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Theory of microwave-induced zero-resistance states in two-dimensional electron systems
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The phenomena of microwave-induced zero-resistance states (MIZRS) and microwave-induced resistance
oscillations (MIRO) were discovered in ultraclean two-dimensional electron systems in 2001–2003 and have
attracted great interest from researchers. In spite of numerous theoretical efforts, the true origin of these effects
remains unknown so far. We show that the MIRO-ZRS phenomena are naturally explained by the influence of the
ponderomotive forces which arise in the near-contact regions of two-dimensional electron gas under the action
of microwaves. The proposed analytical theory is in agreement with all experimental facts accumulated so far
and provides a simple and self-evident explanation of the microwave frequency, polarization, magnetic field,
mobility, power, and temperature dependencies of the observed effects.

DOI: 10.1103/PhysRevB.83.155303 PACS number(s): 73.43.Qt, 73.50.Mx, 52.35.Mw, 73.40.Cg

I. INTRODUCTION

The discovery of microwave-induced zero-resistance states
(MIZRS)1,2 in two-dimensional electron gas (2DEG) systems
has aroused great interest from the physical community.3

The MIZRS effect is observed in standard Hall-bar GaAs-
AlGaAs quantum-well structures placed in the perpendicular
magnetic field B. In the absence of microwaves one sees
the conventional picture of the quantum Hall effect and the
Shubnikov–de Haas oscillations in quantizing magnetic fields
and the corresponding classical behavior (Rxy ∝ B, Rxx ≈
const) at low B; here Rxy and Rxx are the Hall and the diagonal
resistances, respectively. The irradiation of the samples by
microwaves (with the frequency f � 50–100 GHz) leads to
giant oscillations of the diagonal magnetoresistance Rxx at low
(classical) magnetic fields B � 0.5 T. The effect is governed
by the ratio ω/ωc of the microwave ω = 2πf to the cyclotron
frequency ωc = eB/m�c (m� is the electron effective mass
in GaAs). In the magnetic field intervals corresponding to
the conditions k − 1/2 � ω/ωc < k, k = 1,2, . . ., dramatic
growth of the magnetoresistance is observed (by a factor of
6–10), while at k < ω/ωc � k + 1/2 it is strongly suppressed
down to zero-resistance states Rxx ≈ 0 [Fig. 1(b)]. Exactly
at ω = kωc there is no change of the resistance, δRxx ≈
0. The largest amplitudes of the Rxx oscillations are seen
near the fundamental cyclotron harmonics k = 1; however,
the oscillation amplitudes fall down rather slowly with k

and the oscillations remain quite visible up to k � 10. No
apparent microwave-induced changes are observed in the
Hall resistance Rxy . In the Corbino geometry very large
conductance oscillations and zero conductance states have
been also seen.4

In the pioneering1,2 and the subsequent experimental
papers4–29 the MIZRS effect has been observed in GaAs-
AlGaAs quantum wells with an extremely high electron
mobility μ � 2 × 107 cm2/V s. A very similar effect but
with smaller oscillation amplitudes—microwave-induced re-
sistance oscillations (MIRO)—was found30,31 two years earlier
in the lower-quality samples with the mobility μ � 3 ×
106 cm2/V s. In samples with μ � 106 cm2/V s the MIROs
have not been observed (for the only exception, see Ref. 32).
In such samples, instead, the photoresistance measurements
demonstrate a completely different photoresponse33: a weak

Lorenzian peak corresponding to the excitation of the 2D mag-
netoplasmon [Fig. 1(a)]. In the first MIRO experiments30,31

(μ � 3 × 106 cm2/V s) the magnetoplasmon resonance has
been seen together with the ωc-related resistance oscillations.

The discovery of the MIZRS has caused an avalanche
of theoretical publications.5,34–67 Several different scenar-
ios for the explanation of the effect have been put
forward. Among the proposed ideas are the so-called
“displacement” model,34–36,39–41,44 originally proposed in
Refs. 68 and 69 for a different physical situation,
the microwave-induced dynamical symmetry breaking,37

the “inelastic” model,5,47,51,58,59 nonparabolicity effects,45

the photon-assisted quantum tunneling,36 phase transitions
caused by electron pairing due to the exciton exchange,1 and a
quantum model that involves the prime number theorem.38 The
“displacement” model suggests, for example, that microwaves
assist the impurity and phonon scattering which leads to the
spatially indirect transitions between the Landau levels N

and N ′ = N + k, k = 1,2,3, . . .. The “inelastic” mechanism
supposes that the Landau levels are substantially broadened
due to disorder and that the microwave absorption modifies
the distribution of electrons over the broadened Landau
levels.

The vast majority of the proposed theories5,34–65 has been
looking for the MIZRS origin in the bulk of the 2DEG. They
have considered an infinite 2DEG system and have examined
the influence of microwaves on the bulk resistivity ρxx of
the 2D gas. We have already emphasized in Refs. 66 and 70
that ignoring the fact that the real experimental samples have
finite dimensions one cannot get an adequate description of
the real experiments. Indeed, consider an infinite 2DEG under
the action of the external microwave field E0

xe
−iωt . In the

infinite sample the only relevant parameter which may be
compared to ω is the cyclotron frequency ωc. Therefore, the
system response is determined by the ratio ω/ωc; for example,
the induced electric current

jx(ω) = σxx(ω)E0
x ∝ E0

x

ω2 − ω2
c

(1)

has a resonance at the cyclotron frequency. Due to the same
reason different bulk scenarios give the microwave-induced re-
sistivity changes determined by functions like −sin(2πω/ωc)
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FIG. 1. This picture schematically shows the main features and
the main differences of the microwave-induced photoresistance
response in (a) the moderate-mobility samples33 and (b) the very-
high-mobility samples.1,2,4–22 In the moderate-mobility samples the
resonance at ωc = ωres

c is shifted from the cyclotron ωc = ω to
the magnetoplasmon frequency ωres

c = (ω2 − ω2
p)1/2 and the pho-

toresistance is an even function of ωc − ωres
c . In the very-high-

mobility samples one observes multiple cyclotron resonances at
ωc = ωres

c,k = ω/k and the photoresponse is an odd function of
ωc − ωres

c,k . Here k is integer and ωp is the plasma frequency (2). The
dashed lines schematically show the dark magnetoresistance (without
microwaves).

