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Rashba polarization of bulk continuum states
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Spin-orbit coupling is shown to lead to a Rashba-type spin polarization of bulk continuum states at the surface
of a nonmagnetic system. A qualitative analysis for a model one-dimensional system is presented, as well as ab
initio calculations for (111) surfaces of a number of fcc metals. The effect is interpreted in terms of the reflection
of the relativistic Bloch waves from the surface barrier, which leads to a beating of the spin density.
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I. INTRODUCTION

Owing to its importance for spintronics, the effects of
spin splitting at surfaces have attracted much attention in
recent years. In nonmagnetic solids the spin splitting is caused
by spin-orbit interaction. Especially interesting are crystals
with a center of inversion, where the bulk continuum states
(of the k‖ projected band structure) are doubly Kramers
degenerate, whereas discrete surface states are energy split
and spin polarized. This is known as the Rashba-Bychkov
effect,1 caused by the presence of the surface, which breaks
the inversion invariance of the system. The spin-orbit splitting
of surface states was first observed in angle-resolved photoe-
mission on Au(111)2 and then found for many surfaces of
clean high-Z metals, for example, Bi(111),3,4 Sb(111),5 and
surface alloys.6,7 Similar to the surface states the spin-orbit
interaction leads to a Rashba-type splitting of quantum well
states.8 In general, the main effort has been devoted to studying
the Rashba-type polarization of the surface-localized discrete
states.9–11

It is known, however, that also the electronic structure
of the bulk continuum is strongly modified at the surface,
giving rise to a charge redistribution and surface resonances.
Clearly, the effect of spin-orbit coupling is also expected to be
different at the surface and in the bulk, leading to a specific
spin polarization of the bulk continuum states in the surface
region. Indeed, recently, a spin polarization of the photocurrent
from the bulk continuum has been observed in angle-resolved
photoemission from Bi(111).12 The difference from the case
of surface states is that the Kramers degeneracy is not lifted
for continuum states. However, the effect is again due to
the spin-orbit coupling in the bulk and to the presence of
the surface. It originates from the potential gradient in the
surface perpendicular direction and, thus, can be referred to as
the Rashba-type effect.

The aim of the present paper is to give a detailed explanation
of the origin of the spin polarization of bulk continuum
states at the surface. We present calculations for a simple and
instructive model of the crystal surface, in which the crystal
potential varies only in the surface perpendicular direction, and

generalize the concept of Rashba-type spin polarization to the
case of bulk continuum states. Spin polarization is understood
in terms of reflection of Bloch states from the surface barrier.
We further illustrate this phenomenon by ab initio calculations
for (111) surfaces of some fcc metals.

II. RASHBA MODEL FOR BULK CONTINUUM

Let us consider the spin structure of bulk continuum states
in a nonmagnetic semi-infinite crystal caused by spin-orbit
coupling. The bound states are standing waves formed by
the incident and reflected Bloch waves. (We use the term
“bulk continuum” for the continuum spectrum of both the
semi-infinite and the infinite crystal.) First, consider an infinite
crystal described by a two-component Schrödinger equation
with the Hamiltonian

Ĥ = p2

2m
+ V (�r) + h̄

4m2c2
�σ [ �∇V (�r) × �p]. (1)

In the following we use Rydberg atomic units and denote by
Ĥ0 the scalar part −� + V (�r). For a system inhomogeneous
only in the surface perpendicular direction (along the y axis;
see Fig. 1) the Hamiltonian reduces to

Ĥ = Ĥ0 + α2

4

[(
−V ′

y 0

0 V ′
y

)
p̂x +

(
0 V ′

y

V ′
y 0

)
p̂z

]
, (2)

where α is the fine-structure constant, and V ′
y is the potential

gradient in the surface perpendicular direction y. Then the
Cartesian variables separate, and for a given energy E and
surface parallel momentum k‖ (let it be along the x axis),
the two-component wave function has the form �(�r) =
�(y) exp(ik‖x), where �(y) is a spinor,

�(y) =
(

ψ↑

ψ↓

)
, (3)
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FIG. 1. Coordinate frame and the model one-dimensional poten-
tial given by a finite number NFC of Fourier components of equal
amplitude V1: V (y) = −V1

