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We propose and analyze different schemes to probe the quantum nature of nanoelectromechanical systems
(NEMS) by a tunnel junction detector. Using the Keldysh technique, we are able to investigate the dynamics of
the combined system for an arbitrary ratio of eV/h̄�, where V is the applied bias of the tunnel junction and �

is the eigenfrequency of the oscillator. In this sense, we go beyond the Markov approximation of previous works
where these parameters were restricted to the regime eV/h̄� � 1. Furthermore, we also go beyond the Born
approximation by expanding the finite frequency current noise of the tunnel junction up to fourth order in the
tunneling amplitudes. Interestingly, we discover different ways to probe both position and momentum properties
of NEMS. On the one hand, for a nonstationary oscillator, we find a complex finite frequency noise of the
tunnel junction, concluding that a simple tunnel junction detector can probe both position- and momentum-based
observables of the nonstationary oscillator. On the other hand, for a stationary oscillator, an Aharonov-Bohm-loop
tunnel junction detector is needed. It still allows us to extract position and momentum information of the oscillator.
For this type of detector, we analyze what happens if the energy scales eV , h̄�, and kBTenv take arbitrary values
with respect to each other where Tenv is the temperature of an external heat bath.
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I. INTRODUCTION

Nanoelectromechanical systems (NEMSs) have become a
promising playground for probing the quantum behavior of
mesoscopic objects, theoretically as well as experimentally.1,2

The diverse reasons to study NEMS are their vast number of
(possible) applications such as, for instance, the measurement
of mass, force, and position3–7 with high precision.

Nanomechanical systems being at the boarder of classical
to quantum are also being studied from a very fundamental
point of view. This includes the observation, measurement,
and control of quantum states of a mesoscopic mechanical
continuous variable system such as a harmonic oscillator.
Superconducting qubits electrically coupled to the mechan-
ical system have been successfully used to characterize the
mechanical resonator’s quantum state.8

Making quantum effects visible in nanomechanical systems
calls for ultralow temperatures and low dissipation. The goal of
observing the quantum-mechanical ground state of a harmonic
oscillator requires temperatures kBT � h̄�. Recently, this
goal has been achieved by using a microwave-frequency me-
chanical oscillator, with a frequency of f ≈ 6 GHz which al-
lowed cooling to the ground state with conventional cryogenic
refrigeration.9 Further proposals of cooling a nanomechanical
resonator coupled to an optical cavity have been proposed10,11

and experimentally implemented.12,13

The theoretical treatment of NEMS widely uses a Marko-
vian master-equation approach14–17 with a few exceptions, for
instance, the work by Wabnig et al.18 and Rastelli et al.19

where a Keldysh perturbation theory has been employed.
Here, we also make use of the Keldysh technique because

it allows us to treat the nonequilibrium system fully quan-
tum mechanically and, furthermore, to carefully investigate
the non-Markovian regime where eV � h̄�. Since we are
interested in the quantum nature of the oscillator, it is important
that the temperature T and the applied bias V of the tunnel
junction are not much larger than the eigenfrequency � of

the oscillator. Otherwise, the oscillator would be heated and
low-energy properties inaccessible.

The paper is organized as follows. Our key results are
summarized in Sec. II. In Sec. III, we introduce the generic
model. This is followed by an introduction of the formalism
we use in Sec. IV with subsections focusing on the fermionic
reservoir and on the oscillator dynamics. The main part of this
paper is presented in Sec. V, where we discuss the calculation
as well as the results for the finite frequency current noise.
Finally, we conclude in Sec. VI.

II. KEY RESULTS OF THE PAPER

The motivation of our work is to study an experimentally
feasible setup in which the quantum nature of NEMS can be
probed by current noise measurements of a tunnel junction
detector. A quantum NEMS can be described by a quantum
harmonic oscillator which is a continuous variable system
characterized by two noncommuting operators x̂ and p̂.
Therefore it is desirable to have a detector at hand that
can measure expectation values with respect to x̂-dependent
observables, p̂-dependent observables, as well as observables
that depend on both x̂ and p̂.

In Ref. 17, Doiron et al. have proposed a setup which
could be used for position and momentum detection of
NEMS. This setup consists of two tunnel junctions form-
ing an Aharonov-Bohm (AB) loop. There, it is possible
to tune the relative phase between the tunnel amplitudes
(where one depends on x̂ and the other one not) via a
magnetic flux penetrating the AB loop; see Fig. 1 for the
schematic setup. In such a setup, the symmetrized current
noise

Ssym(ω) = 1

2

∫
dteiωt 〈{�Î (t),�Î (0)}〉 (1)
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FIG. 1. (Color online) Schematic setup for the realization of a
position detector that can be extended by the parts enclosed in the red
dashed box to a momentum detector. The total tunnel amplitude in the
case of the position detector is given as β = β̄(x̂) = t0 + t1x̂ and in
the case of the momentum detector as β = β̄(x̂) + β̃ = t0 + t1e

iηx̂,
where the relative phase η between t0 and t1 can be tuned via a
magnetic flux � penetrating the AB loop. If the oscillator is in a
nonstationary state, already the parts without the elements in the red
dashed box serve as a position as well as a momentum detector.

(with the current fluctuation operator �Î (t) = Î (t) − 〈Î 〉) of
the tunnel junction detector can either contain information on
the oscillator’s position spectrum,

Sx(ω) = 1

2

∫
dteiωt 〈{x̂(t),x̂(0)}〉 , (2)

then Ssym(ω) ∼ Sx(ω), or the oscillator’s momentum spectrum

Sp(ω) = 1

2

∫
dteiωt 〈{p̂(t),p̂(0)}〉 , (3)

then Ssym(ω) ∼ Sp(ω), see also Eq. (54) below. The current
noise Ssym(ω) can also contain information on both the position
and the momentum of the oscillator. The former case has been
coined x detector and the latter case p detector. We note
that Ssym(ω), Sx(ω), and Sp(ω) are properly defined above
in Eqs. (1)–(3) for a stationary problem. In the nonstationary
case, which is also the subject of discussion in this work, these
quantities do not only depend on a single frequency ω but on
one frequency argument and one time argument instead; see
Eq. (38).

To be more specific, in this paper, we call an x detector a
detector that allows us to measure expectation values of the
oscillator’s position operator x̂, i.e., 〈x̂〉, 〈x̂x̂〉, etc. Similarly,
we call a p detector a detector that allows us to measure
expectation values of p̂, the oscillator’s momentum operator,
i.e., 〈p̂〉, 〈p̂p̂〉, etc. In Ref. 17, switching from the x detector
to the p detector is then accomplished by tuning the relative
phase between the tunnel amplitudes. The main difficulty of
this setup is the need of long coherence times and lengths in the
AB loop to make the switching possible. Here, we show that
the AB setup can be avoided. We find that the current noise of
the coupled oscillator-junction system with one tunnel junction
only, already can be used for momentum detection due to the
complex nature of the current noise when the oscillator is in
a nonstationary state. This is the first key result of our work,
specified and intensively discussed in Sec. V B 2 below.

We further investigate the current noise stemming from
a stationary oscillator up to fourth order in the tunneling

amplitudes, thereby going beyond the Born approximation.
Most importantly, we extend previous results of Ref. 17 to the
non-Markovian regime without any restrictions on the relative
magnitude of the energy scales eV , h̄�, and kBT . We show that
peaks in the finite frequency current noise at ω = ±� (both
for the x detector and the p detector) are a fourth-order effect.
In the Markovian regime, the peaks in the position detector
signal are always much larger than the ones in the momentum
detector signal. This is different in the non-Markovian regime.
There, we even find a larger signal for the momentum detector
compared to the position detector, clearly demonstrating that
the non-Markovian regime is the preferred regime to operate
the momentum detector. The detailed understanding of the x

detector and the p detector developed in this paper allows us to
uniquely identify the quantum state of the oscillator by a finite
frequency noise measurement. This is the second key result of
our work, specified and intensively discussed in Secs. V C 4
and V C 5 below.

