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Shot noise suppression in p − n junctions due to carrier generation-recombination
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We present a theoretical and experimental investigation of shot noise suppression in gallium arsenide and
silicon p − n junctions due the to effect of generation-recombination phenomena. In particular, the availability of
the cross-correlation technique and of ultra-low-noise amplifiers has allowed us to significantly extend, down to
10 pA, the range of bias current values for which results were available in the literature. To provide a quantitative
understanding of the observed V -shape noise behavior, we have extended the Shockley-Read-Hall model for the
trap-assisted generation-recombination mechanism. Such a model has represented the theoretical background
for the performed Monte Carlo noise simulations, which have provided good agreement with the experimental
results.
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I. INTRODUCTION

Suppression of shot noise below the level predicted by
Schottky’s theorem1 (SI = 2qI , where q is the electronic
charge and I is the average current) as a result of correlations
of different nature among charge carriers has been attracting
significant interest in condensed matter physics because it
represents a link between an easily accessible macroscopic
quantity, the shot noise power spectral density, and micro-
scopic properties of devices and materials.

The extensive review by Blanter and Büttiker2 provides
a detailed overview of the field, discussing the different
interactions that may lead to correlations between charge-
carrier traversal events in mesoscopic devices. One of the
early studied shot noise suppression effects in nanostructures
is that observed in double-barrier resonant tunneling devices
(DBRTDs), where, in the positive differential resistance
region, a Fano factor (ratio of the noise power spectral density
to that predicted by Schottky’s theorem) down to 1/2 was
observed by Li et al.,3 and which is due to an interplay between
Pauli and Coulomb correlations.4–7 In the negative differential
resistance region, instead, a shot noise enhancement was
observed8 due to positive correlations among charge carriers
resulting from the quantum well electrostatics.

Shot noise suppression does not occur only in low-
dimensional structures, but also in p − n junctions when a
large contribution to the current comes from charge generation-
recombination (g-r) in the depletion region, as demonstrated
theoretically9–11 and experimentally12,13 since a long time ago.
As in the shot noise suppression in double-barrier resonant
tunneling devices, correlation between carriers is introduced
by the fact that there are states (trap states in this case, well
states in DBRTDs), the occupancy of which regulates the
carrier flux. While in DBRTDs there is, as mentioned above, a
subtle interplay between Pauli and Coulomb exclusion, in the
p − n junction, unless the trap density is very large, the carrier
correlation is mainly due just to Pauli exclusion.

Initial experimental results by Schneider and Strutt12 did not
provide clear evidence of a suppression in p − n junctions,
which was also due to the insufficient sensitivity of the

measurement equipment available at the time. Wade and van
der Ziel,13 instead, operated at low temperature (at 100 K)
where the g-r component is larger than at room temperature,
observing a clear noise suppression (down to a factor of
about 0.8). In their results, the Fano factor increases with
increasing current (within the measurement interval), reaching
a value of about 0.87 at 1.5 mA. The theoretical models
existing at the time, or developed shortly thereafter, did not
explain this dependence of noise on current and, indeed, the
authors of Ref. 13 as well as van Vliet (who developed a
more advanced model10 leading to results similar those of
Lauritzen9) conclude that a revised theory is needed to explain
the experimental data. Blasquez14 obtained some further
experimental results, limited to a narrow current interval and
affected by a large dispersion, that he interpreted as consistent
with the existing theories. Dai and Chen15 claimed a noise
level much higher than full shot, but they had a quadratic
dependence on current; therefore, they were not observing shot
noise but classical generation-recombination noise associated
with carrier number fluctuations.

There was actually no other theoretical work on the subject
until 2001, when Jimenez Tejada et al.,11 on the basis of the
response of an electric field to fluctuations of the trapped
charge, obtained a model predicting full shot noise at low
bias currents and, as the current is increased, a decrease of
the Fano factor, followed by a very abrupt increase that leads
to values beyond 2. This last effect is not clearly justified on
intuitive grounds and has not been observed experimentally.