∑
n cos(2πny/a + πn). The potential in

vacuum is V0. The potential minima simulate atomic layers separated
by the lattice constant a. Calculations are performed with a = πa0

and V1 = 0.2 Ry.

with the components ψ↑ and ψ↓ depending only on the
surface perpendicular coordinate y. The one-dimensional (1D)
Schrödinger equation then reads

Ĥ0

(
ψ↑

ψ↓

)
+ η

(−1 0

0 1

)(
ψ↑

ψ↓

)
= E

(
ψ↑

ψ↓

)
, (4)

where η = α2V ′
yk‖/4. The equations for the two spin projec-

tions along the z axis separate, and the problem is reduced to
a pair of scalar 1D equations,

−ψ ′′ ± ηψ + V ψ = (E − k2
‖)ψ, (5)

with spin-dependent effective potentials: v↑ = V + η and
v↓ = V − η. For a system with inversion symmetry it is
V (y) = V (−y) and v↑(y) = v↓(−y). In the continuum spec-
trum of the infinite crystal, each of the scalar equations (5)
has two propagating solutions uσ

±k(y) exp(±iky) with Bloch
vectors ±k. Their periodic parts uσ

±k(y) are connected by
the complex conjugation uσ

−k(y) = uσ∗
+k(y). Also, the wave

functions of opposite spins are simply connected: u
↓
+k(y) =

u
↑
−k(−y).

If the energy E falls in a forbidden gap, the vectors k are
complex, and only one solution per spin (the evanescent wave)
is physically meaningful. It gives rise to a discrete eigenstate:
the surface state. Because the potentials v↑ and v↓ are different,
the surface states for the two spins occur at different energies,
which is known as Rashba splitting of surface states.

For a crystal with inversion symmetry, in the bulk contin-
uum the bands for the two spins are not split, and the eigenstates
of the semi-infinite crystal are standing waves (in the surface
perpendicular direction). Far from the crystal surface, where
the potential is periodic, the wave function is a superposition
of the incident and reflected Bloch waves:

ψσ (y) = uσ (y)ei(ky+φσ /2) + uσ∗(y)e−i(ky+φσ /2),

with u↓(y) = u↑∗(−y). The phase shifts φ between the
incident and the reflected wave are, in general, different for
spin ↑ and spin ↓, and they depend on the potential at the
surface. For an infinite barrier at the inversion center y = 0 (of
the infinite crystal), it is φ↓ = −φ↑.

The probability density ρσ for each of the spin eigen-
functions defined by k‖ and E is a sum of the lattice
periodic bulk density ρ(b)σ (y) = 2|uσ (y)|2 and the beating

s
Δρ

s(i
)
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FIG. 2. (a) Spatial distribution of the spin density �ρk‖ (y,E) [see
Eq. (6)] associated with a pair of spin eigenfunctions of a semi-
infinite crystal (Fig. 1) for k‖ = a−1

0 at E − k2
‖ = 0.8 Ry. (b) Spatial

distribution of the spin spectral density sk‖ (y,E) [see Eq. (7)] at this

energy. (c) The beating term s
(i)
k‖ (y,E).

term ρ(i)σ (y) = 2Re[uσ (y) exp(iφσ /2 + iky)]2 due to the in-
terference between the incident and the reflected Bloch waves.
Because u↑ and u↓ are different, the spin density

�ρk‖(y,E) = |ψ↑
k‖(y,E)|2 − |ψ↓

k‖(y,E)|2 (6)

is an oscillating function; see Fig. 2(a). The physically relevant
quantity is the spin polarization of the spatially resolved
spectral density:

sk‖(y,E) =
∫ π/a

0
dky �ρk‖[y,E(k‖,ky)]δ[E − E(k‖,ky)], (7)

where the integration is over the positive ky in the 1D BZ
in the surface perpendicular direction. The lattice-periodic
oscillations of sk‖(y,E) due to

�ρ
(b)
k‖ (y,E) = 2(|u↑

k‖(y,E)|2 − |u↓
k‖(y,E)|2) (8)

persist to infinity in the depth of the crystal [Fig. 2(b)], and
the beating amplitude upon the integration over dky decays in
the depth as 1/y [Fig. 2(c)], so the net spin spectral density
S(k‖,E) can be obtained by integrating s

(i)
k‖ (y,E) to infinity.

