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First-principles calculations of anisotropic charge-carrier mobilities in
organic semiconductor crystals
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The orientational dependence of charge-carrier mobilities in organic semiconductor crystals and the correlation
with the crystal structure are investigated by means of quantum chemical first-principles calculations combined
with a model using hopping rates from Marcus theory. A master equation approach is presented which is
numerically more efficient than the Monte Carlo method frequently applied in this context. Furthermore, it is
shown that the widely used approach to calculate the mobility via the diffusion constant along with rate equations
is not appropriate in many important cases. The calculations are compared with experimental data, showing good
qualitative agreement for pentacene and rubrene. In addition, charge-transport properties of core-fluorinated
perylene bisimides are investigated.
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I. INTRODUCTION

Due to their low production costs and easy processibility
organic semiconductor devices are promising materials for
organic light emitting diodes (OLEDs),1–3 organic field ef-
fect transistors (OFETs),4–6 radiofrequency identification tags
(RFIDs),7,8 and solar cells,9–13 to mention just a few. The
performance of these devices depends crucially on the charge
transport. Therefore, it is important to understand the basic
principles of charge transport in these materials.

Various models have been proposed which are often
contradictory. The band theory, which is well established
for inorganic covalently bonded materials, is not particularly
appropriate for organic conductors, because organic molecular
crystals are only weakly bound by van der Waals interactions
causing the molecules to be much more flexible. Due to
the complex nodal structure of the molecular orbitals the
transfer integrals between the monomers are very sensitive
to even small nuclear displacements. That is why lattice
vibrations play a more important role in organic than in
inorganic materials, as they destroy the long-range order and
lead to a charge-carrier localization.14 To account for these
vibrations, a variety of models have been proposed which
incorporate the local (Holstein)15 and the nonlocal (Peierls)16

coupling. The latter leads to a polaron model where the charge
carrier is partially localized and dressed by phonons.17–20 The
fluctuations of the coupling between the molecules are of the
same order of magnitude as the average coupling,21 leading to
a rather strong localization. Other models have been suggested,
where the charges are assumed to be localized and the inter-
and intramolecular vibrations are treated classically.22–24

At higher temperatures, it is often appropriate to assume
that the charge is localized due to the thermal disorder of
the molecules and that charge transport occurs via thermally
activated hopping.25 In some cases room temperature should
be sufficient for this assumption to be justified. We apply this
hopping model to study the dependence of the charge-carrier
mobility on the molecular structure and morphology as well
as its angular dependency. The latter point is important since
most organic crystals show a pronounced anisotropy for the
transport parameters which has to be taken into account for

device design. Furthermore, it is known that the mobility is
very sensitive to the arrangement of the monomers and that
already small changes in their alignment can alter the transport
parameters dramatically.26

A promising class of materials for organic electronics
are perylene bisimides. Due to their light resistance27 and
intense photoluminescence28 they are widely used as robust
organic dyes in the automobile industry.27 Furthermore, they
show a considerable electron mobility29–31 and a high electron
affinity.30,32 That is why they serve as n-type semiconductors
for organic field effect transistors32–37 and as electron acceptor
material in organic solar cells.37–40

Section II describes the theoretical background of the
applied model as well as details of the numerical calculations
and computational approaches. It is shown that the master
equation approach is particularly faster than the well-known
Monte Carlo method. Furthermore we elucidate why the
commonly applied approach to calculate the mobility via
the diffusion constant along with rate equations41–44 is not
appropriate in many important cases. In Sec. III A we consider
the frequently disputed question if the Einstein relation holds
even for more disordered (amorphous) materials.45–49 In
Sec. III B we show results for the orientational and morpho-
logical dependency of the mobility for pentacene, rubrene,
and two fluorinated perylene bisimides. The first two materials
are experimentally and theoretically well investigated41,44,50–60

which allows for the comparison with experimental data.

II. THEORY AND MODELING

A. The Marcus hopping model

In this work, a hopping mechanism is assumed
for the motion of the charge carriers. The hopping
rate from a site i to j is given by the Marcus
equation61,62

νji = Vji
2

h̄

√
π

λkBT
exp

[
− (�Eji + λ)2

4λkBT

]
, (1)

where Vji is the electronic coupling parameter, λ is the reorga-
nization energy, T is the temperature, kB is the Boltzmann

155208-11098-0121/2011/83(15)/155208(14) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.155208


STEHR, PFISTER, FINK, ENGELS, AND DEIBEL PHYSICAL REVIEW B 83, 155208 (2011)

constant, and h̄ = h/(2π ) where h is the Planck constant.
The energy difference �Eji between the two hopping sites
is caused by an external electric field �F . If the material is
less ordered or even amorphous, each molecule experiences
slightly different surrounding effects (such as polarization)
that lead to different site energies E0

i . These energy differences
furthermore contribute to �Eji :

�Eji = (
E0

j − E0
i

) − q �F �rji , (2)

where q is the charge which equals the positive or negative
unit charge and �rji is the distance vector between sites i and
j . Marcus rates have been used before for calculating the
anisotropy of the charge-carrier mobility,41 but with �Eji ≡ 0.

