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Functional renormalization for spontaneous symmetry breaking in the Hubbard model
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The phases with spontaneously broken symmetries corresponding to antiferromagnetic and d-wave super-
conducting order in the two-dimensional t − t ′-Hubbard model are investigated by means of the functional
renormalization group. The introduction of composite boson fields in the magnetic, charge density, and
superconducting channels allows an efficient parametrization of the four-fermion vertex and the study of regimes
where either the antiferromagnetic or superconducting order parameter, or both, are nonzero. We compute the
phase diagram and the temperature dependence of the order parameter below the critical temperature, where
antiferromagnetic and superconducting order show a tendency of mutual exclusion.
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I. INTRODUCTION

The two-dimensional Hubbard model1–3 on a square lattice
is widely believed to hold a key role for the understanding
of high-temperature superconductivity in the cuprates. In
analogy to the cuprate phase diagram it seems to exhibit
antiferromagnetic and d-wave superconducting order in close
vicinity;4–20 for a systematic overview, see Ref. 21. The ten-
dency toward d-wave superconductivity was already predicted
by some strikingly simple scaling approaches.22–24 On a higher
level of technical sophistication, the fermionic functional
renormalization group approach25–32 has been of great help
to analyze in detail the competition of different types of
instabilities.

The main result of the present paper concerns the phase
diagram in the low-temperature regime, where spontaneous
symmetry breaking occurs either in the antiferromagnetic or
in the d-wave superconducting channel. The symmetry-broken
regimes are difficult to access for fermionic functional renor-
malization group studies such as Refs. 25–32. Renormalized
mean-field investigations,33,34 based on a combination of the
fermionic functional renormalization group approach with a
mean-field treatment, have already been able to study the mu-
tual influence of the order parameters for antiferromagnetism
and d-wave superconductivity. The functional renormalization
group approach presented in this paper makes it possible to
investigate this problem by entering the spontaneously broken
regimes in a partially bosonized language where the different
types of bosonic fields that are introduced correspond to the
different types of possible order of the system.

We find a region of electron fillings with competition
between antiferromagnetic and superconducting order. The
two phenomena show a strong tendency of mutual exclusion.
Nevertheless, we find regions where the two types of local
order coexist, even though this coexistence may not be
maintained on the length scales of global order. We also find
near the van Hove filling a considerable range of temperatures
with local but not global antiferromagnetic order. For smaller
electron filling the critical temperatures for the onset of
local and global superconducting order almost coincide.
An overview of our findings in form of the μ − T -phase
diagram (for next-to-nearest neighbor hopping t ′/t = −0.1
and Hubbard repulsion U/t = 3) is shown in Fig. 1.

The approach presented in this work focuses on the low-
temperature behavior and brings together earlier attempts35–41

to perform a functional renormalization group analysis of the
two-dimensional Hubbard model based on partial bosonization
(or Hubbard-Stratonovich transformation).42,43 In analogy to
the parametrization methods for the fermionic four-point
vertex proposed and developed in Refs. 44 and 45, this method
makes it possible to treat the complex momentum dependence
of this function in an efficient, simplified way, involving only
a comparatively small number of coupled flow equations.
The fermionic four-point vertex, which is a scale-dependent
function of three independent momenta, is decomposed in
terms of bosonic propagators and Yukawa couplings, which
are each functions of only one variable.

The main advantage of the method used in the present work
consists of the possibility of following the renormalization
group flow into regimes where one or more symmetries of the
Hubbard Hamiltonian are spontaneously broken. (For other
renormalization group studies of symmetry-broken phases in
similar models, see Refs. 46–48.) At a certain scale kSSB of
the renormalization flow, the momentum-dependent fermionic
four-point vertex may diverge, and this signals the onset of
local collective order. In order to extend the renormalization
group treatment to the locally ordered regimes, composite
degrees of freedom such as magnons and Cooper pairs are
made explicit in terms of composite bosons. These correspond
to different types of collective order the system might exhibit.
A nonzero expectation value of the magnon field, for instance,
signals the presence of some form of magnetic order, and a
nonzero value of some Cooper pair field signals supercon-
ducting order. Different Cooper pair fields are distinct due to
different symmetries of the order parameters they correspond
to. The language of partial bosonization, where the different
types of bosons are taken into account explicitly, is therefore
the right tool to investigate the regimes exhibiting different
forms of collective order. A particular advantage of the present
approach, which combines functional renormalization and
partial bosonization, is that it makes it possible to investigate
the possible coexistence of different types of order in the same
range of parameters.