This is the reason why we have focused on noise measure-
ments performed at room temperature on three different types
of p − n junctions, using a cross-correlation technique that
has allowed us to investigate noise levels well below those
of the papers from the 1970s and to operate over a much
wider current interval, up to four current decades, starting from
10 pA.16

We have focused our attention on a GaAs diode and a
silicon diode (1N4007) with ideality factor (IF) approximately
equal to 1.6, as well as on a special silicon diode with an
ideality factor equal to unity over many current decades17,18
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(and therefore practically free from generation-recombination
centers) that can be used as a reference. The experimental
data have then been compared with results obtained from
numerical simulations based on a specifically devised Monte
Carlo procedure and on an analytical approach stemming from
a modified Shockley-Read-Hall theory (SRH).19

The paper is organized as follows: In Sec. II, we present
an extension of the Shockley-Read-Hall model19 for the
g-r current, considering different numbers of trap levels in
the depletion region; in Sec. III, the connection between
charge motion and current is established according to the
electrokinematics theorem,20,21 as well as the approach
to compute the power spectral density; in Sec. IV, the
Monte Carlo simulation and the measurement results are
reported and compared; and in Sec. V, we draw the final
conclusions.

II. GENERATION-RECOMBINATION CURRENT AND
CARRIER-TRAPPING PROBABILITY

A. Extended SRH model for the generation-recombination
current

In Fig. 1, we show the diagram sketching the trap-assisted
generation-recombination mechanism. According to standard
Shockley-Read-Hall theory,19 the electron (hole) capture cN

(cP ) and emission eN (eP ) rate of a trap can be expressed as

cN = cnn(1 − f ), cP = cppf, (1)

eN = cnni exp

(
Et

kT

)
f, eP = cpni exp

(
− Et

kT

)
(1 − f ),

(2)

where cn (cp) is the electron (hole) capture coefficient,
relationships in (2) derive from (1) assuming cN = eN and
cP = eP at the thermodynamic equilibrium, f is the electron
occupancy of the trap, and n and p are the electron and hole
densities, respectively, which are given by

n = ni exp

(
EFn − Ei

kT

)
, (3)

p = ni exp

(
Ei − EFp

kT

)
, (4)
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FIG. 1. Sketch of the trap-assisted generation-recombination
mechanism in a p − n junction, where trapping and detrapping of
electrons and holes in the case of two traps with different energies in
the device is also depicted.
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FIG. 2. Schematic energy diagram of a p − n junction.

where ni (n2
i = np) is the intrinsic density, EFn, EFp, EFt are

the quasi Fermi levels of the electrons (in the n neutral region
and into the depletion region), holes (in the p neutral region
and into the depletion region), and of the trap, respectively
(Fig. 2). The intrinsic Fermi level Ei can be instead expressed
as

Ei = EC + EV + kT ln(NV /NC)

2
, (5)

where EC (EV ) is the bottom (top) of the conduction (valence)
band and NC (NV ) is the effective density of states in the
conduction (valence) band.

The Fermi-Dirac factor of the trap will then be given by

f = 1

1 + exp Et−EFt

kT

, (6)

where Et is the trap energy, measured from Ei . If we now
define the rate of trap crossing as

urt ≡ cN − eN = cP − eP , (7)

from (1), (2), (6), and (7), we can express the Fermi-Dirac
factor f of the trap as

f = exp
(− v+2v0

2VT

) + exp
(− E

kT

)
2
[
cosh

(
E
kT

) + exp
(− v

2VT

)
cosh

(
v0
VT

)] , (8)

where v = (EFp − EFn)/q is the diode bias voltage (Fig. 2),
VT = kT /q (k and T are the Boltzmann constant and the
temperature, respectively), and qv0 = Et + qvσ is the effec-
tive level of the traps in the depletion region, which accounts
for the trap capture coefficient through vσ = VT /2 ln(cn/cp),
while (Fig. 2)

E = Ei − EFp − q(v/2 + vσ ). (9)

From Eqs. (1), (2), (7), and (8), we obtain

urt = us

sinh
(

v
2VT

)
cosh

(
E
kT

) + exp
(− v

2VT

)
cosh

(
v0
VT

) , (10)
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where us = √
cpcnni , with a maximum reached for E = 0,

i.e., in correspondence of the abscissa xM (Fig. 2) for which,
according to (9),

Ei(xM ) = EFp + q(v/2 + vσ ). (11)

In the depletion region, the width of which is equal to W0

for v = 0 and, for v �= 0,

W = W0

√
1 − v/vb, (12)

the electric field can be approximated with a constant value,
equal to −(vb − v)/W , where vb is the built-in voltage vb =
[EG − (EC − EFn) − (EFp − EV )]/q and EG is the energy
gap, being the difference EC − EFn (EFp − EV ) considered
for x > W (x < 0) (Fig. 2).

