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Discrete self-oscillation period branches observed in semiconductor superlattices
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We investigate the self-sustained current oscillation of a weakly coupled semiconductor superlattice in the
dynamical voltage band using a microscopic sequential tunneling model. With the voltage as a control parameter,
two types of branches of current oscillation period versus voltage have been observed, which correspond to
various oscillation scenarios. The first branch type consists of a series of period branches in accordance with how
many charge dipoles need to be created at the emitter side to trigger a dipole-tripole oscillation scenario. For
the second branch type, charge dipoles are generated periodically at the emitter, but all of them fail to develop
completely and die out, thereby leading to a low-period oscillation scenario without the dipole-tripole process.
The bistability between different branches is also observed by voltage up-sweeping and down-sweeping.
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I. INTRODUCTION

Nonlinear vertical charge transport in weakly coupled
semiconductor superlattices (SLs) has been a research high-
light in the interdisciplinary research field between semi-
conductor physics and nonlinear science during the past
years.1–4 For weakly coupled doped SLs, the main mech-
anism of vertical charge transport is sequential tunneling
between adjacent SL quantum wells.5–11 A great richness of
nonlinear transport behaviors has been observed in weakly
coupled SLs, including the formation of stationary electrical
field domains (EFDs),12–20 self-sustained current oscillations
(traveling EFDs),21–27 and driven and undriven chaos.28–33

These dynamic behaviors depend on the applied voltage, SL
configuration, boundary conditions, doping density, sample
temperature, and other control parameters. Among them, the
voltage V and boundary contact conductivity σ are two crucial
parameters for the transport scenario to be observed.

The V-σ phase diagram has been shown in Ref. 27. For
sufficiently low σ , stationary I-V characteristics could be
established with a wide charge depletion layer (CDL) as
an electric field domain wall which separates the high and
low electric field domains.15 With increasing σ , the SL system
enters into the oscillation regime via a Hopf bifurcation (lower
threshold) and it gives rise to various oscillation modes.33

For very large σ , the system is in the stationary regime
again, and the electric field domain wall becomes a charge
accumulation layer (CAL). This upper σ boundary (upper
threshold) between the oscillation and stationary regimes is
a sawtooth-like boundary with several tongues, where each
tongue corresponds to a specific position of the stationary
domain wall.27 If the contact conductivity σ is fixed at the
tongue regime and the voltage V is varied to pass through
the tongues one by one, the SL system will be alternately in
the stationary and oscillation regimes. As a result, the so-called
dynamic voltage bands (DVBs) and static voltage bands
(SVBs) will be observed alternately with increasing voltage.

DVBs were first observed in the temperature-induced
transition process from stationary I-V characteristics to self-
sustained oscillations.34 In previous works,34–40 the influences
of the system temperature and external ac bias on I-V
characteristics in the DVB region have been fully investigated.
With increasing temperature, the DVBs will emerge at the low
voltage side of the SVBs, then expand, and finally squeeze
out the SVBs.34,35 If ac bias condition is applied, the I-V
characteristic curve in the DVB region becomes discrete,
which is related to a period-adding bifurcation.39

However, few papers focus on the voltage dependence of
the oscillation period in the DVB region, except the works in
Refs. 35,38,40, where the oscillation frequency was found to
increase first and then decrease with increasing voltage. In the
present work, we investigate the voltage dependence of the
current oscillation period in the DVB region in a microscopic
resonant tunneling model. Our simulation results show that
the period-voltage curve consists of many distinct branches,
which have not been revealed in previous works. We attribute
these branches to various dipole generation processes at the
emitter side of the SLs.

The rest of this paper is organized as follows: The dimen-
sionless sequential resonant tunneling model and numerical
method are briefly described in Sec. II. In Sec. III, we
show the voltage dependence of the self-oscillation period
in the DVB region. Section IV is devoted to the dipole
generation process in order to characterize the discrete period
branches. In Sec. V, the hysteresis phenomenon between
different period branches is reported by voltage up-sweeping
and down-sweeping. Finally, we finish the paper with our
conclusions and discussion in Sec. VI.