Earlier renormalization group studies using the framework
of partial bosonization (see Refs. 36, 37, 39, and 40) incor-
porate only a comparatively small number of bosonic fields
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FIG. 1. (Color online) Phase diagram for U/t = 3 and t ′/t =
−0.1. The (blue) solid region for smaller values of |μ| denotes the an-
tiferromagnetic phase, the (red) solid region for larger values of |μ| the
d-wave superconducting phase. The green dashed line and the black
dotted line indicate the pseudocritical temperatures below which local
order sets in for antiferromagnetism and d-wave superconductivity,
respectively. The pseudocritical line for antiferromagnetism ends at
−μ/t ≈ 0.79. The region below Tmin = 4 × 10−3t has been left blank
since calculations were only done for higher temperatures. The range
of the chemical potential μ shown here corresponds to electron filling
between 0.9 (for −μ/t ≈ 0.4) and 0.7 (for −μ/t ≈ 0.9) per site. (We
have no precise estimate for 〈ne〉 as a function of μ for all T .)

and therefore obtain a poorer resolution of the four-fermion
vertex. In addition, they suffer from the so-called mean-field
ambiguity,49 which refers to the fact that by the use of the Fierz
relations the microscopic Hubbard action can be mapped by
different Hubbard-Stratonovich transformations into various
equivalent descriptions involving different bosonic fields. In
the presence of approximations the final results eventually
depend on the specific choice of the decomposition. As argued
in Ref. 41, this shortcoming can be avoided in the present
approach by explicitly keeping the original Hubbard repulsion
U in the truncation. Contributions to the four-fermion vertex
that emerge during the flow are attributed to the different
bosonic channels, depending on their momentum structure
and therefore in an essentially unbiased way. A remaining
bias concerns the choice of bosons taken into account. We
choose to include four different bosons corresponding to
magnetic, charge density, s-wave, and d-wave superconduct-
ing order. This choice can be motivated by the structure of
the one-particle-irreducible (1PI) diagrams from which the
contributions to the flow of the fermionic four-point vertex are
derived.41

Our truncation for the flowing action includes, for the
symmetric regime, the parametrization of the four-fermion
vertex already used in Ref. 41. Furthermore, it contains quartic
bosonic couplings for the antiferromagnetic and d-wave
superconducting bosons as well as self-energy corrections for
the fermions in terms of a frequency-dependent wave-function
renormalization. We observe symmetry breaking within the
studied parameter region only in the antiferromagnetic and
d-wave superconducting channels. In these symmetry-broken
regimes, the ρ and s bosons are dropped from the truncation
for renormalization scales k < kSSB, and we focus on the
fermionic and bosonic contributions to the order parameters

and quartic couplings of the antiferromagnetic and d-wave
superconducting bosons.

II. METHOD AND APPROXIMATION

The starting point of our treatment is the exact flow equation
for the effective average action or flowing action:50

∂k�k = 1
2 STr

(
�

(2)
k + Rk

)−1
∂kRk = 1

2 STr ∂̃k ln
(
�

(2)
k + Rk

)
.

(1)

The dependence on the renormalization scale k is introduced
by adding a regulator Rk to the full inverse propagator �

(2)
k . In

Eq. (1) STr denotes a supertrace, which sums over momenta,
frequencies, and internal indices, containing a minus sign for
fermions, while ∂̃k = (∂kRk) ∂

∂Rk
is the scale derivative acting

only on the scale dependence introduced by the regulator
Rk . The Hamiltonian of the system under considerations is
taken into account by the initial condition �k=� = S of the
renormalization flow, where � denotes some very large UV
scale and S is the microscopic action in a functional integral
formulation of the Hubbard model. For the Hubbard model,
this action is given by

S =
∑
Q

ψ̂†(Q)[iωQ + ξQ]ψ̂(Q)

+ U

2

∑
K1,K2,K3,K4

[ψ̂†(K1)ψ̂(K2)] [ψ̂†(K3)ψ̂(K4)]