The interaction of the charge carriers with the phonons is
partially considered by the reorganization energy. Due to the
weak van der Waals interactions between organic molecules, it
can be divided into an internal (intramolecular) and an external
(intermolecular) part, i.e., λ = λint + λext. The intramolecular
reorganization energy λint is due to the geometry changes of
the donor and the acceptor monomer upon the charge-transfer
process. The external reorganization energy λext covers the
energetic changes concerning the surrounding, caused by
lattice distortion and polarization. For oligoacenes λext was
shown to be about one order of magnitude smaller than λint.63,64

Furthermore, is was demonstrated that λint of a molecule
is lower in a cluster than in gas phase and that the total
reorganization energy of naphthalene is closer to λint in the
gas phase than to λint in the cluster.63 That is why the external
reorganization energy is neglected in this paper and the internal
reorganization energy of the monomer in vacuum is used
for λ.

The Marcus theory was originally derived for outer-sphere
electron transfer in solvents.61 It stems from time dependent
perturbation theory (Fermi’s Golden rule) and describes a
nonadiabatic charge transfer where the charge carrier is
localized at the donor or acceptor molecule, respectively.
Treating the coupling as a perturbation requires that Vji is
small compared to λ/4, which corresponds to the activation
energy for the charge carrier to change place (for �Eji = 0).

Furthermore, the relaxation (the geometric reorganization) has
to be fast in comparison with the transfer so that the system can
be assumed to be in thermal equilibrium during the transfer. In
addition, the theory is restricted to the high-temperature case
since tunneling is neglected completely and the molecular
vibrations are treated classically, what requires kBT � h̄ω.
These restrictions of the Marcus theory in the context of
charge transport are discussed elsewhere.65,66 Despite all
imperfections it is widely used for charge transfer in organic
crystals41–43,67–70 and one can certainly assume that this theory
is suitable for the purpose of a qualitative charge-transport
analysis.

B. The master equation approach

The master equation approach was used to describe the
transport process. In the case of low charge-carrier densities,
the master equation, which describes the hopping of the charge
carriers in the organic semiconductor, has the simple linear
form71

dpi

dt
=

∑
j

(νijpj − νjipi), (3)

where pi denotes the probability that the lattice site i is
occupied by a charge carrier. The index j sums over all other
sites. In principle, it is also possible to include repulsive forces
between the charge carriers in the master equation in order to
account for higher charge carrier densities. However, in the
case of low densities, even the quite simple Eq. (3) leads to
good results.

In the steady state, a dynamic balance is reached where the
occupation probabilities for the sites do not change anymore
and dpi/dt in Eq. (3) equals zero. Since this equation holds
for all sites in the crystal, this results in a linear system of
equations,

N · �p = �0. (4)

�p contains the unknown pi and N is a negative semidefinite
sparse matrix that contains all hopping rates νji . For one
dimension N is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

. . . −∑
j νj1 ν12 ν13 ν14 . . .

. . . ν21 −∑
j νj2 ν23 ν24 . . .

. . . ν31 ν32 −∑
j νj3 ν34 . . .

. . . ν41 ν42 ν43 −∑
j νj4 . . .

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

The columns correspond to the initial sites i of the charge
carrier and the lines correspond to the final sites j , i.e.,
the jump rate νji from i to j appears in the ith column
and the j th line. The diagonal elements contain the neg-
ative sum of all hopping rates away from the respective
site.

The infinite matrix N is approximated by a finite matrix with
cyclic boundary conditions, i.e., a charge carrier that leaves the
crystal at one side reenters at the opposite side. This means for
the example matrix depicted in Eq. (5) that the charge which
jumps from site 4 in positive direction ends at site 1. For this
boundary condition to be applicable it has to be assured that
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the hopping rate from site 4 to site 1 in negative direction is
negligible. This results in a constraint for the minimum size of
the matrix.

The matrix in Eq. (5) was extended to three dimensions
resulting in a (n3

dnm) × (n3
dnm) matrix where nd is the number

of unit cells in each direction and nm is the number of
monomers per unit cell. In this work all monomers within
a cube of three unit cells length in each dimension of the
crystal are taken into account. It was verified that a bigger
matrix with more than 3 × 3 × 3 unit cells does not change the
result. The hopping rates were calculated from one monomer
to all other monomers in the same and in the adjacent cells.
Since the jump rate, Eq. (1), implicitly depends on the distance
via the electronic coupling Vji , larger jump distances can be
neglected.

Solving Eq. (4) and taking into account the normalization
condition

∑
i pi = 1 provides the occupation probabilities for

all sites. (For �Eji = 0, it is the same for all sites.) These
probabilities can then be used to calculate the mobility of the
charge carriers in field direction from

μ = 〈v〉
F

, (6)

with the average velocity

〈v〉 =
∑

i

pivi =
∑

i

pi

〈r‖〉i
τi

, (7)

where vi is the resulting velocity at site i,

〈r‖〉i =
∑

j νji

(�rji
�F
F

)
∑

j νji

(8)

is the average displacement at site i in field direction and

τi =
⎛
⎝∑

j

νji

⎞
⎠

−1

(9)

is the dwell time of the charge carrier at site i. Equations (6)
to (9) result in72

μ = 1

F

∑
i

⎛
⎝pi

∑
j

νji

∑
j νji

(�rji
�F
F

)
∑

j νji

⎞
⎠ = 1

F

∑
ij

piνji�rji

�F
F

.