For the sake of presentation we define the spin polarization of
bulk continuum as S(k‖,E) divided by the 1D density of states
(DOS) N (k‖,E) = |dE(k‖,ky)/dky |−1:

p(k‖,E) = 1

N (k‖,E)

∫ +∞

−∞
dy

∫ π/a

0
dky �ρ

(i)
k‖ [y,E(k‖,ky)]

× δ[E − E(k‖,ky)]. (9)

With the Bloch functions normalized to unit average density
the polarization p is measured in units of a0. The energy
dependence p(E) for the model 1D potential is shown in Fig. 3.
It is seen to depend strongly on the surface barrier. At the
same time, the p(E) curves are practically independent of the
sharpness of the bulk potential, that is, of the parameter NFC

(see caption to Fig. 1). Far from the band edges the function
p(E) changes slowly with energy, and with a sufficiently weak
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FIG. 3. (Color online) One-dimensional band structure E(k) (left)
and spin polarization p(E) of the bulk continuum (right) for the model
potential in Fig. 1 with V1 = 0.2 Ry and NFC = 11. The functions
p(E) are shown for three values of the surface barrier: V0 = 2 Ry
[dashed (red) curve], 1.5 Ry [solid (black) curve], and 1 Ry [dot-
dashed (blue) curve].

potential V1 the polarization in the middle of the band grows
linearly with V1.

In approaching the band edge the spin polarization grows
rapidly and reaches a finite limit at k = π/a. For a weak
crystal potential, V1 
 (π/a)2, the limit at the zone boundary
is pZB = α2π2k‖/(

√
2V1a

2), where we have also used that
α2k‖/a 
 1 Ry. (In the limit V1 → 0 the value pZB diverges
as a result of the normalization to the DOS, which becomes
regular as the band gap disappears.)

The above simple model, thus, predicts a finite spin
polarization in the continuum spectrum of a semi-infinite
crystal, which is spatially localized in the surface region. In
contrast to the Rashba effect for surface states, the polarization
is not a consequence of the energy splitting of the pure spin
states, but originates from a spin-dependent beating between
the incident on the surface and reflected Bloch waves. In the
next section we consider this effect in realistic materials.

III. (111) SURFACES OF FCC METALS

To reveal the range of the Rashba effect in the continuum
spectrum of realistic crystals and its dependence on the atomic

number, we consider (111) surfaces of some noble and late
transition metals within an ab initio approach. Instead of a true
semi-infinite crystal the surfaces are modeled by thick slabs
(19 atomic layers), so the continuum is modeled by a dense set
of levels Eλk‖ . This limits the energy resolution of the spectral
density functions, but otherwise this approach correctly yields
the observables.

Calculations are performed in a repeated slab geom-
etry with the self-consistent (in the local density ap-
proximation) full-potential linear augmented plane-wave
method.13 The relativistic effects are included within the two-
component Koelling-Harmon approximation.14,15 The local
depth-resolved k‖ projected DOS is defined as the sum of
the densities of spin σ [integrated over a surface parallel plane
y = const, with r = (r‖,y)] over all (discrete) states λ with
energy E and Bloch vector k‖:

ρσ
k‖ (y,E) =

∫
dr‖

∑
λ

∣∣ψσ
λk‖ (r)

∣∣2
δ(Eλk‖ − E).

The δ function is replaced by a Gaussian of 0.5-eV FWHM,
which is the energy resolution sufficient for the present
purposes; see Figs. 4(a) and 4(b).

Figures 4(a) and 4(b) show the k‖ projected DOS along
the 
̄M̄ line of the surface BZ (SBZ) of Au(111). The close
similarity of the distribution maps calculated from the band
structure of the infinite crystal and from the discrete slab levels
proves that the structure of the bulk continuum is fairly well
reproduced in the slab geometry. The energy-momentum spin
distribution shown in Fig. 4(c) reveals spin-polarized bands
with a characteristic dispersion different from the dispersion
of the DOS features. Thus, in agreement with the simple theory
in Sec. II, the continuum spectrum acquires a spin structure,
which characterizes the surface of a non-magnetic material. An
example of the energy-depth spin density distribution s(y,E)
is shown in Fig. 4(d) for k‖ = 0.4 Å−1. The beating effect is
seen to be limited to the outermost four atomic layers, and in
the depth of the crystal there remain weak oscillations of the
spin density with the lattice periodicity (see Sec. II).