Therefore, within the depletion region, we can write Ei =
Ei(0) − q(vb − v)x/W , which leads to

E = −q
vb − v

W
(x − xM ) (13)

for 0 < x < W , while at the boundaries we obtain

E(0) = −EFpi − q(v/2 + vσ ) (14)

and

E(W ) = E(0) − q(vb − v) (15)

with EFpi = EFp − Ei(0) being the Fermi level in the neutral
region p, evaluated with respect to the intrinsic Fermi level
Ei(0). In the symmetric case (n = p and cn = cp), we obtain
E(0) = −E(W ) = q(vb − v)/2.

Assuming that the traps in the depletion region have a
uniform distribution ntj (r,v0j ) = ntj (v0j ) and an effective
energy level equal to qv0j , according to (10) and (13), the
total g-r current is computed performing the integral

Ir = qA
∑

j

ntj (v0j )
∫ W

0
urt (x,v0j )dx = sinh

(
v

2VT

)
√

1 − v
vb

×
∑

j

Irsj

∫ η0

ηW

1

cosh(η) + exp
(− v

2VT

)
cosh

( v0j

VT

)dη,

(16)

where η = E/kT , η0 = E(0)/kT , ηW = E(W )/kT , Irsj =
qusjntj (VT /vb)W0A, and A is the diode cross section.

The integral �j in (16) can be expressed in a closed form
(see Appendix A) as

�j = 2√
a2

j − 1
ln

⎛
⎝

√
a2

j − 1 − aj + 1√
a2

j − 1 + aj − 1

⎞
⎠ , aj > 1 (17)

�j = 4√
1 − a2

j

tan−1

√
1 − aj

1 + aj

, aj < 1 (18)

which holds for η0,|ηW | > 2, with aj =
exp(−v/2VT )cosh(v0j /VT ).

For example, for v0j ≈ 60 mV and v > 200 mV, we obtain
aj = 0.1 and, from (18), �j ≈ π , from which the expression
for the recombination current Ir ∝ exp(v/2VT )/

√
1 − v/vb of

the SRH model is recovered.

The diffusion current can then be expressed as

Id = Ids

[
exp

(
v

VT

)
− 1

]
(19)

and the total current in the diode becomes

I = Id + Ir , (20)

with Ids being the saturation diffusion current.

B. Carrier-trapping probability

A trap containing a hole can change its state in a time
interval dt whenever an electron is captured (nc) or a hole
is emitted (pe). The probability of an event nc is equal to
dpnc = cNdt and the probability of an event pe is equal to
dppe = eP dt . If we assume that the state changes only once
in the interval dt , the relative probability Pnc of a electron
capture can be expressed as Pnc ≡ dpnc/(dpnc + dppe) and
finally from (1) and (2), in which, by definition f =0, we
obtain

Pnc = cN

cN + eP

= 1

1 + exp
(− v+2v0

2VT

)
exp

(
E
kT

) . (21)

Equivalently, the probability Ppc of a hole to be trapped,
when an electron is already in the trap, can be expressed as

Ppc = cP

cN + eP

= 1

1 + exp
(− v−2v0

2VT

)
exp

(− E
kT

) , (22)

so that P ≡ Pnc + Ppe − 1 reads

P = sinh
(

v
2VT

)
cosh

(
v

2VT

) + cosh
(

qv0−E

kT

) . (23)

The above-derived expressions will be used in the following
sections in order to compute the current and the noise power
spectral density of the g-r mechanism assisted by a trap in the
depletion region.