(e.g., in Refs. 34 and 41) or∑
k

Jk

(
const

E0
x

ω2
c − ω2

)

(e.g., in Refs. 50, 53, 55, 60, and 61; here Jk are the Bessel
functions).

In the finite-size 2DEG samples (e.g., in the Hall bars of
width W in the x direction) a new frequency parameter appears,
the plasma frequency,

ωp ≈
(

2π2nse
2

m�κW

)1/2

, (2)

where ns is the 2D electron density and κ is the dielectric
constant of the surrounding medium. In such samples the
internal microwave electric field Ex really acting on the
electrons differs from the external field E0

x due to the screening,

Ex = E0
x

ζ (ω)
, where ζ (ω) ≈ 1 − ω2

p

ω2 − ω2
c

, (3)

is the effective dielectric function of the 2DEG stripe (see, e.g.,
Ref. 70). The response current (1) then assumes the form

jx(ω) = σxx(ω)Ex = σxx(ω)

ζ (ω)
E0

x ∝ E0
x

ω2 − ω2
c − ω2

p

(4)

so that the cyclotron resonance is shifted to the magnetoplas-
mon frequency

ωmp = (
ω2

p + ω2
c

)1/2
(5)

(the so-called depolarization shift). Similarly, in all formulas
for ρxx suggested in the bulk-scenario papers the input

microwave field E0
x should be replaced by the screened

field (3), E0
x → E0

x/ζ (ω). This would then shift all the
ωc-related resistivity oscillations and would completely
destroy any seeming agreement with experiments. In Ref. 70
it has been shown that the depolarization shift is not negligible
under the real experimental conditions (see Table I in Ref. 70):
In some experiments the frequency ωp has been even larger
than ω.

The depolarization shift has been many times observed in
the absorption experiments (see, e.g., Refs. 71–73). Its absence
in the MIRO-ZRS experiments is actually one of the main
puzzles of the discussed phenomena. We have already men-
tioned that about ten years before the first MIZRS experiment
by Mani et al.1 a very similar microwave photoresistance
experiment was performed in the same experimental group
by Vasiliadou et al.33 The only difference between the old
(1993) and the new (2002) experiments was the mobility
of the samples (μ � 106 cm2/V s in 1993 and μ � 2 ×
107 cm2/V s in 2002); all other parameters, such as the electron
density, the sample dimensions, the microwave frequency,
and the temperature, were the same. However, the results of
these two experiments turned out to be amazingly different.
Vasiliadou et al. observed a weak magnetoplasmon resonance
(5) [Fig. 1(a)], which results from the screening of the external
field (3) and is well understood. It was natural to expect that in
the higher-mobility samples the magnetoplasmon resonance
will be only slightly modified; for example, its linewidth
will be reduced. In contrast, the giant ωc-related oscillations
have been discovered [Fig. 1(b)]. Evidently, the following
questions arise: Why does the well-known screening effect
not manifest itself in the MIZRS experiments? Why is the
standard magnetoplasmon picture easily observed in samples
with relatively low mobility, while the very-high-mobility
samples demonstrate a completely different response? Why
are the giant Rxx oscillations and zero-resistance states not
seen in low-mobility samples?

These questions cannot be answered within the bulk
models,5,34–65 since the depolarization shift is a consequence of
the finite width of the sample. Likewise, these questions have
not been addressed in the edge-scenario paper,67 where the
screening (3) has been also ignored. The attempts to explain the
MIRO-ZRS effects within the bulk, as well as edge scenarios,
cannot be therefore considered satisfactory.

The bulk theories of MIZRS-MIRO have been shown to
be in disagreement with experimental facts obtained in the
very important paper of Smet et al.14 Being strongly related to
the optical transitions between the Landau levels, the “bulk”
scenarios are intrinsically sensitive to the sense of the circular
polarization of the incident microwave radiation. If the “bulk”
approaches were valid, the MIZRS effect, like the absorption,
had to be seen at the active circular polarization of radiation
and completely disappear at the inactive polarization. In the ex-
periment of Smet et al.14 it has been found that the amplitudes
of the microwave-induced resistance oscillations at the right-
and left-circularly polarized waves are essentially the same,
while the absorption spectra showed a very large difference.

The puzzle of the MIZRS-MIRO phenomena has thus been
remaining unexplained so far.

Before proceeding to the presentation of our theory, let us
list a few further specific features of the discussed phenomena.
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First, the MIZRS-MIRO effects are observed under the
conditions

h̄/τ � T � h̄ωc � h̄ω � EF , N � 50 − 100, (6)

which suggest that they must have a classical origin; here τ

is the momentum relaxation time extracted from the mobility,
T is the temperature, EF is the Fermi energy, and N is the
number of occupied Landau levels. Second, the MIRO are seen
around ω � kωc with the harmonics number k up to k � 10. It
is known that the inter-Landau-level transitions N → N ′ are
usually strictly forbidden, except for the case N ↔ N ± 1.
This selection rule could be violated only if the ac electric
field acting on the electrons was strongly inhomogeneous on
the scale of the cyclotron radius Rc. The value of Rc under
the actual experimental conditions varies from one to a few
microns, which is about two orders of magnitude smaller than
both the wavelength of radiation (�1 mm) and the sample
dimensions (�0.5 mm). This completely excludes the chance
to bypass the selection rule N ′ − N = ±1. The idea that this
rule could be broken by impurities and disorder can hardly
save the situation in the ultraclean samples, where disorder (if
essential at all) should be smooth.

In addition, it is known that in the strongly inhomo-
geneous external fields one should expect the Bernstein
modes74 at the frequencies corresponding to the intersec-
tion of the magnetoplasmon (5) with the cyclotron har-
monics ω = kωc. Usually, the Bernstein modes are very
weak and seen, if at all, at k � 2,3. In the MIRO-
MIZRS and other similar absorption/magnetotransport ex-
periments no indications on the Bernstein modes have been
observed.

Among the further puzzles of the MIRO-ZRS phenomena
one should mention the observation, under certain con-
ditions, of the apparent negative resistance in the finite
intervals of B (Ref. 7) and the suppression of the MIRO
oscillations by the parallel magnetic field B‖ (Ref. 17).
The latter effect is observed in the quite moderate fields
B‖ ∼ 1 T, when the spin effects are still not to be
expected.