(10)

In order to simplify the calculation of the mobility within
such a jump rate approach, the mobility is often calculated
without external field because the occupation probabilities of
the sites do not differ in this case and one does not have to
solve the master equation (4). Since Eq. (10) is not applicable
in that case (because F = 0), the mobility is calculated via the
diffusion coefficient D and the Einstein relation73

μ = q

kBT
D. (11)

Different equations are found in the literature41–44,74 to
evaluate D. Considerations similar to those above for the
mobility seem to provide

D = 1

2n

d

dt
〈r2〉 = 1

2n

∑
i

pi

〈r2〉i
τi

, (12)

where n is the spatial dimensionality. Since the diffusion is
regarded in one dimension here, n equals 1 and

D = 1

2

∑
i

pi

〈r2
‖ 〉i
τi

, (13)

where

〈r2
‖ 〉i =

∑
j νji(�rji �e)2∑

j νji

(14)

is the variance of the charge carrier position at site i in the
direction of the unit vector �e. Equations (9) and (12) to (14)
finally result in

D = 1

2

∑
ij

piνji(�rji �e)2 (15)

for the diffusion coefficient in the direction of �e. It is worth
mentioning that Eq. (15) holds even in the presence of an
external field (see the Appendix).

Without external field and assuming that all lattice sites are
equal (i.e., �Eji = 0), the last equation simplifies to44,75,76

D = 1

2

∑
j

νj (�rj �e)2. (16)

It is important to note, that the diffusion constants in
Eqs. (15) and (16) are not strictly correct. Just if the unit cell
of the crystal contains only a single molecule and if the crystal
structure is perfectly translation-symmetric, i.e., E0

i = E0
j for

all monomer pairs, cf. Eq. (2), these equations become correct.
However, in less ordered or even amorphous materials the

site energies E0
i and E0

j are different because of the differing
surroundings for each lattice site. In that case, the occupation
probabilities pi differ and the master equation has to be
applied. In the case of strongly different E0

i , even Eq. (15)
becomes incorrect since the charge carrier can be “trapped”
between two lattice sites with similar energy,77 see Fig. 1(a):
Because of the energetically unfavorable surrounding, the
charge carrier jumps back and forth between the same sites
all the time. These moves do not contribute to a macroscopic
spreading of the occupation probability of the charge carrier
with the time. That is why the averaging in Eq. (15)
overestimates the true macroscopic diffusion coefficient. This
problem does not appear in Eq. (10) since the �rji is not squared
as in Eq. (15). For that reason the contribution of the trapped
charge cancels when summing over all lattice sites. And even in
perfectly ordered crystals where all jump rates are symmetric,
i.e., νji = νij (without external field), such a trapping can
occur if different sites exist in the elementary cell of the
crystal and if the hopping rates within the cells differ from
those to neighbored unit cells, see Fig. 1(b): Here, the charge
carrier jumps back and forth between two monomers with a
high coupling because the coupling to the other neighbors
is lower. In such cases Eq. (10) in conjunction with Eq. (11)
provides correct diffusion coefficients while Eqs. (15) and (16)
overestimate the values for D.

C. The Monte Carlo approach

The master equation results were verified with Monte
Carlo simulations applying the algorithm of Houili et al.,71
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energy

energy

(b)

(a)

FIG. 1. The charge carrier is “trapped” between two lattice sites.
a) The surrounding of the monomer causes an energetic “pit.”
b) Strongly differing jump rates lead to a capturing.

but without any interaction between the charge carriers. The
mobility and the diffusion coefficient were calculated via

μ = 1

F

d

dt

〈
�rji

�F
F

〉
(17)

and

D = 1

2

d

dt
〈(�rji �e − 〈�rji �e〉)2〉, (18)

respectively. The time-dependent average position 〈�rji
�F
F
〉 and

the variance 〈(�rji �e − 〈�rji �e〉)2〉 have been averaged over a
sufficient number of simulation runs to obtain smooth lines. It
was checked that both average and variance show a linear time
dependence in order to secure the stationary state.

The Monte Carlo approach is just an alternative way to
solve the master equation (3). It is a feasible way to log the
atomic scale motions underlying the transport properties as a
function of time. However, as this is a stochastic method, many
simulation runs are needed in order to achieve an acceptably
low statistical error such that sufficiently significant values
are obtained for the mobility and the diffusion coefficient.
Furthermore, one has to take care that the stationary state is
reached within the simulation time. This is a serious problem in
the case of strongly disordered materials. In contrast to that, the
approach used here by solving the matrix equation (4) which
provides the stationary state by means of analytic numerical
methods guarantees the stationary solution and is furthermore
numerically more efficient than Monte Carlo simulations.72

D. Quantum chemical methods

The electronic coupling Vji and the reorganization energy λ

needed for the hopping rate, Eq. (1), are determined by
quantum chemical first-principles calculations. In order to
calculate λ, the geometry of the isolated monomer was
optimized for the charged and the neutral state. The energies E0

and Ec of the neutral and the charged monomers in their lowest
energy geometries and the energies E∗

0 and E∗
c of the neutral

monomer with the ion geometry and the charged monomer
with the geometry of the neutral state are calculated to get the
intramolecular reorganization energy51

λ = λc + λ0 = (E∗
c − Ec) + (E∗

0 − E0), (19)

cf. Fig. 2. For all quantum chemical calculations the TURBO-
MOLE program package78 was used. The calculations were