A similar thing also happens in a non-spin-polarized (or
nonrelativistic) case, where the reflection of Bloch waves
from the surface gives rise to surface resonances, well known
in photoemission. From the point of view of spin-resolved
photoemission, the relativistic “spin resonances” have the
advantage that the surface spin density changes sign, and its
spectrum has a richer structure.

FIG. 4. (Color online) (a, b) Energy-momentum DOS distribution in Au(111) for k‖ along the 
̄M̄ line of SBZ obtained (a) from the band
structure of the infinite bulk crystal (convoluted with a Gaussian of 0.5-eV FWHM) and (b) from the slab calculation. (c) Energy-momentum
distribution of spin polarization along 
̄M̄ . (d) Local depth-resolved k‖ projected DOS ρk‖ (y,E) for k‖ = 0.4 Å−1. One half of the slab is
shown; vacuum is to the right. Tics along the horizontal axis show positions of atomic layers.
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FIG. 5. (Color online) Energy-momentum distribution of spin polarization for k‖ along the 
̄M̄ line of SBZ in (a) Cu(111), (b) Pd(111),
(c) Pt(111), and (d) Al(111).

Practically the whole effect of spin-orbit coupling comes
from the close vicinity of the nucleus (less than a0), so the
magnitude of the surface spin polarization is determined by
the atomic number. To illustrate this dependence, we present in
Figs. 5(a)–5(c) the polarization maps for Cu, Pd, and Pt, which
have a valence band structure very similar to Au. The S(k‖,E)
maps of the four surfaces are seen to be very similar: the gross
features are simply stretched in energy according to the width
of the d band. Note that the maxima and minima of the S(k‖,E)
function are well separated in energy: the “splitting” in the
continuum spectrum is much larger than the Rashba splitting
of the surface states at the same k‖. Thus, in photoemission
the polarized bands can be detected with a much lower energy
resolution than needed to resolve Rashba split surface states,
especially in materials composed of lighter atoms. At the same
time, the spin sensitivity must be much higher because of the
distributed character of S(k‖,E).

The characteristic magnitude of the effect can be expressed
by the integrated absolute value of S(k‖,E) over the occupied
valence band:

M(k‖) =
∫ EF

VBmin
dE |S(k‖,E)|.

The M(k‖) curves for the four d metals are shown in Fig. 6. On
a large scale the characteristic magnitude is seen to grow more
rapidly than the atomic number; however, in Cu it is only four
times lower than in Au. In Bi(111), where the spin polarization
in bulk continuum was first observed in photoemission,12 the
average value of M is around 1. Thus, we expect this effect to
be detectable also in the present materials.

Γ
_

M
_

1

2

M
( k

|| )

Cu(111)
Pd(111)
Pt(111)
Au(111)

FIG. 6. (Color online) Integrated absolute value of S(k‖,E) along
the 
̄M̄ line of the SBZ of (111) surfaces of Cu, Pd, Pt, and Au.

An interesting case is provided by the calculation of the
Al(111) film [Fig. 5(d)]. Owing to the high group velocity
in the valence band of this simple metal, a 19-layer slab
represents a quantum well system rather than a semi-infinite
crystal. The quantum well states are given by discrete levels,
with the distance greater than 0.5 eV in the energy region
shown. Thus, the 0.25-eV-wide gap at 
̄ at −4.5 eV in the
bulk energy spectrum is not manifested. At the surface of the
semi-infinite Al(111) crystal this gap contains a surface state,
which is Rashba split and fully polarized. Because Al is a light
atom the splitting is very small, but the polarization of the
surface states does not depend on the strength of the spin-orbit
coupling. Two of the quantum well states bear the character
of the surface state, and with increasing film thickness they
will evolve into the surface state. Figure 5(d) shows that just
these two states (split by the quantum well confinement) are
strongly oppositely polarized, in contrast to the other states,
which evolve into bulk states. Thus, the surface state precursor
character is reflected in the spin polarization of the film states,
which demonstrates that for the quantum well system the
surface plays the same role as for the semi-infinite crystal.