Summarizing the state of the art in the MIRO-ZRS research,
one has to admit the presence of a very large number of
clear experimental data, which appear to be, however, in
contradiction with common sense and the absence of a theory
which could reasonably explain them. On the other hand,
the absolute clarity and the large amplitude of the observed
oscillations suggest that the true explanation should actually
be very simple and self-evident. Such explanation is given in
the present paper.

II. EXPLANATION OF THE MIRO-ZRS EXPERIMENTS

A. Three types of 2D electrons in real samples

There exist three types of electrons in a Hall-bar sample
(Fig. 2): in the bulk (“b”), near the edge (“e”), and in the
near-contact regions (“c”). In the absorption experiments the
main contribution to the measured signal is given by the bulk
electrons b. They move in the screened electric field (3) and ab-
sorb the microwave energy at the magnetoplasmon frequency
(5). Since the field in the bulk is weakly inhomogeneous

1 2

3 4

5 6

c

b

c

e

FIG. 2. A schematic view of the Hall-bar sample. The circles and
semicircles show electrons rotating around the cyclotron orbits in the
bulk (b) and in the near-contact (c) regions, as well as the skipping
electron orbits near the edge (e) of the sample.

on the cyclotron radius scale, the absorption spectra do not
demonstrate any nonlocal resonances (Bernstein modes).

In the transport experiments made on the samples
with a moderate electron mobility μ � 106 cm2/V s the
magnetoresistance response also shows the resonance at the
magnetoplasmon frequency (5) [Fig. 1(a)]. This evidently
points to the bulk mechanism of the photoresponse in this
case: Electrons resonantly absorb radiation at ω = ωmp,
the temperature of the electron gas increases, and the bulk
resistivity of the 2DEG changes.

The dramatic change of the photoresponse in the ultraclean
samples suggests that, in addition to the conventional bulk
photoresistance mechanism, a new mechanism comes into play
in such samples. This is supported by the fact that in the MIRO
regime one can sometimes observe both the magnetoplasmon
resonance and the ωc-related oscillations. Therefore, we do not
attempt to find the reason of the new effect in the scattering
mechanisms of the b electrons, but search for another, bulk-
unrelated contribution to the measured magnetoresistance of
the sample.

The origin of the second contribution to the photoresistance
signal may lie near the edge or in the near-contact regions of the
sample. The edge mechanisms of MIZRS and MIRO have been
discussed in Refs. 66 and 67. They cannot, however, explain
all experimentally observed features since the edge electrons
e [Fig. 2], are practically under the same conditions as the
b electrons (for example, the field near the edge is weakly
inhomogeneous on the cyclotron-radius scale; therefore, it
would hardly be possible to explain the higher cyclotron
harmonics in the MIZRS effect). Consider the near-contact
electrons c. They also feel not the external but the screened
microwave electric field. In the very vicinity of the contacts,
however, the field is screened not by the electrons of the 2DEG
but by those of the metallic contact. Since the electron density
in the metal is many orders of magnitude larger than in the
2DEG, the screening by the contacts in the near-contact regions
is much more efficient.
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FIG. 3. The electric field inside the gap between the contact
wings, in the absence of the 2D electrons, at ηc ≡ 2πσc/c

√
κ = 100

and W/λ = 0.1 (in a typical experiment the wavelength of radiation
λ � 3 mm and W � 0.3 mm). 256 Fourier harmonics have been used.
(a),(b) Electric field is perpendicular to the boundary 2DEG-contact;
(c) electric field is parallel to the boundary 2DEG-contact. Inset in (a)
shows the geometry of the 2D stripe between the two contact wings.

B. Near-contact electric field

The influence of the contacts on the microwave response
of a 2DEG stripe has been studied in Ref. 75. In that paper
the distribution of the electric field in the system “contact-
2DEG-contact” [see the inset to Fig. 3(a)] is found from the
solution of the Maxwell equations by expanding the fields
in Fourier series over the functions ∼cos(2πxn/W ). The
contacts are described as infinitely thin 2D layers with a
large (real) surface conductivity σc. Figure 3 shows the thus
calculated electric fields Ex(x,z = 0) and Ey(x,z = 0) in the
gap |x| � W/2 between the contacts in the absence of the
2D electrons (i.e., only the screening by the metallic contacts
is taken into account). A very large number Nf of Fourier
harmonics (Nf = 256 in Fig. 3) is required to get a reasonable
convergency of the results for the field Ex . Still remaining
small oscillations in Figs. 3(a) and 3(b) disappear when Nf is
further increased. The calculations of the field Ey parallel to
the boundary 2DEG-contact converge much faster with Nf .
For further details of calculations, see Ref. 75.

Three important features are seen in Fig. 3.
First, the amplitude of the electric field Ex(x) polarized

perpendicularly to the boundary 2DEG-contact is much larger
than that of the incident wave E0. The field of the incident
electromagnetic wave is strengthened by the metallic contact
in the near-contact region. This is a well-known effect resulting
from the induced charge accumulation near sharp edges of
metallic objects (Ref. 76, §3). If the metallic layer is infinitely
thin and the conductivity of the metal is infinitely large (an
ideal metal), the field Ex(x) diverges as 1/

√
(W/2)2 − x2 near

the edges (Ref. 76, §3). In the real system with a finite σc and
a finite thickness of the metallic contact in the z direction the
divergency is cut off but the near-contact field Ec ≡ Ex(x =
±W/2) will still be much larger than the field of the incident
wave, Ec  E0.

Second, the near-contact electric field Ex(x) is strongly in-
homogeneous on the cyclotron radius scale. In the experiments
Rc varies between 1 and 10 μm, while the only length l relevant
to the cutoff of the field divergency is of order of 0.1 μm (the
thickness of the AlGaAs layer on top of the 2DEG). This
explains the fact that the very large number of the cyclotron
harmonics is seen in the MIRO-ZRS experiments. Notice that
the field Ex(x) in the bulk as well the field Ey(x) in the whole
sample are quasiuniform on the scale of Rc.