λ0
0E

E*0

Ec

cE*
cλ

en
er

gy

geometry

charged

neutral

FIG. 2. The potential energy surfaces of the neutral and the
charged monomer. The dashed arrows indicate the vertical transitions
from one state to the other. λ0 and λc are the two contributions to the
reorganization energy, see Eq. (19).

conducted via density functional theory using the hybrid
generalized gradient functional B3-LYP79–84 with the corre-
lation consistent polarized valence double ζ basis set (cc-
pVDZ)85 for all atoms. This functional was chosen because
it has been shown that it leads to quite good results for
describing the ionization-induced geometry modifications of
oligoacenes.86,87

The electronic couplings were calculated as described by
Li et al.67 resulting in

Vji = Hji − 1
2 (Hii + Hjj )Sji

1 − S2
ji

(20)

with

Hji = 〈ϕj |ĤKS |ϕi〉,
Sji = 〈ϕj |ϕi〉.

For hole (electron) transport ϕi and ϕj are the HOMO (LUMO)
orbitals of the respective isolated monomers and ĤKS is the
Kohn-Sham operator of the neutral dimer system. Hii and
Hjj are the site energies of the two monomers, Sji is the
spatial overlap and Hji is the charge transfer integral in the
nonorthogonalized basis.

The arrangement of the monomers in the crystal was
extracted from x-ray crystal structure data which was retrieved
from the Cambridge Structural Database.

E. The Gaussian disorder model

It has been argued that the Einstein relation, Eq. (11), does
not hold in disordered organic materials in general46–48 or at
least if additionally an external field is applied.74,88,89 In fact it
turned out that this is only true for rather high charge-carrier
densities,90 low temperatures and high electric fields which
are out of the scope of the present work. At extremely low
temperatures, the thermal energy of the charge carriers is not
sufficient to reach sites which are higher in energy and only
energy-loss jumps occur. In that case, neither μ nor D depends
on the temperature.91 For low fields, the transport coefficients
are independent of the field,92,93 but for higher fields nonlinear
effects become important and D/μ increases with increasing
field.94
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FIG. 3. (Color online) Mobility, μ, (left) diffusion coefficient, D, (middle), and the ratio D/μ (right) as a function of the energetic disorder,
calculated with the rate equations (10) and (15) respectively, and via Monte Carlo simulation. The calculations were conducted at T = 300 K
and F = 105 V/m.

A strongly disordered organic semiconductor was simu-
lated by means of the Gaussian disorder model93 with a
Gaussian shaped density of states,


(E) = 1√
2πσ 2

exp

(
− E2

2σ 2

)
, (21)

where the standard deviation σ is called the energetic disorder
of the simulated material, in conjunction with the Miller-
Abrahams jump rate95

νji = ν0 exp(−2γ rji)

{
exp

(
−�Eji

kBT

)
, �Eji � 0

1, �Eji < 0
, (22)

where ν0 = 1013 s−1 is the attempt-to-jump frequency and
γ = 5 × 109 m−1 is the inverse localization radius. The first
exponential function describes the tunneling of the charge
and the Boltzmann-type exponential function accounts for
thermally activated jumps upward in energy. Hops to lower
energies are not thermally activated.

A simple cubic lattice of sites with a lattice constant of
1 nm was used. In order to achieve a sufficient statistics for the
site energies the lattice consisted of 80 × 40 × 40 sites. For a

given site only the hops from and to the 26 adjacent sites were
considered. Calculations with a bigger lattice and also further
jump targets taken into account did not affect the result.

III. RESULTS AND DISCUSSION

A. Validity of the Einstein relation

The mobility and the diffusion coefficient were calculated
by the master equation approach in conjunction with the
Eqs. (10) and (15) and by the Monte Carlo approach using
Eqs. (17) and (18), respectively. The Gaussian disorder model
described in Sec. II E was used. In the Monte Carlo simulation,
the average and the variance of the charge carrier position has
been averaged over 50 000 trajectories and the simulation time
has been up to 1 s.

Figure 3 shows the results as a function of the energetic
disorder σ , cf. Eq. (21). The mobility varies over several
orders of magnitude and the results of Eqs. (10) and (17)
match exactly. This is not the case for the diffusion coefficient
calculated with Eq. (15) and (18). With increasing energetic
disorder, the deviations between these two approaches to

OO

O ON

N

(a) (b)

F7 C3

F7C3

N OO

F
F

O ON

(c)

F7 C3

C3F7

C4F9

F9C4

(d)

FIG. 4. The molecules investigated in this work: a) pentacene, b) rubrene, c) PBI-F2, d) PBI-(C4F9)2.
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TABLE I. Lattice constants and angles for the unit cells of all
calculated crystals.

a [Å] b [Å] c [Å] α [◦] β [◦] γ [◦] Ref.

pentacene 6.27 7.78 14.53 76.48 87.68 84.68 50
rubrene 26.86 7.19 14.43 90.00 90.00 90.00 58
PBI-F2 17.46 5.28 15.28 90.00 110.90 90.00 32
PBI-(C4F9)2 10.57 12.89 16.68 66.86 76.52 84.62 96

calculate D increase. These deviations are not caused by
the field because for σ = 0 the results match. In order to
decide which one is the right approach, the ratio D/μ is
plotted as well. One clearly sees that in the case of Monte
Carlo the Einstein relation, Eq. (11), is valid, whereas D/μ

calculated with Eqs. (15) and (10) deviates from the Einstein
relation. The two mobility equations lead to the same results.
Thus, Eq. (15) and also the frequently used Eq. (16) provide
incorrect diffusion constants for energetically inhomogeneous
materials. In any case it is advantageous to employ the master
equation in conjunction with Eq. (10) to calculate the mobility
as this provides correct diffusion constants without numerical
noise and with low computational demands.