III. MODEL

The system we consider consists of a nanomechanical
harmonic oscillator coupled to a biased tunnel junction. In
Ref. 20 an experimental realization is shown, where electrons
can tunnel from an atomic point contact (APC) onto a
conducting oscillator. The coupled system is described by the
following Hamiltonian:

Ĥ = Ĥosc + Ĥres + Ĥtun, (4)

with

Ĥosc = p̂2

2m
+ 1

2
m�2x̂2, (5)

Ĥres =
∑
l,r

εl ĉ
†
l ĉl + εr ĉ†r ĉr , (6)

where Ĥosc describes the oscillator with x̂ and p̂ being the
position and momentum operator of the oscillator with mass
m and frequency �, respectively. Ĥres contains the fermionic
reservoirs of the left and right contacts. The oscillator couples
to the tunnel junction via the tunneling Hamiltonian

Ĥtun =
∑
l,r

β ĉ
†
l ĉr + H.c. (7)

Here ĉi (ĉ†i ) annihilates (creates) an electron in reservoir
i = l,r . Motivated by the experimental setup in Ref. 20, we
take the oscillator to act as one of the fermionic reservoirs.
Therefore the tunneling gap depends on the position of the
oscillator, modifying the tunneling amplitude of the APC. For
small oscillator displacements x, we assume linear coupling
of the oscillator to the tunnel junction with a tunnel amplitude
β1. Hence we obtain β = [β0 + β1 x̂], with β0 being the
bare tunneling amplitude. Here, we allow for complex tunnel
amplitudes β0 and β1 as previously discussed in Refs. 17
and 21. With η we denote the relative phase between the tunnel
amplitudes, i.e., we write β0 = t0 and β1 = t1e

iη where t0,t1 ∈
	. A possible experimental realization of the finite and tunable
phase η is discussed in Ref. 17. As a consequence, this phase η

gives rise to the possibility to detect the oscillator’s momentum
expectation value 〈p̂2〉, present in the current noise.
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IV. GREEN’S FUNCTIONS OF THE FERMIONIC
RESERVOIR AND OF THE OSCILLATOR USING

THE KELDYSH TECHNIQUE

The true nonequilibrium, non-Markovian quantum behav-
ior of the coupled system is the subject of our interest.
Therefore we make use of the Keldysh formalism22,23 for our
calculation. The quantities being accessible in the experiment
are, for instance, the tunnel current and the current-current
correlator, the noise of the tunnel junction. These will also
be the main objects of interest in this paper. We employ
a perturbation theory in the tunnel Hamiltonian Ĥtun and
calculate the noise up to fourth order in the tunneling.

The current operator is given by Î = −e ˙̂Nl , where N̂l =
ĉ
†
l ĉl counts electrons in the left reservoir. We then write the

current operator as

Î = e[ĵ0 + x̂ĵ1] (8)

and similarly

Ĥtun = ĥ0 + x̂ĥ1, (9)

with ĵi = i[T̂i − T̂ †
i ] and ĥi = T̂i + T̂ †

i . The operator Ti is
given by Ti = ∑

l,r βi ĉ
†
l ĉr with i ∈ {0,1}.

A. Reservoirs Green’s functions

The fermionic Green’s functions of the left and right
reservoirs (free-electron gas) Gl,r , are given on the Keldysh
contour C by Gl,r (t,t ′) = −i〈Tc ĉl,r (t)ĉ†l,r (t ′)〉. Tc denotes the
time ordering operator on the Keldysh contour, placing times
lying further along the contour to the left. Figure 2 shows the
Keldysh contour C. The contour consists of a lower branch, C−
on which time evolves in the forward direction and of an upper
branch C+, where time evolves in the backward direction.
Switching from times lying on the contour to real times is
done by analytic continuation. The Keldysh Green’s functions
Gl,r (t,t ′) can then be represented by a matrix. A Fourier
transformation leads to the following Green’s functions:

Gl,r (ω) =
(

G−−
l,r (ω) G−+

l,r (ω)

G+−
l,r (ω) G++

l,r (ω)

)

= 2πiρ0

(
nl,r (ω) − 1/2 nl,r (ω)
nl,r (ω) − 1 nl,r (ω) − 1/2

)
. (10)

Here we made use of time translation invariance and assumed
a constant density of states in the left and right reservoir
ρl = ρr = ρ0. We make the reasonable assumption that the
fermionic bath relaxes much faster than the system into
a steady state, justifying that the fermionic bath correla-
tion functions do not depend on absolute times but only
on the time difference. The applied finite bias μr − μl =
eV is included in the Fermi distribution functions nl =

FIG. 2. Keldysh contour C with the lower branch C− and the
upper branch C+.

n(ω − eV/2) = [exp(β(ω − eV/2) + 1]−1 and nr = n(ω +
eV/2) = [exp(β(ω + eV/2) + 1]−1. The inverse temperature
of electrons in the reservoirs is β = 1/kBT and we use units
where h̄ = 1.

B. Oscillator

Since the oscillator modulates the tunneling of electrons
and therefore has impact on the measured average current and
current-current correlator, it is important to understand the
significance of the oscillator’s state. We distinguish between
an oscillator in a stationary state and one in a nonstationary
state. We justify this differentiation by arguing that for short
times after the measurement, the oscillator will certainly be
nonstationary. The dominating time scale here is the one given
by the oscillator itself, 1/�, which has to be compared to
times scales on which the damping of the oscillator due to
the tunnel junction and the external heat bath happens. In the
nonstationary case, we cannot make use of time translation
invariance in the oscillator’s correlation function D(t,t ′). For
longer times however, the assumption of stationarity is justified
since the oscillator can equilibrate with the environment and
reach a steady state. The oscillator’s correlation function now
only depends on the time difference t − t ′.

We work in the following with the oscillator opera-
tors given in the Heisenberg picture as x̂(t) = x̂ cos(�t) +
p̂/(m�) sin(�t) and p̂(t) = p̂ cos(�t) − x̂(m�) sin(�t). We
also define the aforementioned oscillator correlation function
D(t,t ′) in Keldysh space as

D(t,t ′) = −i〈Tc x̂(t)x̂(t ′)〉. (11)

When we later investigate the second-order noise we consider
both the stationary situation and the nonstationary situation.
The following relation then is a very useful one:

x̂(t + t ′) = x̂(t ′) cos(�t) + p̂(t ′)
m�

sin(�t). (12)

For calculations up to second order, we look at the influence
of stationary and nonstationary oscillator states on the current
noise; in fourth order we restrict ourselves to the stationary
case. Hence we are interested in a clear definition of the
oscillator’s correlation functions and spectral functions in the
stationary case, which will be addressed now.

1. Oscillator correlation functions in the stationary case

Considering the stationary case, we give useful expressions
for the oscillator’s correlation functions, which later allow us to
identify the oscillator’s power spectrum in x denoted by Sx(ω)
and in p denoted by Sp(ω). From Eq. (11) the correlation
function where t ∈ C+ and t ′ ∈ C− is given by

iD+−(t,t ′) = 〈x̂(t)x̂(t ′)〉
= 1

2

〈
x̄2

+ cos[�(t − t ′)] + [p̂,x̂]

m�
sin[�(t − t ′)]

+ x̄2
− cos[�(t + t ′)] + {p̂,x̂}

m�
sin[�(t + t ′)]

〉
,

(13)
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and similar for t ∈ C− and t ′ ∈ C+

iD−+(t,t ′) = 〈x̂(t ′)x̂(t)〉
= 1

2

〈
x̄2

+ cos[�(t − t ′)] − [p̂,x̂]

m�
sin[�(t − t ′)]

+ x̄2
− cos[�(t + t ′)] + {p̂,x̂}

m�
sin[�(t + t ′)]

〉
,

(14)

where we defined

x̄2
± = x̂2 ± p̂2

m2�2
, (15)

and [·,·] denotes the commutator and {·,·} the anticommutator.
Since, here we deal with the stationary case, the expectation
values 〈x̄2