Third, the near-contact electric field is strongly linearly
polarized near the contact. The field Ey , parallel to the
boundary contact-2DEG, is smaller than the incident field
amplitude E0. It is screened by the self-inductance effect
caused by the tangential current jy induced in the contact
by the incident radiation. In contrast, the Ex component of
the field is much larger than E0 in the near-contact region.
That is, independent of the sense of the circular polarization of
the incident wave the near-contact electrons feel the linearly
polarized ac electric field. This explains the insensitivity of
the MIZRS effect to the sense of the circular polarization of
microwaves observed by Smet et al.14

C. Ponderomotive forces – a collisionless mechanism
of the MIZRS

Thus, near the contacts the 2D electrons move in the strong,
strongly inhomogeneous, and linearly polarized ac electric
field. What physical effect can then lead to the observed
photoresistance features? Remember that the MIZRS effect is
seen in the very-high-mobility, ultraclean samples. Therefore,
we assume that the electron scattering is not important
in the discussed phenomena at all and that a collisionless
effect should be responsible for the MIRO-ZRS phenomenon.
This idea is supported by comparing Figs. 1(a) and 1(b).
The magnetoplasmon absorption resonance in Fig. 1(a) is
described by an even function with respect to the resonance
frequency ω = ωmp; that is, it is determined by the real part
of the effective dynamic conductivity of the system σ ′

xx(ω). In
contrast, the MIRO-ZRS resonances are evidently described by
odd functions of ω − kωc [Fig. 1(b)], which strongly suggests
that the considered phenomena are related to the imaginary
part of the conductivity σ ′′

xx(ω).
What could this σ ′′

xx-related effect be? It is known that in
the inhomogeneous oscillating electromagnetic field electrons
experience a nonlinear, time-independent ponderomotive force
(see, e.g., Refs. 77–81) proportional to the gradient of the
squared electric field. Usually the ponderomotive forces are
observed in the very intense laser fields. To the best of our
knowledge, they have never been seen in the 2DEG systems.
In the absence of scattering and the external magnetic field the
ponderomotive force acting on a charged particle is Fpm(r) =
−∇Upm(r), where

Upm(r) = e2

4m�ω2
〈E2(r,t)〉t ≡ σ ′′(ω)

4nsω
〈E2(r,t)〉t (7)

is the ponderomotive potential and 〈· · ·〉t means the averag-
ing over time. The potential Upm(r) is proportional to the
imaginary part of the dynamic Drude conductivity σ ′′(ω) per
particle. In zero magnetic field the ponderomotive force always
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FIG. 4. The geometry of (a) the Corbino disk and (b) the Hall-bar
sample under intense microwave irradiation. The gray areas near
the contacts show the microwave-induced depletion/accumulation
regions.

directed from the areas of the large field to the areas of the
weaker field (independent of the charge of the particles).

In the presence of the magnetic field B = (0,0,B), the
linearly polarized electric field E(r,t) = exEx(x) cos ωt , as
well as a weak scattering (γ � ω,ωc) the formula (7) is
generalized as follows:

Upm(x) = σ ′′
xx(ω)

4nsω
〈E2(r,t)〉t

= e2E2
x(x)

8m�ωc

(
ω − ωc

(ω − ωc)2 + γ 2
− ω + ωc

(ω + ωc)2 + γ 2

)
,

(8)

where

σxx(ω) = inse
2

m�

ω + iγ

(ω + iγ )2 − ω2
c

(9)

is the diagonal dynamic Drude conductivity of the 2DEG
[Eq. (8) is derived below in Sec. III; see also Ref. 79].
Two points are very important here. First, the absolute value
of the ponderomotive force Fpm ∝ ∂[E2

x(x)]/∂x dramatically
grows near the contacts [Figs. 3(a) and 3(b)]. Second, in finite
magnetic fields the force Fpm may change its direction. If
ω > ωc, electrons are pushed away from the high-field areas
(from the contacts), while at ω < ωc they are attracted to
such areas. The density of electrons in the near-contact region
will then be reduced or increased dependent on the sign of
ω − ωc. In other words, the microwaves form a depletion or an
accumulation layer near the contacts (at ω > ωc and ω < ωc,
respectively) (Fig. 4).

D. Influence of the ponderomotive forces on the measured
transport coefficients

The microwave induced near-contact depletion/
accumulation regions influence the experimentally measured
magnetotransport coefficients. Consider the most interesting
case when the ponderomotive forces form a depletion layer
and microwaves suppress the resistance/conductance of the
sample. In the Corbino geometry [Fig. 4(a)], all the applied
voltage then drops on the depletion regions and one observes
the vanishing conductance of the Corbino disks. The effect is

mainly determined by the ratio N = nc
s/n0

s of the near-contact
electron density nc

s to the bulk density n0
s .

In the Hall-bar geometry [Fig. 4(b)], similarly, the forma-
tion of the depletion layers near current contacts 1 and 2
suppresses the measured voltage between the side contacts
Uxx = U34 � U56. To show this, consider first a uniform
Hall-bar sample not irradiated by microwaves [Fig. 5(a)]. It
is known82,83 that the flowing dc current produces a strongly
inhomogeneous distribution of the dc electrical potential
φ(x,y) in the Hall bar, with power-law singularities at the
diagonally opposite corners of the rectangular sample. For
example, near the corner (x,y) = (0,0)

φ(x,y) ∝ rη sin ηθ, (10)

where

η = 2σxx

πσxy

� 1, (11)

(r,θ ) are the polar coordinates of the point (x,y), and we
assume that σxy/σxx  1. Figure 5(b) qualitatively illustrates
the behavior of the potential at the “north” and “south” sides of
the Hall bar, φ(0,y) and φ(W,y). (We have used σxy/σxx = 5
in this figure. In the experiment this ratio is much higher, for
example, σxy/σxx � 250 in Ref. 1; therefore, all the features
discussed here are much stronger in the real experiments.) The
measured values of the Hall and diagonal voltages Uxy and
Uxx in the absence of microwaves are also shown there.

