the
level spacing is about 2.5 meV (see also Fig. 2), implying
working temperatures up to a few Kelvin. Note that with
increasing B one should expect oscillations of the tunneling
conductance that follow the zero-mode (B = 0) resonance
because the states with nonzero momentum [n �= 0 in Eq. (23)]
will periodically cross the zero energy. Similar oscillations are
expected in the gate voltage dependence of the conductance,
which can be used to adjust the position of the Fermi level in
the band gap.
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APPENDIX:ELECTRON CONFINEMENT WITH
SYMMETRIC BOUNDARY CONDITIONS

We consider a system of finite length L (in the x direction
in Fig. 1(a)) subject to a perpendicular magnetic field B (5)
and described by the equations

ih̄∂tψ+(r,t) = (ih̄υ[σx(∂x + ieBy/ch̄) + σy∂y]

−Mσz)ψ+(r,t), (A1)

ih̄∂tψ−(r,t) = (−ih̄υ[σx(∂x + ieBy/ch̄)

+ σy∂y] + Mσz)ψ−(r,t), (A2)

for the operators ψ±(r,t) of the Kramers-partner states of
Hamiltonian (3). At the ends of the system we impose the
symmetric boundary conditions

ψ±(−L/2,y) = ψ±(L/2,y). (A3)

Our goal is to show that the symmetric boundary conditions
(A3) yield vanishing current density,

jx(±L/2,y) = 0, (A4)

and in this sense the particle is confined in the region |x| �
L/2. This becomes possible due to the specific structure of the
Dirac particle current density,

jx(x,y) = ψ
†
+(x,y)σxψ+(x,y) − ψ

†
−(x,y)σxψ−(x,y), (A5)

and the parity symmetry of Eqs. (A1) and (A2),

ψ−(x,y; B) = Cσxψ+(−x,y; −B), |C|2 = 1. (A6)

We now use this relation to transform the second term in
Eq. (A5) as follows

jx(x,y) = ψ
†
+(x,y; B)σxψ+(x,y; B)

−ψ
†
+(−x,y; −B)σxψ+(−x,y; −B). (A7)

Setting x = L/2 (or x = −L/2) and using the boundary
conditions (A3) we have

jx(±L/2,y) = ψ
†
+(L/2,y; B)σxψ+(L/2,y; B)

−ψ
†
+(L/2,y; −B)σxψ+(L/2,y; −B). (A8)

For zero magnetic field, B = 0, the two terms in Eq. (A8)
(i.e., the currents of the Kramers partners) cancel each other
out, yielding vanishing current density (A4) at the ends of
the system. Moreover, the current density (A8) should also
vanish in a finite magnetic field, B �= 0, provided that the
system is in the quantum spin Hall regime. Indeed, the current
density (A8) is odd in the magnetic field B and, therefore,
could only characterize the Hall response. However, in the
quantum spin Hall regime considered in our paper a Kramers
pair of counterpropagating edge states cannot generate the Hall
response.
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