III. INSTANTANEOUS CURRENT AND POWER
SPECTRAL DENSITY

A. Instantaneous current

In order to compute the power spectral density of the current
fluctuations, the expression for the time-dependent current i(t)
is needed. Such a quantity can be determined through the
electrokinematics theorem20,21 (see Appendix B). In particular,
for a constant bias v and for frequencies smaller than the
inverse of the largest transit time tPM of a carrier traversing
the device, i(t) reads

i(t) =
ν(t)∑
i=1

qivi · F(ri) = −
ν(t)∑
i=1

qi

d�[ri(t)]

dt
, (24)

where qi , ri , and vi are the charge, position, and velocity of the
ith charge in the device, ν(t) is the number of charges present in
the device at the time t , and F = −∇� is an irrotational field,
with boundary conditions � = 1 and 0 in correspondence of
the anode and of the cathode, respectively (see Appendix B). If
we consider the carriers only captured and emitted by a single
trap, the anode current irt (t) can be seen as a combination of
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FIG. 3. (a) Current pulses i±
n (i±

p ) at the anode associated to electrons (holes) captured (nc,i+
n ) [(pc,i+

p )] or emitted (ne,i−
n ) [(pe,i−

p )] from
the trap, respectively. (b) Number of electrons (χ = 1 or 0) in a trap as a function of time.

pulses i±n (i±p ) due to electrons (holes), which are captured
(process nc, pulse i+n ) [(process pc, pulse i+p )] or emitted
(process ne, pulse i−n ) [(process pe, pulse i−p )] from the trap
(Fig. 3).

More in detail, at the end (beginning) of the pulse i+n (i−n ) [i+p
(i−p )], when an electron [hole] is trapped (detrapped), we have
a change from the trap state S−

t (S+
t ) [S+

t (S−
t )], with χ = 0

(χ = 1) [χ = 1 (χ = 0)] electrons and lasting θ− (θ+) [θ+
(θ−)], to the complementary state. Moreover, unlike in Ref. 9,
where the simple approximation of distinct square pulses has
been assumed in order to derive the expression for the power
spectral density, here no assumption is made regarding the
shape of the pulses, which can also overlap (Fig. 3).

To compute the mean current and the power spectral density,
we need to evaluate the charge

Qrt =
∫ 
/2

−
/2
irt (t)dt = −

∫ 
/2

−
/2

ν(t)∑
i=1

qi

d�[ri(t)]

dt
dt (25)

induced at the anode by the pulses within the time interval
(−
/2,
/2), which must be wide enough to include a
statistically significant number of pulses.

From (25), we obtain

N ≡ Qrt

q
= �Nnc + (1 − �)Npc − �Nne − (1 − �)Npe,

(26)

where � = �(rt ), rt is the position of the trap, Nnc (Npc) [Nne

(Npe)] is the number of electrons (hole) trapped [emitted]
during the considered time interval.

Let us now show that N is not a function of �, i.e., it
does not depend on the trap position. Indeed, in a trapping
and detrapping cycle, we have the following combinations
of possible consecutive events, which determine variations
�N not depending on �: (nc, ne) give �Nnc=�Nne = 1,
�Npc = �Npe = 0, and from (26), �N = � − � = 0; (nc,
pc), �N = � + (1 − �) = 1; (ne, nc), �N = −� + � = 0;
(ne, pe) �N = −� − (� − 1) = 1; (pc, nc), �N = (1 −
�) + � = 1; (pc, pe), �N = 1 − � − (1 − �) = 0; (pe,
ne), �N = −(1 − �) − � = −1; (pe, pc), �N = −(1 −
�) + (1 − �) = 0.

For simplicity, we can assume � = 1 − �, i.e., � = 1/2,
which gives

N = 1
2 (Nnc + Npc − Nne − Npe). (27)

Defining θn = 〈θ+〉, θp = 〈θ−〉, and m = 
/(θn + θp), the
mean number of cycles within the 
 interval, we ob-
tain 〈Nnc〉 = mPnc, 〈Npe〉 = m(1 − Pnc), 〈Npc〉 = mPpc, and
〈Nne〉 = m(1 − Ppc), so that the mean current through the trap
reads

irt = Qrt



= qurt , (28)

and, through (27), one gets

urt = P

θn + θp

, (29)

where P = Pnc + Ppc − 1 given by (23) can be seen as the
efficiency of the trap in conducting the current.