Now assume that the sample is irradiated and the depletion
regions at y < w and y > L − w are formed near the contacts
1 and 2 [gray areas in Fig. 5(c)]. Further, assume for simplicity
that the density of electrons in the depletion regions and
in the bulk of the sample are constant and equal nc

s and
n0

s , respectively. The tangential electric current jy near the
“north” and “south” sides of the rectangle must be continuous
at the boundaries of the depletion regions, that is, jy(0,w −
0) = jy(0,w + 0), jy(W,L − w − 0) = jy(W,L − w + 0). In
addition, the current jx should vanish in the corresponding
boundary points, jx(0,w) = jx(W,L − w) = 0. This leads to
a jump of the tangential electric field at the boundaries of the
depletion regions,(

∂φ

∂y

)
0

= ρ0
xx

ρc
xx

(
∂φ

∂y

)
c

= nc
s

n0
s

(
∂φ

∂y

)
c

= N
(

∂φ

∂y

)
c

. (12)

As seen from Fig. 5(d), the discontinuity of the field (12) leads
to a reduction of the measured voltage Uxx , proportional to the
density factor N . The measured diagonal photoresistance Rxx

can then be written as a product of two terms:

Rxx � Rb
xxN . (13)

The first factor Rb
xx is the photoresistance of the uniform

sample (the bulk contribution). It is due to the resonant ab-
sorption of microwaves in the bulk and has a Lorentzian shape
Rb

xx ∼ 1/[(ω − ωmp)2 + γ 2] with the absorption maximum at
the magnetoplasmon frequency (5) [Fig. 1(a)]. The second
factorN describes the change of the measured photoresistance
due to the near-contact microwave-induced inhomogeneity
(the contact contribution).

Below we show that the density factor N is almost
always very close to unity; it may substantially differ from
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FIG. 5. (a),(c) A rectangular sample with φ(x,0) = 0 (”west” contact) and φ(x,L) = φ0 (“east” contact) (a) in the absence of microwaves
and (c) irradiated by microwaves. The boundary conditions at the “north” and “south” sides of the rectangle are jx(0,y) = jx(W,y) = 0. W

is the sample width in the x direction and L is the sample length in the y direction; the arrows 5 and 6 show the position of the contacts; the
arrows d show the boundaries of the depletion layers. (b),(d) The distribution of the dc electric potential on the “north” and “south” sides of
the rectangle (b) in the absence of microwaves and (d) under the microwave irradiation. Uxy and Uxx schematically show the measured values
of the Hall and diagonal voltages.

N ≈ 1 only in the very-high-mobility samples, that is, under
the conditions of the MIZRS experiments. In contrast, the
magnetoplasmon resonance from the bulk contribution Rb

xx

is always present in the measured signal. As a result, in the
low-mobility samples one observes only the magnetoplasmon-
resonance response.33 In the MIRO experiments30 (relatively
weak resistance oscillations, moderate-mobility samples) one
sees both the magnetoplasmon resonance and the ωc-related
oscillations. Finally, in the extremely clean samples only
the giant ωc oscillations are observed since the weak ωmp

resonance is hidden under the huge oscillations of Rxx . This
explains one of the main puzzles of the MIZRS-MIRO effects.

Figure 5(d) also shows that the measured variations of
the Hall voltage Uxy are very small as compared to Uxx if
σxy/σxx  1. This again agrees with the MIZRS experiments.

E. The density parameter

Now consider the density parameter N = nc
s/n0

s quanti-
tatively. In the absence of microwaves the density n0

s in the
uniform sample is

n0
s = m�T

πh̄2 F

(
ζ0

T

)
, (14)

where

F (z) =
∫ ∞

0

dx

1 + exp(x − z)
≈

{
z, z > 0, |z|  1
ez, z < 0, |z|  1

(15)

is the Fermi integral in the 2D case and ζ0 = EF is the chemical
potential (the Fermi energy). In the Fermi gas ζ0  T and
n0

s = m�ζ0/πh̄2. In the presence of the microwave-induced
ponderomotive potential Upm(x) [Eq. (8)], the density of
electrons becomes a function of x:

ns(x) = m�T

πh̄2 F

(
ζ − Upm(x)

T

)
. (16)

The chemical potential ζ here may, in general, differ from
ζ0, but, since the 2DEG is always connected to the contact
reservoirs in the discussed experiments we assume that ζ =
ζ0 = πh̄2n0

s /m�. Now, rewrite the density (16) in the form

ns(x)

n0
s

= T

ζ0
F

{
ζ0

T

[
1 − Upm(x)

ζ0

]}
(17)

= T

ζ0
F

{
ζ0

T

[
1 − PF2(x)B1(�c,�)

]}
, (18)

where the factor

P = 1

8

(
eE0vF

ωEF

)2

= πe2P

m�cω2EF

(19)

is proportional to the power P = cE2
0/4π (per unit area) of

the incident radiation, vF is the Fermi velocity,

F(x) = Ex(x)

E0
(20)
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is the electric field really acting on the electrons, normalized
by the external field amplitude E0, and

Bk(�c,�) = ω2

2ωc

(
ω − kωc

(ω − kωc)2 + γ 2
− ω + kωc

(ω + kωc)2 + γ 2

)

(21)

is a factor dependent on the dimensionless magnetic field �c =
ωc/ω = eB/m�cω and the scattering rate � = γ /ω. [In the
simplified expressions (18) and (8) only the factor B1 is used.
More general formulas with allBk , k = 1,2,3, . . ., appear later;
see Eq. (25).]

Equation (18) allows one to understand (i) why the pondero-
motive effects have not been seen in the earlier experiments, (ii)
why the MIRO-ZRS phenomenon can be observed only in the
ultraclean samples, (iii) how the discussed effects depend on
the microwave power and temperature, and (iv) which factors
favor and impede the observation of the MIZRS effect.