II. DIMENSIONLESS MODEL

Weakly coupled superlattices can be described by a one-
dimensional discrete sequential tunneling model, which has
been developed over the past decades and can be used to
model the experimental results quite well (see Refs. 1–4 and
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references cited therein). The framework of this model is based
on three well separated time scales: inter-subband scattering
time τs , tunneling time τt (the average time an electron
needs to escape from one SL well to the adjacent one), and
macroscopic time of self-sustained oscillations τm. Physically,
τs � τt � τm.1,9,13–15 Therefore, the electrons in one quantum
well have enough time to fall into the first subband from an
excited subband before they tunnel to the next well and they
are in quasiequilibrium with Fermi-Dirac distribution at the
given SL well. This implies that the tunneling current can
be considered a quasistationary process on the macroscopic
time scale τm and the dominant mechanism of vertical charge
transport is sequential resonant tunneling.

Following the pioneering works on the sequential resonant
tunneling model, we give a brief description about the model
and adopt the dimensionless formulas proposed by Bonilla
et al. in Ref. 13. All the physical quantities used below
are in the dimensionless form if not otherwise indicated.
The definitions of the units used to nondimensionalize the
model equations and their values for the typical 9 nm/4 nm
GaAs/AlAs superlattices at T = 5 K can be found in Tables I
and II in Ref. 13.

The dynamic equation of the dimensionless electric field
Ei at well i is given by Ampere’s law:

dEi

dt
+ Ji→(i+1) = J (t), for i = 0, . . . ,N, (1)

where Ji→(i+1) represents the tunneling current from well i to
well i + 1 and N is the total number of quantum wells in the
superlattices. In this work, N = 40. Well 0 and N + 1 denote
the charge emitter and collector contact regions, respectively.
The tunneling current Ji→(i+1)(Ei,ni,ni+1) depends on the
dimensionless electric field Ei at local well i and the electron
densities ni and ni+1 in the corresponding SL wells. ni and Ei

are coupled by Poisson’s equation,

ni = Ei − Ei−1

ν
+ 1, for i = 1, . . . ,N, (2)

where ν (ν = 5.212) is the dimensionless doping density. To
make these equations solvable, the total bias condition,

N∑

i=0

Ei = (N + 1)φ, (3)

is required, where (N + 1)φ denotes the dimensionless voltage
applied to the superlattices.

The calculation of the tunneling current Ji→(i+1) has been
performed by the transfer Hamiltonian method1,9,13 and also
by a microscopic tunneling Hamiltonian.15 In this work, we
use the same formulas and parameters as those provided in
Ref. 13 for the typical 9 nm/4 nm GaAs/AlAs superlattices.
As for the boundary tunneling current J0→1 and JN→(N+1), we
adopt the linear relations between current and electric field,
which are called Ohmic boundary conditions,

J0→1 = σE0, (4)

JN→(N+1) = σENnN. (5)

The relationship between the contact doping density and σ in
Eqs. (4) and (5) has been given by Xu et al. in Ref. 15.

For the SL samples investigated in Ref. 13, a typical contact
conductivity value is σ ≈ 0.5, under which the SL system is
in the stationary regime. In the present work, we will study the
DVB region, which is in the transition process from stationary
to oscillation regime. As discussed in Sec. I, σ should be less
than 0.5 in order to observe DVBs. Our simulations show that
the σ value in the transition process ranges from 0.24 to 0.36
approximately. The exact transition values depend on the other
SL parameters.

In the simulations, we use the fourth-order Runge-Kutta
method to solve the SL system with the initial condition

Ei(t = 0) = φi for i = 0, . . . ,N. (6)

In this work, a uniform initial condition, φi = φ, is used.
To understand the influence of the initial condition on the
observed results, we also employ a random initial condition,
where φi is a random number inside the interval (φ − 0.2,φ +
0.2). It is found that the simulation results do depend on the
initial condition; however, the period branches observed are
similar to that under the uniform initial condition. Therefore,
the initial condition does not affect the phenomenon of period
branches.