B. Angular dependence of the mobility in crystals

If not otherwise stated, the calculations have been con-
ducted with an electric field of 107 V/m and a temperature
of 300 K. The molecules under investigation are depicted in
Fig. 4 and the crystallographic parameters of the corresponding
crystals are listed in Table I.

1. Pentacene

Pentacene (see Fig. 4(a)) exists in several morphologies.
Here the structure described by Mattheus et al.50 (at 293 K) was
investigated. The unit cell contains two differently orientated
monomers. Pentacene is known to be a hole conductor, but for
comparison, the electron transport is regarded here as well. The
reorganization energy was calculated to 92 meV for holes and
131 meV for electrons. This is in good agreement with values
reported before (98 and 95 meV for holes44,51 and 132 meV
for electrons.44)

Figure 5 shows the mobilities of holes and electrons in
the crystal in all three dimensions. For better legibility Fig. 6
shows two dimensional cross sections orthogonal to the a∗, b∗,
and c∗ direction, respectively. The magnitudes of the hole and
electron mobility are quite similar. For both types of charge

TABLE II. The most important electronic couplings and the
reorganization energy in the pentacene crystal for electrons and holes,
cf. Fig. 7.

h+ [meV] e− [meV]

V1 90.69 85.18
V2 55.05 89.66
V3 39.68 50.00
V4 36.62 47.10

λ 92 131

a

b
c

h+

 0  5  10  15  20

mobility μ [cm2/(Vs)]

a

b

c
e−

 0  5  10  15

mobility μ [cm2/(Vs)]

FIG. 5. (Color online) The mobility for holes (top) and electrons
(bottom) in the pentacene crystal for F = 107 V/m and T = 300 K.

carriers the transport is almost two dimensional since the
minimal mobility, that is found in the c∗ direction, is very
low (0.2 cm2/V s for holes and 1.3 cm2/V s for electrons)
compared with the other directions. This can be explained
by the electronic couplings. The highest ones are listed in
Table II. The directions of the corresponding charge transitions
are drawn in Fig. 7. All of them are coplanar in the ab plane.
For holes, the biggest coupling belonging to a transition with a
component in c direction is one order of magnitude lower than
the lowest coupling listed in Table II (electrons: about a factor
of 5 smaller). The highest couplings for holes belong to the
transitions in [11̄0] direction, the second highest to the [110]
direction. The reverse is true for electrons. That is why the
directionality of the mobilities for holes and electrons differ in
the ab plane. The maximum mobility for holes (18.5 cm2/V s)
is found at 132◦, the maximum for electrons (13.7 cm2/V s)
at 37◦.

Figure 6 shows a comparison between the calculation and
some experimental mobility values for holes.53 Please note,
that the crystal orientation could not be determined in the
experiment.53 The measured mobility varies between 0.66 and
2.3 cm2/V s. This shows that the calculated maximal mobility
is almost one order of magnitude too big. However, in highly
purified single crystals of pentacene a mobility of 35 cm2/V s
has been measured.52 It was also experimentally confirmed
that the mobility in the ab plane is much larger than along
the c∗ axis.52 This is in agreement with our calculations where
the minimal mobility of about 0.2 cm2/V s is in c∗ direction.
For room temperature and lower, the measurements showed a
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b
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electrons
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FIG. 6. (Color online) The mobility for holes and electrons in the pentacene crystal in the ab plane (left), ac plane (middle) and bc plane
(right). The parameters are the same as in Fig. 5. For comparison some experimental values53 are plotted. Note that in the experiment the crystal
orientation could not be determined53 and therefore the experimental data are rotated to fit best.

temperature dependence of the mobility following μ ∝ T −n

with a positive n indicating band transport.52 While this is
not in accordance with the thermally activated hopping model
used here, it was also shown that above room temperature
a different transport mechanism dominates the mobility. A
further reason for the overestimation of the mobility is that
the nonlocal electron-phonon coupling17–24 is neglected in our
model. While the absolute values do not match the measured
mobilities, the qualitative dependency on the crystal direction
fits to the experimental results.

2. Rubrene

Rubrene (see Fig. 4(b)) is a hole conductor. It crystal-
lizes with four differently oriented monomers in the unit
cell. The calculations were conducted using the morphology
described by Jurchescu et al.58 at 293 K. Table III shows
the reorganization energies and the values of the four highest
electronic couplings. The couplings next in size are two orders
of magnitude smaller than the smallest coupling listed. This
is in agreement with previous calculations.41,44 The hopping

V1

V3

V2

4V

a

b

FIG. 7. (Color online) The most important hopping paths in the
pentacene crystal. Direction of view is parallel to the c∗ axis.

paths corresponding to these couplings are drawn in Fig. 8. The
largest coupling (V1) is between equally oriented monomers
along the b direction, which is the smallest lattice constant.
The second largest couplings are between monomers which
lie in the same plane perpendicular to the a axis. V3 is the
coupling between these planes and V4 is the coupling between
monomers in the same plane perpendicular to the b axis.