1. Why ultraclean samples?

The ponderomotive forces noticeably change the 2D elec-
tron density in the near-contact regions only if the correction

Upm(x)

ζ0
= PF2(x)B1(�c,�) (22)

in the square brackets in (18) is not negligible as compared
to unity. The basic factor in (22) is the power parameter
P ∝ (eE0vF /ωEF )2 [Eq. (19)]. The factor (eE0vF /ωEF )
here is the ratio of the energy which electrons get from
the external field during one oscillation period (∼eE0vF /ω)
to their average energy (EF ). Usually this parameter is
extremely small: Taking, for instance, the typical MIRO-
ZRS experimental values—P � 1 mW/cm2, f = ω/2π �
100 GHz, m� ≈ 0.067m0, and n0

s � 3 × 1011 cm−2—we get
P � 1.3 × 10−6. Therefore, the nonlinear electromagnetic
phenomena can be seen only in the very intense fields and
therefore the ponderomotive forces have not been observed
in the 2DEG systems earlier. In the MIZRS experiments,
however, the small parameter P in (22) is multiplied by two
very large factors. First, the field parameter F2(x) describes
the giant growth of the electric field in the near-contact areas
[Figs. 3(a) and 3(b). Second, the B-dependent factor B1(�c,�)
becomes extremely large near the cyclotron resonance ω � ωc

in the very-high-mobility samples (Fig. 6).

2. Power and temperature dependencies of MIZRS

How do the MIRO and MIZRS depend on the microwave
power and temperature? As seen from Eqs. (18) and (15), there
exist two different regimes. If the microwave power is not very
strong, |Upm|/ζ0 � 1, the density factor varies linearly with the
power,

N � 1 − PF2
c B1(�c,�),

Fc = Ec/E0  1. This is the regime of MIRO.30,31 The
temperature dependence of the measured signal in this regime
is weak. If the microwave power is so strong that the parameter
(22) exceeds unity, Upm/ζ0 � 1, the density of electrons in the
depletion regions becomes exponentially small (the Fermi gas
becomes the Boltzmann one) and one gets into the regime of

0.5 0.75 1 1.25 1.5
ωc/ω

-30

-20

-10

0

10

20

30

1
(Ω

c,Γ
)

γ/ω=0.10
γ/ω=0.05
γ/ω=0.02
γ/ω=0.01

FIG. 6. (Color online) The B-dependent factor B1(�c,�)
[Eq. (21)]. At the mobility μ = 2 × 107 cm2/V s and the frequency
100 GHz the value of γ /ω is γ /ω � 2 × 10−3 (even smaller than
shown in this figure); therefore, the resonance will be even sharper.

MIZRS. The P and T dependencies in the MIZRS regime are
described by the Arrhenius-type law

N ∝ exp

(
−πe2PF2

c

m�cω2T
B1(�c,�)

)
.

Such behavior of the signal as a function of power and
temperature agrees with the experiments (see, e.g., Refs. 1, 2, 7,
and 9).

3. Factors pro and contra the MIZRS observation

Which factors favor and which impede the observation of
the zero-resistance states? The transition from the MIRO to the
MIZRS regime is the case when the parameter (22) becomes
bigger than unity. Taking the maxima of F(x) � Fc = Ec/E0

(at the contacts) and of B1(�c,�) (at ω − ωc = γ ) we get the
MIZRS observability condition in the form

e2

h̄c

P

h̄ωn0
s γ

E2
c

E2
0

= em�

h̄2c
×

(
Pμ

ωn0
s

F2
c

)
� 1. (23)

The higher the radiation power P and the electron mobility μ,
the easier is it to observe MIZRS. These dependencies have
been clear from the very first MIZRS experiments. On the other
hand, the high electron density n0

s and radiation frequency ω

impede the observation of MIZRS. The influence of n0
s on

the MIZRS effect has not been systematically studied, but the
suppression of MIZRS at high frequencies has been recently
reported by Studenikin et al.20 The ω dependence thus also
agrees with the experimental facts.

One more important factor influencing the MIZRS observ-
ability is the shape and the quality of the contacts. The ratio
Fc of the near-contact electric field to the external one will
be larger if the contact is closer to the ideal conditions (the
infinite conductivity σc and the vanishing thickness in the
z direction). There has been no systematic study of the role
of the contacts in the microwave experiments on the 2DEG,
but if the contacts, due to some reasons, turned out to be
“more ideal” in the discussed sense, the observation of MIZRS
could become possible even in samples with a moderate
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mobility. This may explain the experiment32 in which the giant
magnetoresistance oscillations and zero-resistance states have
been observed at μ � 106 cm2/V s.

4. “Negative resistance” and the influence
of parallel magnetic field

The “negative resistance” observations of Ref. 7 and the
influence of the parallel magnetic fields17 on the MIZRS can
be also explained by the influence of contacts. In the first case
one should take into account that the depletion regions are
formed not only near the current contacts 1 and 2 but also
near the side contacts 3, 4, 5, and 6 [Fig. 4(b)]. Since the local
properties of the contacts can be different, the dc field near the
contacts is distorted and one can measure, in principle, slightly
negative values of Uxx .

The second effect17—the suppression of MIZRS by the
parallel magnetic fields B‖ ∼ 1 T—seems to be completely
unbelievable if to think about the influence of B‖ on the proper-
ties of the 2DEG. This becomes, however, quite reasonable, if
to assume that B‖ modifies the contact properties. In our model
the contacts are infinitely thin and have B- and ω-independent
conductivity σc. In reality, the contacts are three-dimensional
and their conductivity tensor may be quite sensitive to the
parallel magnetic fields of order of 1 T (at B � 1 T, m� � m0,
and f � 30 GHz the microwave and the cyclotron frequencies
are equal). The suppression of MIZRS by the parallel magnetic
fields can then be explained by the influence of B‖ on the
contact factor Fc.

F. Quasilocal and nonlocal treatment of ponderomotive forces

So far we have discussed the microwave-induced phenom-
ena in the 2DEG using the simplified formula (8) for the
ponderomotive potential. This approach is valid under the
condition

Rc

Ex(x)

dEx(x)

dx
� 1, (24)

when the inhomogeneity of the electric field is taken into
account in the lowest order (the quasilocal approximation).
Equation (8) explains the resonance behavior of the density
factor N near the fundamental cyclotron harmonics ω � ωc

but does not describe the resonances around ω � kωc. In
order to explain the microwave-induced oscillations at higher
cyclotron harmonics, one needs a more general, nonlocal
theory of the ponderomotive forces.