For σ = 0.5, the static voltage branches obtained in our
simulations by voltage up-sweeping from φ = 0 to high
voltage values and voltage down-sweeping from high to low
voltage values show a good agreement with Ref. 13. Therefore,
we believe that our simulation method is accurate enough.

III. DISCRETE PERIOD BRANCHES

As mentioned above, the dynamic voltage band was first
observed in the transition process from static to dynamic
regime by increasing the SL sample temperature.34 Here, we
show that the coexistence of DVBs and SVBs could also be
observed if the boundary contact conductivity σ is varied
from the static to dynamic regime. In Fig. 1, we plot the
time-averaged current-voltage characteristics of the SL system
given in Sec. II when σ varies from 0.2 to 0.38.

For large σ (σ = 0.38), the system is in the station-
ary regime and the I-V curve exhibits a series of current
branches corresponding to stationary EFD configurations.
Three branches and a tiny part of the adjacent I-V branch
are shown by solid stars. With decreasing σ , the so-called
DVBs (denoted by open symbols), within which self-sustained
current oscillation can be observed, begin to emerge from the
interface between two adjacent SVB branches (denoted by
solid symbols). Two full DVB regions are denoted by A and
B in Fig. 1. If σ is further decreased, these DVBs will expand
and even squeeze out the SVB region. At small σ (σ = 0.2,
shown by open squares in Fig. 1), the SL system comes into the
oscillation regime, and the time-averaged I-V curve is almost
flat. These results resemble well the transition process when
changing the SLs sample temperature in previous works.

We focus on the voltage dependence of the current
self-oscillation period in the DVB region and choose an
intermediate contact conductivity value, σ = 0.26 (see Fig. 2).
To evaluate the current oscillation period, we first record the
current traces at a given V and σ value. Then, a series of
periods are obtained by calculating the time interval between
two successive maxima in the time traces (see the sharp current
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FIG. 1. (Color online) Time-averaged I-V characteristics for
differrent boundary contact conductivities. Open symbols indicate
the DVB region, while solid symbols denote the SVB region. For
the sake of clarity, the current values for σ = 0.26, σ = 0.3, and
σ = 0.38 are shifted up by 0.02, 0.04, and 0.06, respectively.

peak in Fig. 3). The average of these periods is considered as
the oscillation period at the given parameters. To ensure that
the average period is accurate, the variance of these periods
(not shown here) is also calculated and the results show that
the variance is very small compared with the average value.

For DVB region B, which is enlarged in Fig. 2(b),
the period-voltage curve consists of many discrete period
branches. Two different types of period branches can be
identified. The first type of branches (type I) are denoted by
number 1, 2, 3, 4, 5, . . . , as shown in Fig. 2(b), and all these
branches form a U-shaped curve in the DVB region. The length
of type-I branches increases with increasing voltage. At the left
(low-voltage) side of the U-shaped region, the branch length is
so small that we have to enlarge the figure to see these branches
[see the inset panel in Fig. 2(b)]. While at the right side, there
is only one branch which is denoted by the number 1. The
second branch type (type II) contains only one branch, which
is a tiny low-period branch denoted by the number 0 at the left
boundary of the DVB region in Fig. 2(b). From our simulation
results, we find that

(i) The right side of the U-shaped region is occupied by
branch 1, and the oscillation period increases toward infinity
with increasing voltage.

(ii) At the left side of the U-shaped region, the current
oscillation period increases toward infinity with increasing
branch number.

(iii) For each type-I or type-II branch, the period increases
as the voltage increases.

The U-shaped period curve in Fig. 2 agrees well with the
results reported in previous works.35,38 Here, we observe two
new phenomena: (1) A new period branch (branch number 0)
appears at the left side of the DVB region. (2) It is shown
that the U-shaped period curve is divided into many discrete
branches. However, these branches appear only in a narrow
voltage range (V ≈ 3.54 → 3.57), so they were not reported
in the literature.