B. Mean trapping and detrapping times

The mean times θn and θp of an electron and a hole being
trapped can be obtained from (29) and from the trap occupation
factor f of an electron written as

f = θn

θn + θp

, (30)

which, together with (8), (10), (23), and (29), gives

θp = exp
( 2v0−v

2VT

) + exp
(

E
kT

)
2us

[
cosh

(
qv0−E

kT

) + cosh
(

v
2VT

)] , (31)

θn = exp
(− v+2v0

2VT

) + exp
(− E

kT

)
2us

[
cosh

(
qv0−E

kT

) + cosh
(

v
2VT

)] . (32)

C. Power spectral density

From Milatz’s theorem,22 the power spectral density Srt of
the current irt (t) through a trap, at frequencies smaller than

155309-4



SHOT NOISE SUPPRESSION IN p − n JUNCTIONS DUE . . . PHYSICAL REVIEW B 83, 155309 (2011)

1/tPM , reads

Srt = lim

→∞

2




〈[ ∫ 
/2

−
/2
�irtdt

]2〉
≈ 2



var(Qtr )

= 2q2



var(N ), (33)

where �irt = irt − irt is the current fluctuation, the third term
[deriving from (25)] holds for 
 � tPM , while the fourth term
follows from (26).

From (26), (28), and (33), we also obtain

Srt = 2q(qurt )ϕrt , (34)

where

ϕrt ≡ var(N )

〈N〉 . (35)

If the traps are sufficiently far from each other, their fluctua-
tions can be considered statistically independent and the total
power spectral density Sr , from (34), can be expressed as

Sr = A
∑

j

ntj

∫ W

0
Srtj dx = 2q2A

∑
j

ntj

∫ W

0
urtjϕrtj dx,

(36)

which, exploiting (10) and (16), becomes

Sr = 2q
sinh

(
v

2VT

)
√

1 − v
vb

∑
j

Irsj

×
∫ η0

ηW

ϕrtj

cosh(η) + exp
(− v

2VT

)
cosh

( v0j

VT

)dη. (37)

From (19) and exploiting Schottky’s theorem,1 the power
spectral density of the full shot noise associated to the diffusion
current Id can be expressed as

Sd = 2qIds

[
exp

(
qv

VT

)
+ 1

]
= 2qIdcoth

(
v

2VT

)
, (38)

while the full shot noise Srsh associated to Ir [given by
(16)] in the absence of any generation-recombination events
reads

Srsh = 2qIrcoth

(
v

2VT

)
. (39)

We can now define the total Fano factor F ≡ (Sd + Sr )/(Sd +
Srsh) as the ratio between the measured noise power spectrum
(Sd + Sr ) and the full shot noise power spectrum (Sd + Srsh),
which, from (16), (37), (38), and (39), finally reads

F = Id

I
Fd + Ir

I
Fr, (40)

where Fd = 1 and

Fr =

∑
j Irsj

∫ η0

ηW

ϕrtj

cosh(η)+exp
(
− v

2VT

)
cosh

(
v0j

VT

)dη

∑
j Irsj

∫ η0

ηW

1

cosh(η)+exp
(
− v

2VT

)
cosh

(
v0j

VT

)dη
tanh

(
v

2VT

)

(41)

are the Fano factors of the diffusion and the g-r current,
respectively.

IV. MONTE CARLO SIMULATIONS AND
MEASUREMENT RESULTS

In this section, we first introduce the numerical approach
adopted to compute the I -V characteristics and the Fano
factor, which will be then compared with experimental data
obtained for three different diodes. The purposely devised
method is based on Monte Carlo simulations of the generation-
recombination process, where traps are considered indepen-
dent, as assumed in Ref. 9. We want to point out anyway the
fact that our method is general and can be easily extended to
the case of interacting traps.