Such a theory is developed in Sec. III. It is shown there that
the general expression for the ponderomotive potential has the
form

Upm(x) = e2

4m�ω2

∞∑
k=1

[
ε2
k−1(x) − ε2

k+1(x)
]
Bk(�c,�), (25)

where the factors Bk(�c,�) are defined in (21) and

εk(x) = 1

π

∫ π

0
Ex(x + Rc cos ξ ) cos kξdξ. (26)

Equation (25) contains all the cyclotron harmonics, with the
amplitude of the kth term determined by the x dependence
of the electric field Ex(x) [Eq. (26)]. In the special case of
Rc → 0 [the field slowly varies at the cyclotron radius scale,

Eq. (24)] Eq. (26) gives εk(x) ≈ Ex(x)δk0. Then only the first
term with k = 1 remains in the sum of Eq. (25) and we obtain
Eq. (8). In the general, essentially nonlocal, case the potential
(25) should be substituted into Eq. (17). Then one gets the
density factor N with oscillations at all cyclotron harmonics
(xc � Rc),

N � T

ζ0
F

(
ζ0

T

{
1 − e2

4m�ω2ζ0

∞∑
k=1

[
ε2
k−1(xc) − ε2

k+1(xc)
]

×Bk(�c,�)

})
. (27)

Equation (27) gives a general formula for the near-contact
contribution to the measured microwave-induced photoresis-
tance of the 2DEG. It depends on the behavior of the electric
field near the contacts. To make our results more specific we
consider the following model for the electric field distribution:

Ex(x) = Ec

√
l

l + x
. (28)

This model describes the square-root divergency of the field
near the contact which is cut off at a length l, l � Rc (in a real
sample l can be estimated as a distance between the contact
and the 2D electron layer, i.e., l � 0.1 μm). Calculating the
coefficients εk(x) for the field (28) we get the density factor N
in the form (see details in Sec. III)

N = T

ζ0
F

{
ζ0

T

[
1 − PF2

c

∞∑
k=1

Tk

(
vF

ωl

1

�c

)
Bk(�c,�)

]}
,

(29)

where the functions Tk(z) are defined below in Sec. III B
[see Eq. (45)]. One sees that the factor N depends on five
parameters:

(i) the dimensionless magnetic field,

�c = ωc

ω
= eB

m�cω
;

(ii) the dimensionless scattering rate (the inverse mobility),

� = γ

ω
= e

m�μω
;

(iii) the power parameter (proportional to the squared
contact field electric Ec),

Pc = PF2
c = 1

8

(
eEcvF

ωEF

)2

;

(iv) the dimensionless temperature T/ζ0; and
(v) the nonlocality parameter vF /ωl.
Figures 7 and 8 exhibit the influence of the different

parameters of the problem on the density factor N and, hence,
on the observed photoresistance Rxx [Eq. (13)]. In Fig. 7(a)
one sees the B dependencies of the measured signal at low
mobilities, that is, in the regime of MIRO.30,31 One observes
how the almost constant value of the measured signal is trans-
formed into the oscillating behavior. The calculated curves
quite accurately reproduce those measured in the first MIRO
experiments.30,31 In Fig. 7(b) the mobilities are higher and one
gets into the zero-resistance regime. A large number of higher
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FIG. 7. (Color online) The density factor N [Eq. (29)] as a
function of the magnetic field at different mobilities of the 2D
electrons: (a) the microwave induced oscillations in the moderate-
mobility regime (notice the vertical axis scale); (b) the formation
of the zero-resistance states in the very high mobility regime. Other
parameters are Pc = PF2

c = 1, T/ζ0 = 0.02, vF /ωl = 8.

harmonics is observed. Figure 8(a) shows that the growth of
the microwave power increases the width of the zero-resistance
regions and the amplitude of higher harmonics. The influence
of the nonlocality parameter [Fig. 8(b)] is more complicated.
Its reduction leads to smaller oscillation amplitudes at higher k

but increases the width of the zero-resistance region at k = 1.
The overall agreement of the presented analytical theory with
the experimental data1,2,4–22 is evident.

The development of the theory of MIRO-ZRS is thereby
completed.

III. NONLOCAL THEORY OF THE PONDEROMOTIVE
FORCES

A. General approach

Consider the classical motion of a 2D electron in the
uniform magnetic field B = (0,0,B) and the nonuniform os-
cillating electric field E(r,t) = exEx(x) cos ωt . The equations
of motion have the form

ṙ = v, (30)
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FIG. 8. (Color online) The influence of (a) the power param-
eter Pc = PF2

c and (b) the nonlocality parameter vF /ωl on the
MIZRS. Other parameters used: T/ζ0 = 0.02, γ /ω = 0.02, as well as
(a) Pc = 1 and (b) vF /ωl = 8.

m�v̇ = −e

c
v × B − γm�v + Fx(x,t)ex, (31)

where Fx(x,t) = −eEx(x) cos ωt and the scattering of elec-
trons is taken into account by the friction term −γ v. The
scattering is assumed to be small, γ /ω � 1.

In the zeroth order in the electric field amplitude Ex

Eqs. (30) and (31) have the solution

v(0)(t) = v0

(
cos(ωct + φ)
sin(ωct + φ)

)
, (32)

r(0)(t) =
(

x0

y0

)
+ Rc

(
sin(ωct + φ)

− cos(ωct + φ)

)
, (33)

that is, the particle rotates around the point (x0,y0) with the
cyclotron frequency. Here x0, y0, v0, and φ are integration
constants and Rc = v0/ωc is the cyclotron radius. In the
final formulas for the 2DEG system one can estimate Rc

as Rc = vF /ωc, where vF is the Fermi velocity. Since the
electric field is strongly inhomogeneous on the Rc scale, the
particle experiences different forces at the different parts of its
trajectory and the net average force acting on it turns out to
be nonzero. This time-independent force, which appears in the
second order in the field amplitude Ex , is the ponderomotive
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force Fpm(x0) we are looking for. In order to find it we first
search for the solution of Eqs. (30) and (31) in the first order
in Ex . Substituting x(0)(t) from (33) into the force Fx we get

Fx = −eEx(x0 + Rc cos ξ ) cos ωt, (34)

where ξ = ωct + φ − π/2. The function Ex(x0 + Rc cos ξ ) is
a periodic function of ξ with the period 2π . Expanding it in
the Fourier series,

Ex(x0 + Rc cos ξ ) =
∞∑

k=−∞
εk(x0)eikξ , (35)

we present Fx as a sum of an infinite number of harmonics
with the frequencies ±ω + kωc. The first-order correction to
the coordinate x(t) then reads

x(1)(t) =
∞∑

k=−∞

Ake
i(ω+kωc)t

(ω + kωc − iγ )2 − ω2
c

+ (ω → −ω), (36)

where

Ak = e

2m�
eik(φ−π/2)εk(x0) (37)

and the coefficients εk(x) in the Fourier expansion (35) are
defined in Eq. (26).