−〉 and 〈{p̂,x̂}〉 appearing as prefactors of functions
depending on t + t ′ equal to zero, which one can easily check
by using any stationary state, e.g., number states. As one would
expect, the correlation function now is a function of the time
difference t − t ′ only. The Fourier transform of the correlation
functions then yields

iD+−(ω) = 1

2

〈
x̄2

+R+
γ (ω,�) + i [p̂,x̂]

m�
R−

γ (ω,�)

〉
, (16)

iD−+(ω) = 1

2

〈
x̄2

+R+
γ (ω,�) − i [p̂,x̂]

m�
R−

γ (ω,�)

〉
. (17)

Additionally, we introduce the two momentum correla-
tion functions iP +−(t,t ′) = 〈p̂(t)p̂(t ′)〉 and iP −+(t,t ′) =
〈p̂(t ′)p̂(t)〉. The same arguments as for iD±∓(t,t ′) lead here
to the following Fourier transforms:

iP +−(ω) = 1
2 〈p̄2

+R+
γ (ω,�) + m�i [p̂,x̂]R−

γ (ω,�)〉, (18)

iP −+(ω) = 1
2 〈p̄2

+R+
γ (ω,�) − m�i [p̂,x̂]R−

γ (ω,�)〉, (19)

where, similar to above,

p̄2
± = m2�2x̂2 ± p̂2. (20)

We introduce the functions R±
γ (ω,�) as

R+
γ→0(ω,�) = π [δ(ω + �) + δ(ω − �)], (21)

R−
γ→0(ω,�) = π [δ(ω − �) − δ(ω + �)]. (22)

The coupling of the oscillator to two environments, namely
an external heat bath and the tunnel junction, being at the
temperatures Tenv and kBTjunc = eV/2,24 respectively, intro-
duces a damping of the oscillator with damping coefficients
γ0 and γ+, respectively. The oscillator dynamics due to the
coupling to the tunnel junction can be calculated by solving a
Dyson equation for the oscillator correlation function D(t,t ′)
where the self-energy is taken to lowest nonvanishing order
in the tunnel Hamiltonian, i.e., 
(t,t ′) = −i〈Tc ĥ1(t)ĥ1(t ′)〉.
Using the Keldysh technique, as was done in Refs. 18
and 25, the oscillator dynamics and the damping coefficient
γ+ = πρ2

0 t2
1 /m can be calculated. The coupling to the external

heat bath can be added phenomenologically, or particularly
as an interaction with a bath of harmonic oscillators. The
total damping then follows as γtot = γ0 + γ+. We can assign

an effective temperature Teff to the oscillator with γtot Teff =
γ+ Tjunc + γ0 Tenv. This leads to the general case for R±

γ by
replacing the δ functions in Eqs. (21) and (22) by a Lorentzian,
where we include both sources of damping and an oscillator
frequency � →

√
�2 − γ 2. For this damped case we can write

for R+
γ (ω,�) and R−

γ (ω,�)

R+
γ (ω,�) = 2γtot(ω2 + �2)

4γ 2
totω

2 + (ω2 − �2)2
, (23)

R−
γ (ω,�) = 4γtot ω

√
�2 − γ 2

tot

4γ 2
totω

2 + (ω2 − �2)2
. (24)

We want to stress that we have not made any assumption on the
initial time as, e.g., t ′ = 0. This concludes our discussion on
the oscillator correlation functions. We now turn to the spectral
functions Sx(ω) and Sp(ω).

2. The oscillator’s spectra in the stationary case

The symmetrized power spectrum, in general defined as
1
2

∫
dt eiωt 〈{ϒ̂(t),ϒ̂(t ′)}〉 of the oscillator quantities ϒ̂ = x̂,p̂

is an observable that can be measured by, e.g., current noise
measurements (as discussed below). Both Sx(ω) and Sp(ω)
can be measured through the current noise Ssym(ω). The
expressions for these power spectra are given by

Sx(ω) = 1

2

∫
dt eiωt 〈{x̂(t),x̂(t ′)}〉 = 1

2
〈x̄2〉R+

γ (ω,�), (25)

and

Sp(ω) = 1

2

∫
dt eiωt 〈{p̂(t),p̂(t ′)}〉 = 1

2
〈p̄2〉R+

γ (ω,�). (26)

The momentum and position spectrum are related via the
relation

Sp(ω) = m2�2Sx(ω). (27)

We can also write down the spectra using the Keldysh Green’s
function DK (ω) = D+−(ω) + D−+(ω), which yields

Sx(ω) = 1
2 iDK (ω), (28)

Sp(ω) = 1
2m2�2 iDK (ω). (29)

To further simplify the notation, we introduce

Q(ω) = i

2
[ϒ+−(ω) − ϒ−+(ω)] = 1

2m�
R−

γ (ω,�), (30)

where ϒ = D,P which is used later in the fourth-order noise
calculation.

V. CURRENT NOISE CALCULATIONS

In this section, we cover a variety of aspects when dealing
with the current noise. For all different aspects we find
expressions for the noise which are valid for an arbitrary η

and therefore include the x detector as well as the p detector.
The first part is dedicated to the noise in second-order per-

turbation theory, where we furthermore make the distinction
between a stationary harmonic oscillator and a nonstationary
one. Besides the Markovian regime (eV � h̄�), the Keldysh
formalism also allows us to investigate the non-Markovian
regime (eV � h̄�). The main results in this section are that
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the current noise for a nonstationary oscillator can in principle
be complex. In this case, a detectable complex noise would
allow for a nearly complete determination of the oscillator’s
covariance matrix σij = tr(ρ̂ {ϒ̂i,ϒ̂j }/2), where ϒ̂ = (x̂,p̂)T .
The covariance matrix allows for a complete description of the
oscillator’s quantum state.

For the stationary oscillator we recover a noise that is real
and in accordance with the Wiener-Khinchin theorem. This
noise is the well-known noise of a bare biased tunnel junction
which shows kinks at |ω| = |V |,26,27 modified by the oscillator
leading to kinks at |ω| = |V ± �|.

In the last part of this section, we deal with the noise
up to fourth order in the tunneling amplitudes. Then we
restrict ourselves on the stationary case. On the one hand,
the fourth-order contributions modify the kinks, on the other
hand, they give rise to resonances stemming from the oscillator
correlation functions.14,17,18

Importantly, we study the problem over the whole pa-
rameter range. Thus, we go, e.g., beyond Ref. 15 where
a Markov approximation was employed and lead to the
constraint � � max(kBT ,eV ) for the high-frequency current
noise. Before we introduce the perturbation theory leading to
the noise expression, we want to clarify the term second- and
fourth-order perturbation theory. When we talk about these
two cases we want to indicate that we expanded the quantities
that we calculated to second and forth order in the tunneling
amplitudes. Our results, especially in Sec. V C, are of higher
order than the actual expansion since we used the oscillator
Green’s function Eq. (11), which is obtained by solving the
Dyson equation with the proper self-energy as discussed in
Sec. IV B 1.