A. Simulation method

Let us assume an exponential distribution M(ρ):

M = 1

σ
exp

(
−ρ

σ

)
(42)

for the trapping and detrapping random time variable ρ, being
ρ = θ+ (ρ = θ−) and σ = θn (σ = θp) for the state S+

t (S−
t )

(Fig. 3). Since the states S+
t (S−

t ) corresponding to a trapped
electron (hole) have the same probability, we can write M =
b/σ , where b is a random variable uniformly distributed in the
interval (0,1), and the state S+

t (S−
t ) lasts a time ρ,

ρ = −σ ln b. (43)

As a consequence, if we define τ = ρus as the dimension-
less time that a charge remains trapped, we can express the
trapping and detrapping times τ+ and τ−, respectively, as

τ+ = −usθn ln b, (44)

τ− = −usθp ln b, (45)

where, in accordance to (31) and (32), usθn (usθp) depends
on the trap energy qv0, extracted via a numerical fitting of the
experimentally measured current, and does not depend on the
(unknown) carrier capture coefficients.

To compute 〈N〉 and var(N ), we need to consider a
large enough number of events (i.e., changes in the trap
state) to obtain reliable statistics. Such a requirement is, for
example, satisfied considering 
 � (θn + θp) or, equivalently,
us
 ≡ 
′ = us(θn + θp)l, where l must be larger than several
thousands.

Before the initial time step t ′1 = ust1 = 0 [Fig. 3(b)], with
t ′ ≡ ust the dimensionless time, the trap can be either full
or empty of an electron (trap in the S+

t0 and S−
t0 state,

respectively). If the initial state is S−
t0, as shown in Fig. 3(b),

at t ′1 = 0 we can have two possible events nc = α1β1 or
pe = α1β1, which leads to the state S+

t1 by indicating with
α = n or α = p the carrier type and with β = c or β = e

the trapping and detrapping type. The two events are chosen
depending on the value that a random variable γ , uniformly
distributed between 0 and 1, assumes: if 0 � γ � Pnc, we
have to choose α1β1 = nc, and we decide for α1β1 = pe

otherwise, with �Nα1β1 = 1 and �Nα′
1β

′
1
= 0 for α′

1 �= α1 and
β ′

1 �= β1.
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FIG. 4. (Color online) (a) Experimental current-voltage charac-
teristics of Si quasi-ideal, Si 1N4007, and GaAs diodes; Experimental
and simulated characteristics of the GaAs and 1N4007 diodes,
considering (b) 1 trap level and (c) 2 trap levels.

The state S+
t1 lasts up to t ′2 = t ′1 + τ+

1 , where τ+
1 is obtained

from (44). At t ′2, the state S−
t2 starts with an event α2β2 = pc

if another random variable δ satisfies 0 � δ � Ppc, otherwise,
α2β2 = ne, with increments �Nα2β2 similar to those found
for the state S+

t1. State S−
t2 lasts up to t ′3 = t ′2 + τ−

2 , where
τ−

2 is obtained from (45). The simulated history ends after
k steps, when t ′k � 
′ and t ′k+1 > 
′, obtaining, through the
increments �Nαβ and (27), the value for N .

The simulation is performed for many histories to obtain
reliable estimates for 〈N〉 and var(N ). This procedure is
repeated as a function of the trap position, with a resolution
sufficient to compute the integral in (41) with good precision,
and for each of the energy levels that have to be included to
achieve the best fit between the experimental and theoretical
current values given by (16).

In the case of independent traps, such as the one we are
studying, the power spectral density for a single trap, given by
the following equation (46), has a value corresponding to the
results in Ref. 9.

B. Experimental and numerical results

In Fig. 4(a), we show the experimental characteristics
of a silicon quasi-ideal diode (almost without traps, thanks
to a specific gettering procedure17,18) of a GaAs diode for
temperature measurements, and of a silicon diode 1N4007, as
well as the numerical fits of the I -V characteristic obtained
using one [Fig. 4(b)] or two trap levels [Fig. 4(c)] by directly
exploiting (16). The obtained fitting parameters are shown in
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FIG. 5. Fano factor of a trap for the GaAs diode, computed as
a function (a) of the trap position x for different bias values v and
(b) of v at x = xM .

Table I. As can be seen, inclusion of two trap levels leads to a
better fit of the current.