IV. CONCLUSIONS

To summarize, we have presented a theory of the Rashba
effect for the continuum spectrum: in a semi-infinite crystal
the spin-orbit interaction leads to a surface spin polarization of
the continuum states. The local spin density of states exhibits
strongly energy-dependent long-range spatial oscillations,
which decay in the depth of the crystal. This can be understood
as a result of the reflection of the relativistic Bloch waves from
the surface barrier, which leads to a beating of the spin density.
The developed 1D model demonstrates the polarization to
be due to the potential gradient in the surface perpendicular
direction and, thus, generalizes the Rashba effect to continuum
spectrum.

The effect can be observed in angle-resolved photoemis-
sion, as a consequence of the surface sensitivity of this
technique. This was recently shown for Bi(111) in Ref. 12.
Our calculations for the metals with localized d bands show
that the energy-momentum distribution of the net surface spin
has a very rich structure, which reflects special points of the
k‖ projected band structure. The spectral maxima of opposite
spin are well separated in energy, so the effect is expected to
be observable also in lighter materials, in which the Rashba
splitting of surface states may be within the experimental
resolution.
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P. M. Echenique, and Ph. Hofmann, Phys. Rev. Lett. 93, 196802
(2004).

10J. H. Dil, J. Phys. Condens. Matter 21, 403001 (2009).
11K. Sakamoto, H. Kakuta, K. Sugawara, K. Miyamoto, A. Kimura,

T. Kuzumaki, N. Ueno, E. Annese, J. Fujii, A. Kodama,
T. Shishidou, H. Namatame, M. Taniguchi, T. Sato, T. Takahashi,
and T. Oguchi, Phys. Rev. Lett. 103, 156801 (2009).

12A. Kimura, E. E. Krasovskii, R. Nishimura, K. Miyamoto,
T. Kadono, K. Kanomaru, E. V. Chulkov, G. Bihlmayer,
K. Shimada, H. Namatame, and M. Taniguchi, Phys. Rev. Lett.
105, 076804 (2010).

13E. E. Krasovskii, F. Starrost, and W. Schattke, Phys. Rev. B 59,
10504 (1999).

14D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977).
15A. H. MacDonald, W. E. Pickett, and D. D. Koelling, J. Phys. C 13,

2675 (1980).

155401-5

http://dx.doi.org/10.1103/PhysRevLett.77.3419
http://dx.doi.org/10.1103/PhysRevLett.77.3419
http://dx.doi.org/10.1103/PhysRevLett.93.046403
http://dx.doi.org/10.1103/PhysRevLett.93.046403
http://dx.doi.org/10.1103/PhysRevB.76.153305
http://dx.doi.org/10.1103/PhysRevB.76.153305
http://dx.doi.org/10.1103/PhysRevLett.96.046411
http://dx.doi.org/10.1103/PhysRevLett.98.186807
http://dx.doi.org/10.1103/PhysRevLett.98.186807
http://dx.doi.org/10.1209/0295-5075/87/37003
http://dx.doi.org/10.1209/0295-5075/87/37003
http://dx.doi.org/10.1103/PhysRevLett.101.266802
http://dx.doi.org/10.1103/PhysRevLett.93.196802
http://dx.doi.org/10.1103/PhysRevLett.93.196802
http://dx.doi.org/10.1088/0953-8984/21/40/403001
http://dx.doi.org/10.1103/PhysRevLett.103.156801
http://dx.doi.org/10.1103/PhysRevLett.105.076804
http://dx.doi.org/10.1103/PhysRevLett.105.076804
http://dx.doi.org/10.1103/PhysRevB.59.10504
http://dx.doi.org/10.1103/PhysRevB.59.10504
http://dx.doi.org/10.1088/0022-3719/10/16/019
http://dx.doi.org/10.1088/0022-3719/13/14/009
http://dx.doi.org/10.1088/0022-3719/13/14/009