A. Overview

In general, the expression for the current-current correlator
in the Keldysh formalism is given by (expectation values are
taken with respect to the unperturbed Hamiltonian, i.e., the
Hamiltonian without Ĥtun)

S(τ3,τ4) = 〈Tc e−i
∫
c
dτ̃ Ĥtun(τ̃ )Î (τ3)Î (τ4)〉0

−〈Î (τ3)〉0〈Î (τ4)〉0, (31)

since we consider only the second- and fourth-order current
noise we write

S(τ3,τ4) = S(2)(τ3,τ4) + S(4)(τ3,τ4), (32)

where

S(2)(τ3,τ4) = 〈Tc Î (τ3)Î (τ4)〉0, (33)

and

S(4)(τ3,τ4)

= −1

2

∫
c

dτ1dτ2〈Tc Ĥtun(τ1)Ĥtun(τ2)Î (τ3)Î (τ4)〉0

+
∫

c

dτ1dτ2〈Tc Ĥtun(τ1)Î (τ3)〉0〈TcĤtun(τ2)Î (τ4)〉0. (34)

The general expression for the average current is given by

〈I (t)〉 = 〈Tc e−i
∫
c
dτĤtun(τ )Î (t)〉0. (35)

To second order in the tunneling amplitudes, the average
current can be calculated by

〈I (t)〉 = −i

∫
c

dτ 〈Tc Ĥtun(τ )Î (t)〉0, (36)

and we obtain

〈I (t)〉 = 2πρ2
0e

{
t2
0 eV + 2 cos(η)t0t1eV 〈x̂(t)〉 + sin(η)t0t1

× 〈p̂(t)〉
m

+ t2
1 eV 〈x̂(t)x̂(t)〉 − t2

1

2m�
σ−(�,V )

}
,

(37)

where σ−(�,V ) is given in Eq. (42) below. Our result for the
average current is in accordance with Ref. 17. The current
noise we calculate is always the frequency-dependent (and
in the nonstationary case also time-dependent) symmetrized
current noise, defined as

Ssym(ω,t ′) = 1

2

∫
dt eiωt [S−+(t,t ′) + S+−(t,t ′)], (38)

where for S−+(t,t ′), t ∈ C− and t ′ ∈ C+ and similarly for
S+−(t,t ′), here C− and C+ are the lower and upper branch of
the Keldysh contour C, respectively; see Fig. 2. The debate
whether the symmetrized or unsymmetrized current noise of
the detector is accessible in an experiment has been discussed
in Refs. 28 and 29. We focus on the symmetrized version of the
current noise, since leading experiments as in Refs. 20 and 27
showed that the symmetrized current noise is measurable and
since the focus of this paper lies in the characterization of the
nanomechanical resonator.

B. Current noise to second order in the
tunneling amplitudes

We now turn to the calculation of the current noise to second
order. With the current operator Î already being first order
in the tunneling amplitudes, the current noise in the Born
approximation is given by the following expression:

S(2)ij (t,t ′) = 〈Tc Î (t + t ′)i Î (t ′)j 〉, (39)

where we used a slightly different definition of the current
noise. This definition will be useful when examining the
nonstationary case. Due to this definition the time dependence
on t ′ in the symmetrized current noise is only present in the
oscillator’s quantum-mechanical expectation values.

The general expression for the current noise in Keldysh
space reads

S(2)ij (t,t ′) = e2[G00(t + t ′,t ′) + 〈x̂(t ′)〉G01(t + t ′,t ′)
+〈x̂(t + t ′)〉G10(t + t ′,t ′)
+ iD(t + t ′,t ′)G11(t + t ′,t ′)], (40)

where Gij (t,t ′) is given in Appendix A.

1. General expression for the current noise

In this section, we only make use of time translation
invariance in the Gij (t,t ′) functions; the oscillator is taken
as nonstationary. Details of the calculation can be found in
Appendix B. The final result we obtain for the symmetrized
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current noise to second order in the tunneling amplitudes reads

S(2)
sym(ω,t ′) = 2πρ2

0e2

{
t2
0 σ+(ω,V ) + 〈x̂(t ′)〉t0t1 cos(η)

[
σ+(ω,V ) + 1

2
[σ+(ω + �,V ) + σ+(ω − �,V )]

]

−〈x̂(t ′)〉t0t1i sin(η)

[
σ−(ω,V ) − 1

2
[σ−(ω + �,V ) + σ−(ω − �,V )]

]
− 〈p̂(t ′)〉 t0t1

2m�
[sin(η)[σ−(ω + �,V )

− σ−(ω − �,V )] − i cos(η)[σ+(ω + �,V ) − σ+(ω − �,V )]] + 〈x̂(t ′)x̂(t ′)〉 t
2
1

2
[σ+(ω + �,V ) + σ+(ω − �,V )]

− t2
1

2m
− 〈{x̂(t ′),p̂(t ′)}〉 i t2

1

4m�
[σ+(ω + �,V ) − σ+(ω − �,V )]

}
, (41)

where we separated the real and imaginary part using the
relative phase η between the tunneling amplitudes and in
addition introduced

σ±(ξ,V ) = eV + ξ

2
coth

(
β

eV + ξ

2

)

±eV − ξ

2
coth

(
β

eV − ξ

2

)
. (42)

We want to note the important aspect of the current noise
that it possibly can have a complex valued character which
we discuss later. The gained expression is quite lengthy but
provides us with the full quantum-mechanical nonequilibrium
characteristics of the current noise in the Markovian as well
as in the non-Markovian regime. We made no assumptions on
the state of the oscillator, which now gives us the possibility
to identify momentum properties of the nanomechanical
resonator using the current noise spectrum S(2)

sym(ω,t ′). In the
next section, we discuss this new possibility of a p detector,
which involves measuring a complex valued current noise.

2. Complex current noise and the p detector
in the nonstationary case

The expression in Eq. (41) allows for a comparison with
results obtained in Ref. 17 where it was possible with a phase
of η = π/2 to determine the momentum of the oscillator. In
Ref. 17 an Aharonov-Bohm setup allows the tuning of the
relative phase η. The full current noise spectrum there is
proportional to the position spectrum Sx(ω) which is peaked
at ω = ±� in the case of η = 0 and in the case of η = π/2
is proportional to the momentum spectrum Sp(ω) showing
peaks at ω = ±�. This peaked structure of the current noise
spectrum is a fourth-order effect, as we will see and discuss
later when dealing with the fourth-order corrections to the
current noise.

As one can see from Eq. (41), already the second-order
current noise allows us to determine the expectation value
of the oscillator’s momentum and in addition to that of
the anticommutator {x̂,p̂}, even if the phase η = 0, i.e., the
Aharonov-Bohm setup becomes obsolete in our case. The
signature of the oscillator’s momentum p̂ in our case is,
however, different than the one in Ref. 17. Instead of the peaked
structure, we find a kinklike structure, which stems from the
fact that we deal with second-order perturbation theory.

In order to understand how one can use this to identify
the momentum, we have to understand the meaning of a

complex current noise. As stated in Ref. 30, a complex valued
current noise is in principle a measurable quantity. To have
a relevant measurable quantity we would have to average the
time-dependent current noise S(2)

sym(ω,t ′) over the measurement
time �T . We could do this in the following way:

S̄(2)
sym(ω) = 1

�T

∫ �T/2

−�T/2
dt ′S(2)

sym(ω,t ′). (43)

Since the time dependence of the current noise is only visible
in the expectation values of the oscillator’s variables, it is
important for the actual measurement to consider the time
scales which are involved. If the measurement time �T is
less than the time scale of the oscillator (1/�), the measured
time averaged current noise S̄(2)

sym(ω) will be time dependent. If,
however, the oscillator undergoes multiple oscillation cycles
during the measurement time, the current noise will be time
independent. In this case we could as well take the oscillator to
be in a stationary state. For a damped oscillator the time scales
on which the damping happens have to be taken into account,
as mentioned already in Sec. IV B.

Let us briefly discuss the involved time scales for the
experiment in Ref. 20. The oscillator with a quality factor
of Q0 ≈ 5000 at frequency � ≈ 60 MHz has a typical
relaxation time scale of τosc ≈ 100 μs. For low temperatures
the quasiparticle relaxation rate of the fermionic reservoirs
can be estimated by usual Fermi-liquid theory (1/τres ∼ T 2),31

which leads for 250 mK used in the experiment to a relaxation
time scale τres of order μs. Hence τres � τosc in Ref. 20.
Furthermore, the detector in Ref. 20 has a high enough
resolution of measuring displacements on time scales less than
10 ns.

We conclude with remarks on the interesting nonstationary
case, where we can also take η = 0 without losing the
information on 〈p̂(t ′)〉, and in addition obtain information on
〈{x̂(t ′),p̂(t ′)}〉. We intend to give an idea of how to access the
information on 〈p̂(t ′)〉 and 〈{x̂(t ′),p̂(t ′)}〉 available through the
complex current noise.