In contrast to pentacene, the electronic coupling for holes
and electrons in rubrene differs remarkably. That is why the
calculated mobility for electrons is about one order of magni-
tude smaller than for holes, see Fig. 9. But unlike pentacene,
the angular dependence of the mobility is qualitatively the
same for both types of charge carriers. For holes a three-
dimensional depiction is shown in Fig. 10. The maximum
mobility (20 cm2/V s for holes and 3 cm2/V s for electrons)
is in b direction because of the short lattice constant in that
direction and the resulting strong electronic coupling. The
lowest mobility (0.03 cm2/V s for holes and 0.003 cm2/V s
for electrons) is in a direction. The main contribution to the
mobility in that direction are the zigzag jumps between the
planes perpendicular to b which are marked with V3 in Fig. 8
and the zigzag jumps between the planes perpendicular to the
c axis marked with V4. The corresponding couplings are more
than one order of magnitude smaller than the next highest

TABLE III. The most important electronic couplings and the
reorganization energy in the rubrene crystal for holes and electrons,
cf. Fig. 8. For comparison calculated values for holes from Refs. 41
and 44 are shown.

h+ [meV] e− [meV] h+ [meV]41 h+ [meV]44

V1 95.73 49.40 89 83
V2 16.38 5.55 19 15
V3 1.36 0.59
V4 0.24 0.24

λ 146 199 152 159
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V3

V4

V2

V1
c

b

c

a

FIG. 8. (Color online) The most important hopping paths in the
rubrene crystal. Direction of view is parallel to the a axis (left) and
the b axis (right), respectively. The black and the gray monomers
have a different position in b direction.

coupling V2. The zigzag jumps corresponding to V2 are the
main contribution to the mobility in c direction.

Figure 9 shows some experimental mobility values for
holes for the ba plane.54,59,60 As for pentacene the calculation
overestimates the mobility. The calculated maximum mobility
is four times larger than the measured value. The mobilities
for pentacene and rubrene calculated in Ref. 41 with a similar
approach seem to fit better to the experiment. Yet it seems that
in their calculation a wrong dwell time of the charge carriers
was used (cf. Sec. II B).

The reorganization energy for rubrene is much higher than
for pentacene. It was shown that the low-frequency bending
of the phenyl side-groups in rubrene around the tetracene

a

b

c

 0  5  10  15  20

mobility μ [cm2/(Vs)]

FIG. 10. (Color online) The mobility for holes in the rubrene
crystal in all three dimensions. The parameters are the same as in
Fig. 9.

backbone contributes strongly to λ.57 However, this bending
might be impeded in the crystal and a smaller reorganization
energy would lead to an even higher mobility.

Temperature-dependent measurements in rubrene have
shown a decrease of the mobility around room
temperature.55,56 This is an indication for band transport.
However, the qualitative anisotropy of the mobility calculated
with the hopping model fits quite well to the measurements.

3. PBI-F2

The core-fluorinated perylene bisimide PBI-F2 described
by Schmidt et al.32 and depicted in Fig. 4(c) was analyzed.
This material is quite interesting for application since it is
remarkably air stable because of its electron-withdrawing
substituents which makes the electrons less susceptible to
trapping with oxygen. The planarity of the perylene core is
only slightly distorted by the core fluorination which leads
to a torsion angle of 3◦.32 It was shown that PBI-F2 has a
narrower valence band and a broader conduction band than
the unsubstituted PBI, mainly due to the altered molecular
packing.97 The unit cell contains two differently orientated
monomers. In contrast to pentacene and rubrene, PBI-F2 is

0 5 10 15 20

mobility μ [cm2/(Vs)]

b

a holes
electrons

Ling et al.
Zeis et al.

Sundar et al.

0 0.5 1 1.5

mobility μ [cm2/(Vs)]

a

c holes
electrons

0 5 10 15 20

mobility μ [cm2/(Vs)]

b

c holes
electrons

FIG. 9. (Color online) The mobility for holes and electrons in the rubrene crystal in the ba plane (left), ac plane (middle), and bc plane
(right). The parameters are F = 107 V/m, T = 300 K. For comparison some experimental values for hole mobilities54,59,60 are plotted for the
ba plane.
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c

b

a

V2

V4

a
b
c

V3

V5

V1

FIG. 11. (Color online) The most important hopping paths in the PBI-F2 crystal.

an electron conductor which is caused by its high electron
affinity. The electronic couplings for electrons and holes differ
remarkably. The strongest couplings are collected in Table IV.
The couplings which are not listed are at least one order of
magnitude smaller than the smallest coupling mentioned. The
strongest coupling for electron transport is found between
monomers shifted along the b direction, see Fig. 11. Note
that this is about 300 times bigger than the coupling next
in size, which is the one between two differently orientated
monomers within the same unit cell. The result is an almost one
dimensional charge transport along the b direction, see Figs. 12
and 13. This might be problematic for application, since
the charge transport gets very sensitive to lattice distortions,
because the electron cannot easily pass at lattice defects which
cannot be avoided in real crystals.