(a)

(b)

FIG. 2. (a) Voltage dependence of the self-sustained oscillation
period in the dynamic voltage bands for σ = 0.26. For the sake of
clarity, the DVB region B is enlarged in (b) and part of (b) is also
enlarged in the inset figure.

IV. DIPOLE GENERATION PROCESS

In order to understand the discrete period-voltage branches
in the DVB region, it is necessary to study the time trace
of the total current and the formation of the dipole at the
emitter side of superlattices. First of all, we choose two points,
V = 3.7 at intermediate position and V = 3.768 near the right
boundary, from the first type-I branch denoted by 1. The
corresponding current traces J (t) and the dynamic evolution of
charge density patterns are plotted in Fig. 3. The current traces
demonstrate a typical dipole-tripole scenario described in the
previous works.13,33 In the time range t ≈ 12 700 → 13 000
for V = 3.7, a dipole, which consists of a CAL (light region)
and a CDL (dark region), travels across the SL with almost
constant velocity. When the leading CDL reaches the collector
side (SL well i = 40) and disappears, the remaining CAL
starts to slow down because of the total bias confinement.
From the previous theoretical works on CAL wave fronts,16–18

the current value for CAL with low velocity should be higher
than that for the CAL with high velocity, so the total current
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FIG. 3. (Color online) (a) The current traces at two applied
voltage values in branch 1, V = 3.7 and V = 3.768. (b) and
(c) The dynamic evolution of charge density patterns for V = 3.7
and V = 3.768.

starts to increase when the CAL slows down. The increase
of the current injects electrons into the SL system from the
emitter side (SL well i = 1), which will generate a charge
dipole and push the old CAL to the collector side because of
the total bias condition. Hence, as the system evolves, there
are two CALs and one CDL (tripole) inside the SLs. When the
old CAL reaches the collector side and vanishes, a new dipole
process starts. Thus, a whole oscillation period is composed of
a dipole-tripole process and a dipole generation process. Note
that the time that the SLs spend in the dipole-tripole process is
insensitive to the voltage, while it needs more time to generate
a new dipole for larger voltages.

For the other type-I branches, such as 2 and 3, two
intermediate points V = 3.57 and V = 3.56 are chosen.
Figure 4 depicts the simulation results. It is found that the
dipole-tripole scenario is very similar to that of branch 1, but
the formation processes of new dipoles are different.

FIG. 4. (Color online) (a) The current traces at the intermediate
points (V = 3.57 and V = 3.56) of branches 2 and 3. (b) and
(c) The dynamic evolution of charge density patterns for V = 3.57
and V = 3.56.

For branch 2, there exist two current peaks before the SL
system assumes the dipole-tripole process. At the first current
peak, a small dipole is created at the emitter side, but it fails to
grow up completely. The new CAL and CDL travel through a
couple of SL wells before they collide with each and die out
[see Fig. 4(b)]. When the first dipole vanishes, another dipole
is created, corresponding to the second current peak, and then
the dipole-tripole process starts with the second dipole. As for
branch 3, three dipoles are needed to develop a good dipole
that can trigger the dipole-tripole scenario [see Fig. 4(c)]. In
the same way, there are three current peaks in the time trace
of the total current for branch 3.

Figure 5 plots the phase portraits in terms of electron
densities in two neighboring SL wells at the emitter side, i = 1
and i = 2. Four branches (1, 2, 3, and 4) are selected and each
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FIG. 5. The n1-n2 phase portraits for (a) branch 1, (b) branch 2,
(c) branch 3, and (d) branch 4. Solid line, dashed line, and dotted
line represent the left boundary point, intermediate point, and right
boundary point in each branch.

branch is studied at three points. The first point is near the left
side of each branch. The second one is near the intermediate
position, and the third one is on the right side. For branches 1,
2, and 3, the same points as Figs. 3 and 4 are used. If n1 < n2,
there should be a charge depletion layer at SL well i = 1,
and n1 > n2 implies a charge accumulation layer. A circle
around the neutral point (n1 = n2 = 1.0) in the phase portraits
indicates that a dipole is created at the emitter side and then it
moves into the superlattices. The inner circle denotes the small
weak dipole which is not well developed, while the outermost
circle represents a fully developed dipole.