The expectation value of 〈p̂(t ′)〉, with respect to number
states or a linear combination of them, will always vanish when
averaging over time according to Eq. (43). However, this is dif-
ferent for coherent states |α〉 = exp(−|α|2/2)

∑∞
n=0 αn/n!|n〉,

where we can write α = |α| exp(i δ) with |α| being the ampli-
tude and δ the phase of the coherent state, respectively. The
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time-averaged expectation values 〈p̂(t ′)〉 and 〈{x̂(t ′),p̂(t ′)}〉
with respect to |α〉 yield

〈p̂(t ′)〉av =
√

2m�
2|α|
��T

sin(δ) sin(��T/2), (44)

and

〈{x̂(t ′),p̂(t ′)}〉av = 2|α|2
��T

sin(2δ) sin(��T ), (45)

where 〈·〉av contains two averages, the quantum mechanical
average denoted by 〈·〉 and the time average according to
Eq. (43) denoted by the subscript av.

For short measurement times �T < 1/� we can write

lim
�T →0

〈p̂(t ′)〉av =
√

2m�|α| sin(δ), (46)

lim
�T →0

〈{x̂(t ′),p̂(t ′)}〉av = 2|α|2 sin(2δ). (47)

We separate the current noise S̄(2)
sym(ω) = S̄

(2)
sym,R(ω) + S̄

(2)
sym,I(ω)

into real and imaginary parts where we observe that the imagi-
nary part S̄(2)

sym,I(ω) only contains information on the oscillator’s
momentum 〈p̂(t ′)〉 and the anticommutator 〈{x̂(t ′),p̂(t ′)}〉,

S̄
(2)
sym,I(ω) = 2πρ2

0e2

{
1√

2m�
t0t1|α| sin(δ)[σ+(ω + �,V )

− σ+(ω − �,V )] − t2
1 |α|2
2m�

sin(2δ)

× [σ+(ω + �,V ) − σ+(ω − �,V )]

}
. (48)

The phase δ of the coherent state now allows for a determina-
tion of the oscillator’s momentum. For δ = π/2, the signature
in the imaginary part of the time-averaged noise S̄

(2)
sym,I(ω)

stems only from the oscillator’s momentum. The signal in
the non-Markovian regime is more pronounced than in the
Markovian regime; see Eq. (48).

3. Current noise in the stationary case

Contrary to the nonstationary case we now also assume time
translation invariance in the oscillator correlation function,
i.e., D(t,t ′) = D(t − t ′). One can see that the calculation
in the stationary case goes along the same lines as in the
nonstationary case. The only difference will be that oscillator
expectation values are now taken at time t ′ = 0, i.e., we
encounter, for instance, 〈x̂(0)〉 instead of 〈x̂(t ′)〉.

When interpreting the result for the stationary case we
have to keep the constrains on oscillator expectation values
in mind. These constrains mentioned in Sec. IV B 1 lead to
vanishing expectation values of the anticommutator 〈{x̂,p̂}〉
and vanishing expectation values for 〈x̂〉 and 〈p̂〉. The current
noise to second order is then equivalent to the ones previously
obtained in Refs. 18 and 21 , cf. Eq. (C.4) in the supplemental
material of Ref. 21 with γ2 = 〈x〉 = 〈p〉 = 0.

C. Current noise to fourth order in the tunneling amplitudes

We now turn to the investigation of the fourth-order current
noise. Since the fourth-order perturbation theory involves a
large amount of terms we use a diagrammatic approach.
In the case of the fourth-order current noise we restrict
ourselves to the stationary case for simplicity. An overview

of all contributing terms in the nonstationary case is given in
Appendix C. In what follows we give a short explanation of
the diagrammatics. From Eq. (34) it becomes obvious that
S(4) contains fermionic expectation values which have the
form

Mi1,i2,i3,i4 (τ1,τ2,τ3,τ4) = 〈
Tc ĥi1 (τ1)ĥi2 (τ2)ĵi3 (τ3)ĵi4 (τ4)

〉
= 〈

Tc T †
i1

(τ1)Ti2 (τ2)Ti3 (τ3)T †
i4

(τ4)

+ (3 ↔ 4) − (2 ↔ 4) + H.c.
〉
.

(49)

The index ij determines whether we are dealing with β0 or β1,
ij ∈ {0,1}. It is only necessary to evaluate the first expectation
value in Eq. (49) using Wick’s theorem; the other ones follow
as indicated by (3 ↔ 4), (2 ↔ 4) and Hermitian conjugation.
This first term leads to〈

Tc T †
i1

(τ1)Ti2 (τ2)Ti3 (τ3)T †
i4

(τ4)
〉

= β∗
i1
βi2βi3β

∗
i4

[Gl(τ1,τ2)Gl(τ4,τ3) − Gl(τ1,τ3)Gl(τ4,τ2)]

× [Gr (τ2,τ1)Gr (τ3,τ4) − Gr (τ3,τ1)Gr (τ2,τ4)] . (50)

Similar to Ref. 18, we use a diagrammatic representation for
the expression in Eq. (49). As an example, we show the dia-
grams emerging from the expression in Eq. (50) in Fig. 3 and
explain the components of the diagrams. Fermionic Green’s
functions of the reservoirs are represented by solid lines and
vertices are depicted by a dot, labeled with a time variable and a
Keldysh index indicating on which branch of the Keldysh con-
tour the time lies. An integration over internal times τ1 and τ2 is
implicit. In addition we also have to sum over the two internal
Keldysh indices k and l. We recognize that we have to deal with
two types of diagrams: diagrams which consist of one closed
fermion loop (diagrams in the lower panel of Fig. 3) and dia-
grams consisting of two closed fermion loops or bubbles (dia-
grams in the upper panel of Fig. 3). These two different types of
diagrams give very different contributions to the current noise,
which we will discuss below. We include the oscillator correla-
tion function D(t,t ′) in diagrams by a wiggly line connecting
two vertices. In Fig. 4, we give an example of diagrams in
frequency space containing one oscillator correlation function.
Here, integration over the two internal frequencies ω1 and ω2

as well as summation over the internal Keldysh indices k and
l is implied. In frequency space the difference between the
closed-loop diagrams, (b) in Fig. 4, and the bubble diagrams,
(a) in Fig. 4, becomes clear: for the closed-loop diagrams, the
oscillator line always appears under integration of an internal
frequency, whereas for the bubble diagrams, there is no integra-
tion over the oscillator line. This is the reason for the different
kinds of contribution to the current noise of closed-loop and
bubble diagrams. As we will show below, bubble diagrams lead
to peaks in the current noise, whereas closed-loop diagrams
lead to the aforementioned kinks in the current noise. We
reduce the number of diagrams by only keeping contributions
∼ t2

0 t2
1 and ∼ t4

1 , which are the only finite contributions in the
stationary case. Details are given in Appendix C. This allows us
to write the current noise S(4)(τ3,τ4) for the further analysis as

S(4)(τ3,τ4) = Ŝ
(4)
D (τ3,τ4) + Š

(4)
D (τ3,τ4)

+ Ŝ
(4)
DD(τ3,τ4) + Š

(4)
DD(τ3,τ4), (51)
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τ4 , j τ1 , k τ2 , l τ3 , i

Gr(τ3, τ4)

Gl(τ4, τ3)

Gr(τ2, τ1)

Gl(τ1, τ2)

+
τ4 , j τ3 , iτ1 , k τ2 , l

Gl(τ1, τ3)Gl(τ4, τ2)

Gr(τ2, τ4) Gr(τ3, τ1)

−

−−
τ1 , k τ2 , l τ3 , iτ4 , j

Gl(τ4, τ3)

Gl(τ1, τ2)

Gr(τ2, τ4) Gr(τ3, τ1)

τ4 , j τ1 , k τ2 , l τ3 , i

Gr(τ3, τ4)

Gr(τ2, τ1)

Gl(τ4, τ2) Gl(τ1, τ3)

FIG. 3. Diagrammatic representation for Eq. (50) where we omitted the factor β∗
i1
βi2βi3β

∗
i4

; note that Eq. (50) only contains fermionic
Green’s functions.

where Ŝ includes the bubble diagrams, Š includes closed-loop
diagrams and D indicates the number of oscillator lines in the
diagrams. The final result we obtain is valid for an arbitrary
relative phase η which goes beyond the result obtained by
Wabnig et al. in Ref. 18. This fact allows us to study the p

detector in fourth-order perturbation theory.