Whereas the coupling between b shifted monomers is
very strong for electrons, this is surprisingly not the case for
holes. Their coupling is more than two orders of magnitude
smaller than the electron coupling. This is confirmed by other
calculations.97 The reason can be found in the differing nodal
structure of the HOMO and the LUMO orbital for that dimer,

TABLE IV. The most important electronic couplings and the
reorganization energy in the PBI-F2 crystal for electrons and holes,
cf. Fig. 11.

h+ [meV] e− [meV] h+ [meV] Ref. 97 e− [meV] Ref. 97

V1 0.251 129.234 2 107
V2 2.398 0.452
V3 0.010 0.017
V4 0.003 0.004
V5 0.001 0.002

λ 213 303 215 (213) 309 (307)

see Fig. 14. By sliding one monomer relative to the other along
the long axis, the coupling for holes oscillates depending on
the displacement around zero,97 because the overlap of the two
HOMO orbitals with same and different phase alternate. All the
other coupling constants do not differ significantly for the two
types of charge carriers. This sole difference in the coupling

a

b

c
h+

 0  0.005  0.01  0.015

mobility μ [cm2/(Vs)]

e−

a

b

c

 0  0.5  1  1.5  2  2.5  3

mobility μ [cm2/(Vs)]

FIG. 12. (Color online) The mobility for holes (top) and electrons
(bottom) in the PBI-F2 crystal in all three dimensions. The parameters
are F = 107 V/m, T = 300 K.
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0 0.001 0.002

mobility μ [cm2/(Vs)]

a

b
holes

0 1 2 3

mobility μ [cm2/(Vs)]

a

b
electrons

0 0.005 0.010 0.015

mobility μ [cm2/(Vs)]

a

c holes

0  10·10−5  

mobility μ [cm2/(Vs)]

a

c
electrons

0 0.005 0.010 0.015

mobility μ [cm2/(Vs)]

b

c
holes

0 1 2 3

mobility μ [cm2/(Vs)]

b

c
electrons

FIG. 13. (Color online) The mobility for electrons and holes in the PBI-F2 crystal in the ab plane (left), ac plane (middle), and bc plane
(right). The parameters are F = 107 V/m, T = 300 K.

results in a maximum electron mobility that is two orders of
magnitude bigger than the maximum hole mobility, which is
achieved in c direction. However, in the plane perpendicular
to b, the hole mobility is two orders of magnitude bigger than
that of electrons, see Fig. 13.

The calculated reorganization energies, 303 meV for
electrons and 213 meV for holes, is bigger than those for
rubrene and pentacene. The values are in very good agreement
with reorganization energies calculated by Delgado et al.97

(309 and 307 meV for electrons, 215 and 213 meV for holes).

TABLE V. The most important electronic couplings and the
reorganization energy in the PBI-(C4F9)2 crystal for electrons, cf.
Fig. 16.

e− [meV] e− [meV] Ref. 98

V1 97.7 95.7
V2 33.7 35.0
V3 2.1 2.2
V4 1.1 0.9

λ 339 360

In order to test our master equation approach, some
calculations were verified with Monte Carlo calculations. The
results of both methods agree very well within the error bars
of the Monte Carlo method. As an example Fig. 15 shows
the mobility of PBI-F2 in the ab plane calculated with both
approaches. The Monte Carlo simulations have run for at least
10 ns and have been averaged over at least 100 simulation
runs, leading to a relative average error of less than 1%. For
this example the master equation approach required about
80 000 times less CPU time than the Monte Carlo approach.

FIG. 14. (Color online) The PBI-F2 HOMO (left) and the LUMO
(right) orbital for the dimer which is built by a b shift and leads to the
coupling V1, compare Table IV and Fig. 11.
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0 1 2 3

mobility μ [cm2/(Vs)]

 

a

b master eq.
Monte Carlo

FIG. 15. (Color online) Comparison of master equation and
Monte Carlo results for the electron mobility in PBI-F2 in the
ab plane. The parameters are F = 107 V/m, T = 300 K. The two
methods show very good agreement.

Thus the master equation approach is clearly advantageous as
it is exact within the numerical accuracy of the computer while
the Monte Carlo approach contains significant and slowly
converging statistical errors.

4. PBI-(C4F9)2

A further fluorinated perylene bisimide was investigated
which was described by Li et al.96 The four most important
electronic couplings are listed in Table V and depicted in
Fig. 16. In contrast to the other molecules it is striking that
there is no symmetry-caused degeneration of the electronic
couplings. It is furthermore important to notice that the
intracolumn couplings V1 and V2 along the π stacks, which
are parallel to the a axis, differ by a factor of 3. This leads to a
“trapping” of the charge carrier between the monomers which
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FIG. 17. Projection of the charge trajectory onto the respective
direction with the highest mobility for PBI-(C4F9)2 (a direction, top)
and PBI-F2 (b direction, bottom). The parameters are F = 107 V/m,
T = 300 K.

are coupled by V1 as described in Sec. II B: After jumping from
one monomer to the next one along V1, the charge carrier is
more likely to jump back to the first monomer than to move on
along V2. To illustrate this trapping a charge trajectory along
the a axis, simulated by Monte Carlo, is drawn in Fig. 17 (top).
One clearly sees that the charge carrier very often oscillates
between two sites which lowers the mobility of the charge
along the stacks. For comparison, a charge trajectory in PBI-F2

along the high mobility axis is also depicted. No oscillatory
motions can be found there.