To investigate the effects of the generation-recombination
process on noise when a single trap is considered, we can
define its Fano factor Frt ≡ Srt

Srtsh
that, according to (34) and

(39), i.e., with Srtsh = 2q(qurt )coth(v/2VT ), becomes

Frt = Srt

2q(qurt )coth(v/2VT )
= ϕrt (x,v)tanh

(
v

2VT

)
, (46)

which, for instance, in the case of GaAs and of a single level
(with qv0 = 0.059 eV and vb=0.7 V), yields the results shown
in Fig. 5. As can be seen, the g-r processes determine a
reduction of the power spectral density with respect to the
full shot value down to 1/2 for large v and in correspondence
of xM , while, for low v or at the boundaries of the depletion
region, Frt → 1.

The result F = 1 for the quasi-ideal diode follows from the
same considerations. There is a simple intuitive explanation
for the computed V -shape behavior, shown in Fig. 5: For
low values of the current, i.e., for low voltage or far from
xM , the occupancy (or vacancy) of the the trap is much
lower than 1 [see (8)], therefore, almost no correlation is
introduced between electrons (holes) crossing the device [since
the probability that one electron (hole) will be delayed as a
result of the trap being full (empty) is negligible]; as the current
increases, also the trap occupancy (or vacancy) increases

TABLE I. Current fitting parameter, considering one and two trap levels. qv01 and qv02 are the trap levels; Im and IM are the lower and
upper bounds of the current interval within which the fitting has been performed; Ids is the diffusion saturation current; and Irs1 and Irs2 are the
saturation currents of the g-r component, considering one and two trap levels, respectively.

Diode qv01 (eV) qv02 (eV) Im (A) IM (A) Ids (A) Irs1 (A) Irs2 (A)

Si 0.077 10−10 2 × 10−6 3.32 × 10−12 7.67 × 10−10

Si 0.065 0.18 3 × 10−11 1 × 10−5 1.31 × 10−12 5.77 × 10−10 9.19 × 10−10

GaAs 0.059 10−11 3 × 10−8 2.25 × 10−14 1.25 × 10−11

GaAs 0.056 0.265 2 × 10−11 2 × 10−6 2.31 × 10−15 1.21 × 10−11 5.11 × 10−11
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FIG. 6. Ratio Ir/I (Id/I ) between the g-r current Ir (diffusion
current Id ) and the total current I and their simulated Fano factors
Fr , Fd , and F , respectively, for the (a) 1N4007 and (b) GaAs diodes,
considering one trap level.

(f → 1/2), leading to correlations and to a suppression of
shot noise in the current component flowing through the trap.

In Fig. 6, we show the computed ratio Ir/I (Id/I ) between
the g-r current Ir (diffusion current Id ) and the total currents
I and their simulated Fano factor Fr , Fd , and F , respectively,
for the 1N4007 and GaAs diodes. Such a picture highlights
the contribution of the different components (both g-r and
diffusion) to the total Fano factor F . Also, F has a V -shape
behavior (found also in measurement results) as a function of
the current, and this can be explained by the fact that, at low
currents, both Fd and Fr [according to (41), (46), and Fig. 5]
are equal to 1, whereas, at high currents, where the g-r Fano
factor Fr → 3/4,9 its current fraction Ir/I tends to zero, and,
again, Fd → 1.

Noise measurements on the three types of p − n junctions
can be performed using a cross-correlation technique23 based
on two amplifiers that are connected in a “series” or “parallel”
configuration depending on the differential impedance of the
diode. At lower bias currents, the differential impedance
is high, thus, the prevailing noise contribution from the
amplifier is represented by the equivalent input noise current
generator, the effect of which can be minimized with the
series configuration, which we have used in our measurements.
Moreover, a particular procedure has been applied to precisely
evaluate the amplifier transimpedance, as detailed in Ref. 24.
In Fig. 7, we show the comparison between the experimental
and the numerical Fano factor for the quasi-ideal and 1N4007
silicon diodes [Fig. 7(a)] as well as for the GaAs diode
[Fig. 7(b)], considering one and two trap levels.

We observe that the two-level trap model allows a better
fit of the diode characteristic (although the single-level model
already provides good results) (Fig. 4) as well as of the Fano
factor (Fig. 7) for the 1N4007 diode, while the single-level
model provides better results for the noise of the GaAs diode.
The single-level model also allows faster calculations, due to
the reduced computational complexity.
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FIG. 7. (Color online) Experimental (circles) and simulated Fano
factors considering one trap level (squares) and two trap levels
(diamonds) for (a) the 1N4007 diode and (b) the GaAs diode. In
(a), the experimental Fano factor (stars) of a quasi-ideal diode is also
shown.