1. Results for Ŝ(4)
D (τ3,τ4), Š(4)

D (τ3,τ4), Ŝ(4)
D D(τ3,τ4),

and Š(4)
D D(τ3,τ4)

In the following, we sum up the different types of diagrams,
bubble-type diagrams as well as closed-loop diagrams; both
then can be integrated exactly.

First we consider all diagrams containing only one oscilla-
tor line; these diagrams are all proportional to t2

0 t2
1 and depend

on η. We find for the symmetrized frequency-dependent
current noise

Ŝ
(4)
sym,D(ω) = 4π2e2ρ4

0 t2
0 t2

1

{
cos(η)2

×
[

4e2V 2 − 4eV σ−(ω,V )
Q(ω)

Sx(ω)

]
Sx(ω)

+ sin(η)2

[
ω2 − 2ωσ+(ω,V )

Q(ω)

Sx(ω)

]
Sx(ω)

+ 1

2
[DR(ω) + DA(ω)] cos(η) sin(η)

× [4eV σ+(ω,V ) − 2ωσ−(ω,V )]

}
, (52)

which is one of the main results of this paper.
In the case of the closed-loop diagrams containing one

oscillator line, it is also possible to sum up all diagrams and
integrate them exactly. The expression for Š

(4)
sym,D(ω) is rather

lengthy therefore we do not present it here.
We find that the current noise signature of Š

(4)
sym,D(ω) is of the

kinklike structure similar to S
(2)
sym,D(ω). In addition to the kinks

at |ω| = |V ± �| coming from S
(2)
sym,D(ω), Š(4)

sym,D(ω) gives rise
to extra kinks at |ω| = |V | and |ω| = |�|. However, these
contributions are only minor modifications to the current noise
floor S

(2)
sym,D(ω). Experiments as in Ref. 20 focus on the current

noise near the resonance frequency ω ≈ � for which Ŝ
(4)
sym,D(ω)

is the most important contribution. Therefore the discussion
of our result will focus on the contributions stemming from

j k l i

Gij
r (ω1 − ω2 + ω)

Glk
r (ω1)

G
jl
l (ω1) Gki

l (ω1 − ω2)

ω

ω
Dkj(ω1)

j ik l

Gik
l (ω2 + ω)G

lj
l (ω1 + ω)

Gjl
r (ω1) Gki

r (ω2)

ω

ω

Dkl(ω)

(a) (b)

FIG. 4. Examples of diagrams containing one oscillator correlation function D. In panel (a) a bubble diagram is depicted where the oscillator
line is independent of an internal frequency. Panel (b) shows a closed-loop diagram where the oscillator line always appears under integration
of an internal frequency.
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Ŝ
(4)
sym,D(ω). These contributions possess a peaked structure,

since the oscillator correlation functions DR/A(ω) and the
spectrum Sx(ω) is peaked around ω = ±�.

The other contributions to the current noise stem from dia-
grams containing two oscillator lines D(t,t ′). These diagrams
are all proportional to β1β

∗
1 β1β

∗
1 = t4

1 and therefore indepen-
dent of the relative phase η between t0 and t1. Moreover,
these current noise contributions are small compared to the
ones containing only one oscillator line since t4

1 � t2
0 t2

1 . We,
however, are mainly interested in the possibility to detect the
oscillator’s momentum, which depends on η; for this reason
and the fact that they are small compared to Ŝ

(4)
sym,D(ω) we do

not include them in our discussion, nevertheless we state our
result, which we obtain after summing up the diagrams

Ŝ
(4)ij
DD (ω) = − e2

2π

∫
dω1

∑
k,l=±

(kl)
{
Dkl(ω1)

×Dij (ω1 + ω) Ḡkj

11(−ω1) Ḡ li
11(ω1)

+Dki(ω1) Dlj (ω1 + ω) Ḡkj

11(−ω1) Ḡ li
11(−ω1 − ω)

−Dki(ω1) Dlj (−ω1)Gkl
11(−ω1)Gij

11(ω1 + ω)
}
.

(53)

The last integration in Eq. (53) can be easily done since the
oscillator correlation functions are peaked at ±�. Our result
is then in accordance with the one obtained by Wabnig et al.
in Ref. 18, where it is has been shown that these contributions
to the current noise are peaked at ω = −2�,0,2� in contrast
to the contributions arising from Eq. (52). Similar to Š

(4)
D (ω),

Š
(4)
DD(ω) is of the kinklike structure and therefore only modify-

ing the current noise floor. We now address the current noise
stemming from Ŝ

(4)
sym,D(ω) for arbitrary η and also arbitrary

system parameters.

2. Current noise in the Markovian and non-Markovian
regime for arbitrary η

In order to compare our result for the momentum detector
with Ref. 17, we investigate Ŝ

(4)
sym,D(ω) near the resonance (ω ≈

�). We find

Ŝ
(4)
sym,D(ω) ≈ 4π2e2ρ4

0 t2
0 t2

1

{
4e2V 2 cos(η)2

×
[

1 − σ−(�,V )

4eV m�〈x̄2〉

√
1 −

(
γtot

�

)2]
Sx(ω)

+ 1

m2
sin(η)2

[
1 − 2σ+(�,V )m

〈p̄2〉

×
√

1 −
(

γtot

�

)2]
Sp(ω)

+ cos(η) sin(η)
1

m

ω2 − �2

4γ 2
tot�

2 + (ω2 − �2)2

× [4eV σ+(�,V ) − 2�σ−(�,V )]

}
, (54)

where σ±(ξ,V ) is given in Eq. (42) and Sx(ω) and Sp(ω) near
resonance are given by

SX(ω) = 2γ 2
tot�

2〈X̄2〉
4γ 2

tot�
2 + (ω2 − �2)2

, (55)

with X = x,p. The above expression is valid for the Marko-
vian as well as for the non-Markovian regime. The relevant
information about the oscillator can now be gained form the
current noise spectrum.

We take two different ways of evaluating the expectation
values 〈x̄2〉 and 〈p̄2〉. In the first one we use number states
which lead to expectation values 〈x̄2〉n = (2n + 1)/m� and
〈p̄2〉n = (2n + 1) m�, where n denotes the oscillator’s number
of quanta.

Since we also could imagine, as already explained in
Sec. IV B 1, two equilibrium baths, the tunnel junction and
an external heat bath, to which the oscillator couples, we can
assign an effective temperature Teff to the oscillator which
obeys γtot Teff = γ0 Tenv + γ+ Tjunc, where γtot = γ0 + γ+ is
the total damping due to coupling to the junction (γ+) and
an external heat bath (γ0). The external heat bath is at
temperature Tenv and the junction’s temperature is given by
Tjunc = eV/2kB . The oscillator’s expectation values in this
thermal regime are then given by 〈x̄2〉 = 2 kB Teff/m �2 and
〈p̄2〉 = 2 m kB Teff .

For both cases, the thermal state and the number state one,
it is convenient scaling the current noise Ŝ

(4)
sym,D(ω) with eI0 =

2πρ2
0e2t2

0 σ+(�,V ). We furthermore introduce dimensionless
constant f1,f2,f3,f4 which are defined in the following way:

γtot = �

f1
, (56)

γ+ = γtot

f2
= �

f1 f2
, (57)

eV = f3 �, (58)

Tenv = f4
eV

kB

. (59)

f1 can be interpreted as an overall quality factor. The ratio
γ0/γ+ = (f2 − 1) leads for f2 ∈]1,2[ to a stronger coupling
to the tunnel junction and for f2 > 2 to a stronger coupling to
the external heat bath. The parameter f3 distinguishes the non-
Markovian (f3 ∈]0,1]) from the Markovian regime (f3 � 1).
The last parameter f4 quantifies the temperature Tenv of the
external bath with respect to the applied bias V .