In the next order in Ex we obtain

Fx ≈ −e cos ωt{Ex[x(0)(t)] + E′
x[x(0)(t)]x(1)(t)}, (38)

where E′
x(x) = ∂Ex(x)/∂x. The first term in Eq. (38) is

the first-order force (34) which contains only the oscillating
terms. The time-averaging of the second term should give the
ponderomotive force. To calculate it we differentiate Eq. (35)
with respect to x0 to get the Fourier expansion of the derivative
E′

x(x0 + Rc cos ξ ),

E′
x(x0 + Rc cos ξ ) =

∞∑
k=−∞

∂εk(x0)

∂x0
eikξ . (39)

Then we substitute (39) and (36) into (38), average the resulting
expression over time and after some algebraic transformations
finally get the ponderomotive force in the conventional form
Fpm(x0) = −∂Upm(x0)/∂x0 with the potential (25).

B. Ponderomotive potential for the model of Eq. (28)

If the near-contact microwave electric field is described by
the model expression (28), the coefficients εk [Eq. (26)] are
written as

εk(x) = EcSk

(
1 + x

l
,
Rc

l

)
. (40)

Here the function

Sk(a,b) = 1

π

∫ π

0

cos kxdx√
a + b cos x

(41)

can be expressed84 in terms of the associated Legendre
functions of the first kind P k

ν (x),

Sk(a,b) = (a2 − b2)−1/4

(1/2)k
P k

−1/2

(
a√

a2 − b2

)
, a > |b|.

(42)
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FIG. 9. (Color online) The functions Tk(z) defined in Eq. (45).

Substituting (40) into the general formula (25), we get the
ponderomotive potential in the form

Upm(x) = e2E2
c

4m�ω2

∞∑
k=1

Rk

(
1 + x

l
,
Rc

l

)
Bk(�c,�), (43)

where Rk(a,b) = S2
k−1(a,b) − S2

k+1(a,b). Evaluating the po-
tential Upm(x) near the edge of the 2DEG we substitute x ≈ Rc

in Eq. (43) and get for Uc
pm ≡ Upm(x ∼ Rc)

Uc
pm � e2E2

c

4m�ω2

∞∑
k=1

Tk

(
Rc

l

)
Bk(�c,�), (44)

where

Tk(z) = S2
k−1 (1 + z,z) − S2

k+1 (1 + z,z) . (45)

The functions Tk(z) are plotted in Fig. 9.
Equation (44), together with (17), gives the expression (29)

for the density factor N .

IV. DISCUSSION AND CONCLUSIONS

Microwave-induced giant oscillations of magnetoresistance
are thus caused by the nonlinear ponderomotive forces which
arise in the near contact areas. The ponderomotive phenom-
ena are well known in plasma physics (they are used, for
example, for ion trapping, plasma acceleration, etc.) but in
the 2DEG systems they have been observed, to the best of
our knowledge, for the first time in the discussed MIRO-ZRS
experiments.1,2,30,31 This has become possible because of the
very low scattering of 2D electrons in the GaAs/AlGaAs
samples used in those works.

The very sharp dependence of the measured photoresistance
on ω/ωc and the observability of the MIZRS at low magnetic
fields might be used for the frequency sensitive detection of
microwave and terahertz radiation. However, the necessity
to work with the ultraclean samples in the MIRO-ZRS
experiments hampers the use of these effects in practical
applications. On the other hand, we have seen that the value
of the ponderomotive forces in the considered systems also
depends on the contact properties. In particular, the hard
restriction on the mobility of the 2D electrons could be

155303-10



THEORY OF MICROWAVE-INDUCED ZERO-RESISTANCE . . . PHYSICAL REVIEW B 83, 155303 (2011)

substantially softened in structures with the very thin (in the
z direction) contacts, in particular, in graphene systems.85

The graphene thickness (�1 Å) is about three orders of
magnitude smaller than the inhomogeneity scale l that we have
assumed above (l � 0.1 μm); therefore, the observation of the
nonlinear plasma effects, in particular, the microwave-induced
ponderomotive forces, should be quite possible in the graphene
systems. Further studies of such effects may lead to new
interesting applications.

So far we have discussed the MIZRS-MIRO effects only in
semiconductor GaAs/AlGaAs systems. Recently, very similar
phenomena have been also discovered in the 2DEG systems on
the surface of liquid helium,25,26 in which the electron mobility
is also very high. These observations can be also explained
by the ponderomotive forces but the interpretation of the
effect needs some modifications since the experimental setups
and parameters are quite different in the electrons-on-helium
systems. In such systems the sample dimensions are large (of
the centimeter scale) and the contacts are placed above the
2DEG plane (in fact, the photoresistance in the 2DEG-on-
helium systems is measured by a contactless technique; see a
typical experimental setup in Fig. 1 in Ref. 86). Under such
conditions the field-amplification effect near the contacts is
not the case and the contact-field enhancement factor Fc is
irrelevant. On the other hand, the 2D electrons are placed
inside a cavity, in which the powerful microwave radiation
produces a standing wave across the whole area of the system
(like in the laser-field induced cold-ion traps in free space).

Under the action of the resulting periodic ponderomotive
potential the electron density becomes inhomogeneous, which
may lead to the observed microwave induced effects.

Since in the 2DEG-on-helium systems the factor Fc is not
big, one could think that the observation of MIZRS effect
would require a much higher microwave power as compared
to the semiconductor systems; see the MIZRS observability
conditions in Eq. (23). This is not true, however, since
the electron density in the electrons-on-helium systems is
about four orders of magnitude lower than in semiconductors
(�107 cm−2 vs 3 × 1011 cm−2 in GaAs). The formation of
the microwave-induced electron traps should therefore be
easily observable in the 2DEG systems on the surface of
liquid helium. This might be an interesting extension of the
experiments.25,26
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