V1V2

a

V3

V4

b

c

FIG. 16. (Color online) The most important hopping paths in the PBI-(C4F9)2 crystal.
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via D (F = 0)

via D (F = 107 V/m)
direct (F = 107 V/m)

Monte Carlo

FIG. 18. (Color online) Comparison of the mobility in the ab

plane of PBI-(C4F9)2 calculated via the diffusion coefficient [Eq. (15)]
and the Einstein relation [Eq. (11)] for F = 0 (green, dotted) and
F = 107 V/m (black, dashed), calculated directly [Eq. (10), red,
solid], and calculated with Monte Carlo [Eq. (17), blue points] for
F = 107 V/m (T = 300 K in all cases).

This peculiarity of PBI-(C4F9)2 becomes important when
calculating the mobility: Because of the “trapping” that is
caused by these oscillations, the mobility calculated with
Eq. (15) or (16) and the Einstein relation (11) is severely
overestimated, see Fig. 18. The green dotted curve is calculated
without external field with the master equation along with
Eq. (15) or (16) respectively, which is often used in literature.
The red solid curve is also obtained by the master equation
but the direct equation for the mobility, Eq. (10), was applied.
The maximum mobility between these two curves differ by a
factor of 2.4. Besides that, the calculation using the diffusion
coefficient and the Einstein relation even results in a wrong
angle for the maximum mobility. To prove that the result
of Eq. (10) (red solid line) is the right one, Monte Carlo
simulations were conducted (blue points). The simulations ran
for 10 ns and 〈x〉 and 〈(x − 〈x〉)2〉 were averaged over 1000
trajectories. The relative average error was about 0.4 % and
the deviation of the master equation from Monte Carlo was
about 0.2%. The differences in the results of Eq. (15) or (16)
and (10) are not caused by the electric field. This is shown by
the black dashed line which was calculated with Eq. (15) but
with the same field as for the red solid line. One clearly sees
that the black dashed line does not coincide with the red solid
line but with the green dotted line (calculated without field)
instead, proving that this approach cannot be applied.

IV. SUMMARY AND CONCLUSIONS

A quantum chemical protocol for calculating the charge-
carrier mobilities in organic semiconductor crystals was
presented. A hopping model using Marcus theory has been
implemented by means of the master equation approach which
is more than four orders of magnitude faster than the Monte
Carlo method and free from statistical errors. In contrast to the
master equation, the Monte Carlo approach allows to simulate
the transport parameters with a time dependent framework.

However, since this is a stochastic method many simulation
runs are needed in order to achieve an acceptable statistical
error. Furthermore, it is important to make sure that the
stationary state is obtained within the simulation time. This is
a serious problem for disordered materials. Solving the matrix
equation (4) describing the stationary state instead by means of
analytic numerical methods guarantees the stationary solution.

The mobility is often calculated without external field and
without the master equation by calculating the diffusion coeffi-
cient and applying the Einstein relation. However it can easily
happen that the diffusion coefficient is overestimated in amor-
phous materials and even in perfect crystals due to a “trapping”
of the charge between energetically similar sites. That is why
it is more appropriate to calculate the mobility by means of the
master equation from the charge drift velocity. The obtained
results fit perfectly with those of Monte Carlo simulations. It
is advisable even to calculate the diffusion coefficient out of
the mobility by applying the Einstein relation, because in the
Eq. (10) for the mobility, the trapping cancels. It was shown
that the Einstein relation even holds for extremely energetically
disordered materials for not too high electric fields.

The angular dependence of the mobility in pentacene,
rubrene, PBI-F2, and PBI-(C4F9)2 was calculated and the
results were correlated with the morphology of the crystals.
The results for pentacene and rubrene show a good qualitative
agreement with experimental data. However, the absolute
values of the mobilities are strongly overestimated as the
assumption of localized charge carriers that move in a hopping
process without any interaction with nonlocal lattice vibrations
is not completely adequate for organic crystals. Nevertheless
this simple model allows for qualitative transport property
predictions. It was shown that PBI-F2 appears to be an almost
one dimensional n-type semiconductor.
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APPENDIX

Equation (15) is valid even if an external field is applied
because in this approach the resulting drift is not caused
by different jump distances parallel or antiparallel to the
field respectively since these distances �rji are fixed by the
monomer positions. Instead the field influences the jump
rates νji , cf. Eq. (1). The drift contribution to the jump rate
would have to be added to or subtracted from the actual
rate, respectively. However, since νji influences the diffusion
linearly, the drift cancels when summing across all lattice
sites. In order to verify this we have computed the solution of
the time dependent master equation

d

dt
�p = N �p, (A1)

which reads

�p(t) =
∑

i

�cie
li t , (A2)
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with the eigenvalues li and the respective eigenvectors �ci . The
diffusion constant can now be calculated via

D = 1

2

d

dt
〈[x(t) − 〈x〉(t)]2〉

= 1

2

d

dt

∑
i

⎛
⎝pi(t)xi −

∑
j

pj (t)xj

⎞
⎠

2

, (A3)

where the summation is across all sites which positions are
xi . We have used the Gaussian disorder model described in
Sec. II E using the Miller-Abrahams hopping rate, Eq. (22), for
the entries of the matrix N, cf. Eq. (5). Additionally we have
used a simple biased random walk where the mobility and the
diffusion can even be calculated analytically. Our calculations
confirmed that Eq. (15) leads to exactly the same results as
Eq. (A3) as long as there is no energetic disorder, i.e., 
(E) =
δ(E), cf. Eq. (21). The reason for the deviations in the case
σ �= 0 have already been explained in detail in Sec. II B.
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