We now compare the signal of the position detector
S

(4)
x−det(ω) = Ŝ

(4)
sym,D(ω; η = 0) to the signal of the momen-

tum detector S
(4)
p−det(ω) = Ŝ

(4)
sym,D(ω; η = π/2) and later their

dependencies on the parameters fi at resonance ω ≈ �.
Assuming a high quality resonator we take

√
1 − γ 2

tot/�2 ≈ 1
in Eq. (54). We call Qx = σ−(�,V )/(4eV m�〈x̄2〉) quantum
corrections to the x-detector current noise, arising from the
nonvanishing commutator [x̂,p̂]; similarly we call Qp =
[2mσ+(�,V )]/〈p̄2〉 quantum corrections to the p-detector
current noise. We then find

S
(4)
x−det = 4 f 2

3
[1 − Qx]

[1 − Qp]
S

(4)
p−det (60)
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and conclude that in the Markovian regime where f3 � 1 the
signal of the position detector is always larger than the signal
of the momentum detector, whereas in the non-Markovian
regime we have a stronger signature of the noise part showing
the momentum signature of the oscillator. In the following,
we investigate in more detail the current noise of the x and p

detector.

3. The x detector

From Eq. (54) one can see that for η = 0 mod π we
recover the position-detector result as in Refs. 14, 16, and 18,
with peaks in the current noise spectrum at ω = ±�. Since
we calculate the symmetrized current-current correlator, the
current noise is symmetric in ω. The sign of the signal is given
by the sign of [1 − Qx], which for an oscillator in the thermal
regime depends on f2,f3, and f4, for an oscillator in number
state n it depends on n and f3 only. We stick to a thermal
resonator, noting that as in Ref. 17 for the p detector, here the
quantum corrections Qx ∼ 1/f3 can become large (compared
to 1) in the non-Markovian regime where f3 < 1, leading to
a sign change. The parameter regimes for a negative/positive
peak in the current noise are depicted in Fig. 5 as blue/red
regions. The change of sign in the signal depends on the en-
vironment temperature Tenv, the coupling to the environments
f2, and heavily on the bias voltage and therefore f3. Deep in
the Markovian regime the sign change is hard to achieve, only
if f2 is very large and the bath temperature Tenv is very low,
meaning that heating of the oscillator can be compensated
by strongly coupling to a cold environment. In the non-
Markovian regime the quantum corrections Qx can become
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FIG. 5. (Color online) The current noise peak at ω = � for the
x detector as a function of f2,f3,f4, where we took f1 → ∞. The
blue region shows the parameter regime where the peak is negative,
for parameter combinations lying in the red region, the peak is
positive.
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FIG. 6. (Color online) Noise signal at ω = � in the Markovian
regime for different values of f2 and f4 with f1 = 200 and f3 = 50,

which shows a peak due to the presence of the oscillator. The noise
is scaled by 2πρ2

0 e2t2
0 σ+(�,V ).

large more easily and due to the lower signal in the non-
Markovian regime for the x detector, the sign change is more
pronounced.

Figures 6 and 7 show the current noise spectrum around
ω ≈ � in the Markovian and the non-Markovian regime for
different couplings and environment temperatures.

4. The p detector

For the cases η = π/2 mod π in Eq. (54), the result of
the momentum detector as stated in Ref. 17 are extended to
the non-Markovian regime. Due to the fact that the quantum
corrections Qp are in the first place larger than Qx , the peak
in the current noise spectrum stemming from the oscillator
has a negative sign for η = π/2. However, it is also possible to
change the sign by adjusting the parameters f2,f3,f4 on which
Qp depends. In Fig. 8 we depict the regions with a negative
sign blue and the ones with a positive sign red. Changing the
sign of the current noise signal in the p-detector case is easier
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FIG. 7. (Color online) x-detector current noise signal [scaled
by 2πρ2

0 e2t2
0 σ+(�,V )] at ω = � in the non-Markovian regime for

different values of f2 and f4 with f1 = 200 and f3 = 0.8. We note
that the signal is weaker than in the Markovian regime (compare to
Fig. 6). In this regime, however, it is possible to see a change of sign
of the signal, depending on the parameters f2,f4. The inset illustrates
this sign change.
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FIG. 8. (Color online) This figure shows the parameter regimes
for the p detector where the current noise peak at ω = � has a negative
sign (blue) and positive sign (red). Compared to the x detector the
sign change is possible for a wider range of parameters f2,f3,f4; we
took f1 → ∞.

to achieve over a wide range of parameters, as compared to
the x detector, even deep in the Markovian regime (f3 � 1).
Figure 9 shows a summary of the p-detector current noise
in the Markovian and non-Markovian regimes for different
parameters f2,f4, respectively.

5. Detection of number states

With the expression for the current noise and definitions
above it is possible to determine the occupation number of the
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FIG. 9. (Color online) The left panel shows the p-detector current
noise [scaled by 2πρ2

0 e2t2
0 σ+(�,V )] in the Markovian regime (f3 =

50) for various parameters f2,f4, and f1 = 200. The right panel shows
the current noise in the non-Markovian regime (f3 = 0.8) for various
parameters f2,f4. In both cases we can easily achieve a sign change
in the signal.
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FIG. 10. Number of quanta n on the oscillator in depen-
dence of experimentally adjustable parameters, for dominant cou-
pling to the external heat bath (upper panel, with f2 = 5) and
dominant coupling to the tunnel junction (lower panel, with
f2 = 1.2).

oscillator, in similar fashion to Ref. 18. Equation (54) for the
current noise contains position and momentum expectation
values of the oscillator which can be evaluated using (i)
number states and (ii) a thermal state. In the case of number
states the gained expression depends on n, the number of
quanta on the oscillator, whereas in the case of a thermal
state, it depends on the experimentally adjustable parameters
fi . Arguing that the current noise signal is the same if
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〈X〉n = 〈X〉th, leads to the following dependance of n on the
parameters fi :

n = 2f2|f3|f4 − 2|f3|f4 − f2 + |f3|
2f2

. (61)

The dependence of n on the adjustable parameters is depicted
in Fig. 10, where for specific values of f3 and f4, which can
be experimentally adjusted, and fixed values of f1 and f2,
the contour lines show the corresponding number state. In
principle, this can serve as a guidance for experimentalists
to put the oscillator in a given number state. By a later
noise measurement it could be verified whether the data are
consistent with this specific number state. Moreover, we can
in principle fully determine the state of the oscillator via
its covariance matrix σ by two noise measurements (one
with η = 0 and one where η = π/2) which adds a second
possibility to verify whether Eq. (61) serves as a good guide.
Figure 10 shows that in the Markovian regime the oscillator is
only in its ground state for low environmental temperatures,
since the applied bias voltage is heating the oscillator. In
the non-Markovian regime, we can have a higher environ-
mental temperature for the oscillator being in its ground
state.

VI. CONCLUSION

We have studied the finite frequency current noise of a
tunnel junction coupled to a harmonic oscillator. In our work,
we go beyond the Born approximation (because we calculate
the noise up to fourth order in the tunneling amplitude) and
beyond the Markov approximation (because we do not restrict
ourselves to the regime eV/h̄� � 1). For a nonstationary
oscillator, we have shown that the finite frequency current
noise of the detector can be complex. This complex current
noise can be used to obtain information about expectation
values depending on x̂ as well as expectation values depending
on p̂. The former we call the x-detector signal and the latter
the p-detector signal.

For the stationary oscillator, the finite frequency current
noise is always real. Then, it is more complicated to get
momentum information using a tunnel junction detector. An
Aharonov-Bohm-loop setup is needed for this task. We analyze
such a setup for the first time in the non-Markovian regime
and thereby show how the x and the p signals can be used to
determine the quantum state of the oscillator.