In Fig. 5, it is shown that there are k circles around the
neutral point for the three points chosen in period branch k.
It is confirmed that k circles could be found in the n1 − n2

phase portrait for all the points in branch k (here, k denotes the
type-I branch, and k = 1,2,3,4). Further simulations confirm
that this conclusion is also valid for branches of larger numbers.
Actually, we just use the number of circles to mark different
type-I branches.

From the time traces in Figs. 3 and 4, it is seen that the
time period of the self-sustained current oscillation consists of
two parts: the dipole-tripole process and the dipole-generation
process. The self-oscillation period is insensitive to the time
that the SL system spends in the dipole-tripole process, while
the time needed to create a well developed dipole plays a
dominant role for the oscillation period. This time depends on
two factors: (1) how much time it needs to create a new dipole,
and (2) how many dipoles can be generated.

For branch 1, only one dipole is created, but it needs
increasing time to create a new dipole with increasing voltage,
as shown in Fig. 3. Hence, the time period increases with
increasing voltage [finding (i) in Sec. III]. The oscillation
period increases significantly toward infinity when the voltage

is close to the right boundary of the DVB region. The SL
system will come into the stationary regime with a stationary
domain wall located at SL well i = 33 if the voltage exceeds
the right threshold.

For the branches with number k > 1, the time period
increases with increasing branch number [finding (ii) in
Sec. III] because a rising number of dipoles die out before
the final dipole is well developed. As a result, increasing time
is needed to generate more dipoles. The oscillation period will
increase toward infinity with increasing branch number at the
left side of the U-shaped region.

If the voltage decreases further, the SL system turns into
the type-II branch denoted by the number 0 in Fig. 2, which
is a simple low-period oscillation branch (see Fig. 6). In this
case, a clear CAL could be found near the SL well i = 34. At
the emitter side, weak dipoles are generated periodically, but
all these dipoles fail to develop completely. Thus, there is no
dipole-tripole process in branch 0. In other words, branch 0
actually is a limiting type-I branch with k = ∞. For branch 0,
the dipole generated at the emitter side becomes much weaker
with decreasing voltage. Finally, a stationary domain wall is
established at SL well i = 34 and no dipole can be created
anymore. Note that the position of the stationary domain wall
moves one SL well from the left to right boundaries of DVB
region B.

For fixed period branch number k > 1, the number of
dipoles that vanish inside the SLs remains unchanged (for
the type-II branch, this number is infinity). At a high
voltage, the length of the new generated dipoles (the distance
between the new CAL and CDL) should be larger than that of a
lower voltage condition because of the total bias confinement.

FIG. 6. (Color online) The current trace (a) and dynamic evolu-
tion of charge density pattern (b) at the intermediate point (V = 3.55)
in the type-II branch 0.
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So, the new dipoles under a higher voltage can survive a longer
time before they disappear. That is why the self-oscillation
period increases with increasing voltage in the same branch
[finding (iii) in Sec. I]. However, this explanation cannot be
applied to the dependence of the oscillation period on the
voltage in branch 1, because the increase of the oscillation
period in branch 1 is due to the increasing time needed to
create a new dipole.

In Ref. 38, it is reported that the self-oscillation begins
and ends at supercritical Hopf bifurcations at the left and
right boundaries of the DVB. On the other hand, saddle-node
bifurcations are found at the sawtooth-like boundary of the
V-σ phase diagram.27 Because the left and right boundaries
of the DVB region correspond to the left and right sides of
the sawtooth-like boundary tongue, it is not clear what type of
bifurcation will occur at the boundaries of the DVB.