V. CONCLUSION

In this paper, we have investigated shot noise suppression in
p − n junctions due to generation-recombination phenomena.
We have obtained expressions for the Fano factor in such de-
vices and we have performed a numerical Monte Carlo evalua-
tion of its parameters. We have also performed measurements
of the Fano factor over a wide current range (from 10−11 A
to 2 × 10−7 A) on three different p − n junctions using a
very sensitive system based on the cross-correlation technique,
obtaining results that represent a significant improvement
over what was available in the literature. In particular, it has
been possible to experimentally observe the decrease, with
increasing current, of the Fano factor (down to 0.8) associated
with the rising occupancy of the trap and its increase back to
unity, at higher current values, due to the prevalence of the
diffusion current, which is characterized by the unitary Fano
factor. As a verification, we have measured also the Fano factor
for a quasi-ideal diode, in which generation-recombination
phenomena are negligible, finding the expected full shot noise
over a wide current range.

These experimental results have been interpreted by means
of an analytical model and an associated numerical simulation.
The model is based on an extended expression of the SRH
current and on the electrokinematics theorem for the evaluation
of current fluctuations. Starting from the average rate of
charges crossing the device via a trap in the depletion region,
we have obtained an expression for the stationary current,
which we have used to determine the mean trapping and
detrapping times and the capture probability of a charge in
the trap. Such quantities and the trap energy levels obtained
by fitting the experimentally measured and the theoretical I -V
characteristics have then been included into a numerical Monte
Carlo simulation in order to compute the power spectrum of the
g-r noise component and the overall Fano factor. Comparison
with the experimental data has shown that I -V characteristics
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are best fitted by means of a two-level model, which has also
provided a good representation of the V -shape behavior of the
Fano factor as a function of the bias current.

APPENDIX A

The integral

�j =
∫ η0

ηW

dη

aj + cosh(η)
(A1)

can be expressed as

�j = 1√
a2

j − 1
ln

(√
aj + 1 − √

aj − 1 tanh(η/2)√
aj + 1 + √

aj − 1 tanh(η/2)

)∣∣∣∣
η0

ηW

,

(A2)
aj > 1

�j = 2√
1 − a2

j

tan−1

(√
1 − aj

1 + aj

tanh(η/2)

)∣∣∣∣
η0

ηW

, aj < 1.

(A3)

In the symmetric case, η0 = −ηW = (vb − v)/2VT . If vb =
0.7 V and v = vmax = 0.4 V, which is the maximum value
in our case, we obtain η0/2 = 3 and tanh(η0/2) ≈ 1 for
v < 0.4 V, so that (A2) and (A3) reduce to (17) and (18),
respectively.

APPENDIX B

According to the electrokinematics theorem,20,21 the current
flowing into the anode of the device is given by

i(t) =
ν(t)∑
i=1

[
qivi · F(ri) + dei

dt

]
+ C

dv

dt
, (B1)

where C is diode capacitance, and qi , ri , and vi are the charge,
position, and velocity of the ith charge of the ν(t) charges that
are present in the device at time t . F = −∇� is an irrotational
field, which satisfies ∇ · (εF) = 0 (where ε is the dielectric
constant) with boundary conditions � = 1 and 0 at the anode
and at the cathode, respectively, and appropriate boundary
conditions on the ungated surface SR of the device. dei/dt

accounts for the displacement current through SR , due to the
motion of the ith charge, and ei becomes equal to zero when
such a charge enters an electrode, so that its contribution
in terms of Fourier transform, necessary to compute the
noise spectrum, becomes negligible for frequencies smaller
than 1/tPM .

As a consequence, for such frequencies and for a constant
bias v, we obtain (24), and for a cylindrical device with length
equal to L, and F along the x axis of the device, i.e., F =
Fx i = i/L, (B1) reduces to the well-known Ramo-Shockley
theorem25

i(t) =
ν(t)∑
i=1

qi

vxi

L
+ C

dv

dt
. (B2)
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