Our analysis is an essential prerequisite to study how the
quantum entanglement of NEMS (Ref. 32) can be measured
on the basis of tunnel junction detectors. This very interesting
problem will be addressed in future work.
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APPENDIX A: DETAILS ON THE FERMIONIC
GREEN’S FUNCTIONS

Expectation values of the fermionic operators ĥi and ĵi can
be expressed by the Keldysh Green’s functions Gl,r (t,t ′) =
−i〈Tc ĉl,r (t)ĉ†l,r (t ′)〉 as

〈Tc ĥi(t) ĵj (t ′)〉 = −i Ḡij (t,t ′)

= −i[βiβ
∗
j Gr (t,t ′)Gl(t

′,t)

−β∗
i βjGr (t ′,t)Gl(t,t

′)], (A1)

〈Tc ĥi(t) ĥj (t ′)〉 = Gij (t,t ′)

= [βiβ
∗
j Gr (t,t ′)Gl(t

′,t)

+β∗
i βjGr (t ′,t)Gl(t,t

′)], (A2)

〈Tc ĵi(t) ĵj (t ′)〉 = Gij (t,t ′)

= [βiβ
∗
j Gr (t,t ′)Gl(t

′,t)

+β∗
i βjGr (t ′,t)Gl(t,t

′)]. (A3)

The Fourier transform of the function Gij (t,t ′) can be calcu-
lated in the usual way, yielding

G−+
ij (ω)+ = 2πρ2

0

{
βiβ

∗
j

eV + ω

2

[
−1 + coth

(
β

eV + ω

2

)]

+ β∗
i βj

eV − ω

2

[
1 + coth

(
β

eV − ω

2

)]}
, (A4)

G+−
ij (ω)+ = 2πρ2

0

{
βiβ

∗
j

eV + ω

2

[
1 + coth

(
β

eV + ω

2

)]

+ β∗
i βj

eV − ω

2

[
−1 +coth

(
β

eV − ω

2

)]}
,

(A5)

Ḡ−−
ii (ω) = Ḡ++

ii (ω)

= βiβ
∗
i

∫
dω1

2π
[G−−

r (ω1 + ω)G−−
l (ω1)

−G−−
r (ω1)G−−

l (ω1 + ω)]

= 2 π ρ2
0 βiβ

∗
i σ−(ω,V ), (A6)

where σ−(ω,V ) is given in Eq. (42).

APPENDIX B: DETAILS OF THE SECOND-ORDER
CURRENT NOISE CALCULATION

The starting point for the calculation is Eq. (40); together
with Eqs. (11) and (12) the symmetrized current noise in the
nonstationary case can be written as

S(2)
sym(ω,t ′) = e2

2

∫
dt eiωt

{
G−+

00 (t) + G+−
00 (t)

+〈x̂(t ′)〉[G−+
01 (t) + G+−

01 (t)] + 〈x̂(t ′)〉 cos(�t)

× [G−+
10 (t) + G−+

10 (t)] + 〈p̂(t ′)〉
m�

× sin(�t)[G−+
10 (t) + G+−

10 (t)]

+〈x̂(t ′)x̂(t ′)〉 cos(�t)[G−+
11 (t) + G+−

11 (t)]
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+ 〈x̂(t ′)p̂(t ′)〉
m�

sin(�t)G−+
11 (t)

+ 〈p̂(t ′)x̂(t ′)〉
m�

sin(�t)G+−
11 (t)

}
. (B1)

Further calculation is straightforward by using Eqs. (A4)
and (A5). Finally, the current noise S(2)

sym(ω,t ′) in Eq. (B1)
can be written as

S(2)
sym(ω,t ′) = e2

2

{
G−+

00 (ω) + G+−
00 (ω) + 〈x̂(t ′)〉

× [G−+
01 (ω) + G+−

01 (ω)] + 1

2
〈x̂(t ′)〉[G−+

10 (ω + �)

+G−+
10 (ω − �) + G+−

10 (ω + �) + G+−
10 (ω − �)]

− i

2m�
〈p̂(t ′)〉[G−+

10 (ω + �) − G−+
10 (ω − �)

+G+−
10 (ω + �) − G+−

10 (ω − �)] + 1

2
〈x̂(t ′)x̂(t ′)〉

× [G−+
11 (ω + �) + G−+

11 (ω − �) + G+−
11 (ω + �)

+G+−
11 (ω − �)] − i

2m�
〈x̂(t ′)p̂(t ′)〉

× [G−+
11 (ω + �) − G−+

11 (ω − �)]

− i

2m�
〈p̂(t ′)x̂(t ′)〉

× [G+−
11 (ω + �) − G+−

11 (ω − �)]

}
. (B2)

The functions σ±(ξ,V ), see Eq. (42), allow us to distinguish
the Markovian from the non-Markovian regime. For T → 0
we find

σ−(ξ,V ) =
{

sgn(V) ξ e|V | > ξ

sgn(V ) e|V | e|V | < ξ
, (B3)

σ+(ξ,V ) =
{
e|V | e|V | > ξ

ξ e|V | < ξ
, (B4)

where T here is the temperature of electrons in the leads.

APPENDIX C: DETAILS OF THE FOURTH-ORDER
CURRENT NOISE CALCULATION

We first give the whole expression for the current noise
to fourth order in the tunneling amplitudes containing the M
functions of Eq. (49) and oscillator operators

S(4)(τ3,τ4)

= −e2

2

∫
c

dτ1 dτ2{M0,0,0,0(τ1,τ2,τ3,τ4)

+M0,0,0,1(τ1,τ2,τ3,τ4)〈x̂(τ4)〉
+M0,0,1,0(τ1,τ2,τ3,τ4)〈x̂(τ3)〉
+M0,1,0,0(τ1,τ2,τ3,τ4)〈x̂(τ2)〉
+M1,0,0,0(τ1,τ2,τ3,τ4)〈x̂(τ1)〉
+M0,0,1,1(τ1,τ2,τ3,τ4)〈Tc x̂(τ3)x̂(τ4)〉
+M0,1,0,1(τ1,τ2,τ3,τ4)〈Tc x̂(τ2)x̂(τ4)〉
+M0,1,1,0(τ1,τ2,τ3,τ4)〈Tc x̂(τ2)x̂(τ3)〉
+M1,0,0,1(τ1,τ2,τ3,τ4)〈Tc x̂(τ1)x̂(τ4)〉
+M1,0,1,0(τ1,τ2,τ3,τ4)〈Tc x̂(τ1)x̂(τ3)〉
+M1,1,0,0(τ1,τ2,τ3,τ4)〈Tc x̂(τ1)x̂(τ2)〉
+M0,1,1,1(τ1,τ2,τ3,τ4)〈Tc x̂(τ2)x̂(τ3)x̂(τ4)〉
+M1,0,1,1(τ1,τ2,τ3,τ4)〈Tc x̂(τ1)x̂(τ3)x̂(τ4)〉
+M1,1,0,1(τ1,τ2,τ3,τ4)〈Tc x̂(τ1)x̂(τ2)x̂(τ4)〉
+M1,1,1,0(τ1,τ2,τ3,τ4)〈Tc x̂(τ1)x̂(τ2)x̂(τ3)〉
+M1,1,1,1(τ1,τ2,τ3,τ4)〈Tc x̂(τ1)x̂(τ2)x̂(τ3)x̂(τ4)〉}
+

∫
c

dτ1 dτ2〈Tc Ĥtun(τ1)Î (τ3)〉〈TcĤtun(τ2)Î (τ4)〉. (C1)

A first reduction of terms in Eq. (C1) is done by only
focusing on the stationary case. This allows us to drop terms
which are proportional to 〈x̂(t)〉 of Eq. (C1) and only keep
terms proportional to D(t,t ′) and D(t,t ′) D(t ′′,t ′′′). Unlinked
diagrams which appear in this expression are canceled by the
Î 2 term, which is always of the bubble type.
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