In this work, it seems that the DVB region disappears via
a supercritical Hopf and saddle-node bifurcation at the left
and right boundaries, respectively. At the left DVB boundary
(branch 0), the current oscillation amplitude shrinks to zero
while the oscillation period remains finite with decreasing
voltage, which indicates a supercritical Hopf bifurcation.
At the right boundary (branch 1), the oscillation period
goes to infinity when the current oscillation ends with a
finite oscillation amplitude. This is a generic characteristic
of saddle-node infinite period bifurcation with a homoclinic
orbit. However, our simulation results are not sufficient to
identify the bifurcation scenario at the DVB boundaries.
Further investigations are needed to confirm our conclusions.
This will be considered in future work.

V. BISTABILITY BETWEEN DIFFERENT
PERIOD BRANCHES

In experiments, the I-V characteristics are always ob-
tained by voltage up-sweeping and down-sweeping. Bista-
bility between different stable I-V branches have been
widely investigated in simulations and experiments.1,2,19,20,40

Figure 7(a) depicts the time-averaged I-V curves in both
sweep-up (squares) and sweep-down (triangles) directions
in the DVB region B shown in Fig. 2. The two insets in
Fig. 7(a) show the enlargements of the hysteresis regions at
the left and right boundaries, respectively. Similar bistability
behavior in experiments has been reported in Ref. 40, where
the bistability was observed by sweeping up and down the
voltage. In Ref. 40, near the right boundary of the DVB region,
it is found that the bistable region disappears via a subcritical
Hopf bifurcation and saddle-node bifurcation in the voltage
sweep-up and sweep-down directions, respectively. However,
our simulation results show that the bifurcation scenarios at
both the left and right DVB boundaries are not affected by the
sweeping directions. This minor difference might be due to the
different tunneling models adopted in our work and Ref. 40.

Figure 7(b) shows the voltage dependence of the current
oscillation period in DVB region B. A part of the period
branches are enlarged in the inset. It is found that bistability
behavior can also be observed between different period
branches, corresponding to the hysteresis between different
current oscillation scenarios.

FIG. 7. (Color online) (a) Time-averaged I-V curves in both
sweep-up (squares) and sweep-down (triangles) directions in the DVB
region B at σ = 0.26. Open symbols denote the DVB region and
solid symbols represent stationary I-V characteristics. (b) Voltage
dependence of the current oscillation period corresponding to the
DVB region B. The insets in (a) and (b) show enlargement of
the hysteresis region. For the sake of clarity, the curves for down-
sweeping in (a) and (b) are shifted up by 0.03 and 100, respectively.

Note that there exists a current peak on both up-sweeping
and down-sweeping current curves, denoted by a vertical
blue arrow in Fig. 7(a). This current peak corresponds to the
transition from branch 1 to branch 2 [see the blue arrow in
Fig. 7(b)]. Actually, if the I-V curve is further enlarged, more
current peaks in the I-V curve will emerge both in Figs. 2 and 7,
corresponding to the transition points between adjacent period
branches.

VI. CONCLUSIONS AND DISCUSSION

In summary, the voltage dependence of the self-oscillation
period in weakly coupled SLs is investigated in the DVB
region. It is revealed that the period-voltage curve consists
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of two types of period branches depending on different
dipole-generation processes at the emitter side. For the type-I
branch, the time needed to generate a well developed dipole,
which will trigger a dipole-tripole process, plays a dominant
role for the self-oscillation period. Depending on how many
dipoles can be generated at the emitter side, the period curve
is divided into a series of branches. For the type-II branch, no
dipole-tripole process is observed. Weak dipoles are created
at the emitter side periodically and all die out after they travel
forward for a couple of SL wells. Consequently, the oscillation
period in this branch is very low. By voltage up-sweeping and

down-sweeping, we observe the bistability between different
branches of current oscillation period.
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