× δ(K1 − K2 + K3 − K4), (2)

where

ψ̂(Q) = (ψ̂↑(Q),ψ̂↓(Q))T (3)

are Grassmann fields describing electrons on a square lattice.
The next-neighbor and next-to-nearest-neighbor hopping pa-
rameters t and t ′ are reflected in

ξ (q) = −μ − 2t(cos qx + cos qy) − 4t ′ cos qx cos qy. (4)

Here, as well as in all that follows, we employ a compact
notation with Q = (ωn = 2πnT ,q) for bosonic and Q =
[ωn = (2n + 1)πT,q] for fermionic fields, and

∑
Q

= T

∞∑
n=−∞

∫ π

−π

d2q

(2π )2
,

(5)
δ(Q − Q′) = T −1δn,n′ (2π )2δ(2)(q − q′).

The components of the momentum q are measured in units of
the inverse lattice distance a−1. The discreteness of the square
lattice is reflected by the 2π periodicity of the momenta q.

In the limit k → 0 all fluctuations are included and the
flowing action �k equals the full effective action � = �k→0,
which is the generating functional of the 1PI vertex functions.
For k > 0 the bosonic fluctuations with momenta |q| < k and
the fermionic fluctuations with momenta |q − qF | < k, where
qF is the Fermi-momentum vector which is closest to q, are
not yet included.

Although Eq. (1) is an exact flow equation, it can only
be solved approximately. In particular, a truncation has to
be specified for the flowing action, indicating which of the
(infinitely many) 1PI vertex functions are actually taken

155125-2



FUNCTIONAL RENORMALIZATION FOR SPONTANEOUS . . . PHYSICAL REVIEW B 83, 155125 (2011)

into account. We use different truncations for the disordered
symmetric regime (SYM) and the spontaneously broken
regimes (SSB) where one of the bosonic fields has a nonzero
expectation value. In what follows we denote the regime where
both the order parameter α0 for antiferromagnetism and δ0 for
d-wave superconductivity are nonzero by SSBad. The regimes
where only either α0 or δ0 is nonzero, the other one being zero,
are denoted by SSBa and SSBd, respectively. The nonzero
expectation values α0 or δ0 in the SSB regimes indicate local
order. Since we are dealing with a two-dimensional model, the
order parameters α0 and δ0 must become zero in the thermody-
namic limit for k 
→ 0, in accordance with the Mermin-Wagner
theorem. They may, however, remain nonzero for k < l−1,
with l the size of a typical experimental probe, signaling
the appearance of long-range, that is, “global” (for instance
magnetic or superconducting) order on macroscopic length
scales.

Our ansatz for the flowing action includes terms for the
electrons, for the bosons in the magnetic, charge, s-wave,
and d-wave superconducting channels, and for interactions
between fermions and bosons:

�k[χ ] = �F,k + �Fm,k + �Fρ,k + �Fs,k + �Fd,k + �a,k

+�ρ,k + �s,k + �d,k +
∑
X

UB,k(a,ρ,s,d). (6)

The collective field χ = (a,ρ,s,s∗,d,d∗,ψ,ψ∗) includes both
fermion fields ψ,ψ∗ and boson fields a,ρ,s,s∗,d,d∗. The “an-
tiferromagnetic” boson field a(Q) is related to the “magnetic”
boson field m(Q) used in Ref. 41 by a shift in the momentum
variable with respect to the antiferromagnetic wave vector
 = (0,π,π ),

a(Q) = m(Q + ). (7)

The purely fermionic part �F (the dependence on the scale
k is always implicit in what follows) of the flowing action con-
sists of a fermion kinetic term �Fkin, a momentum-independent
four-fermion term �U

F , and the momentum-dependent four-
fermion terms �a

F ,�
ρ

F ,�s
F ,�d

F :

�F = �Fkin + �U
F + �a

F + �
ρ

F + �s
F + �d

F . (8)

The fermionic kinetic term is essentially left unchanged with
respect to the original Hubbard Hamiltonian (2), apart from
the fact that a fermionic wave function renormalization is
included, which depends on the Matsubara frequency,

�Fkin =
∑
Q

ψ†(Q)PF (Q)ψ(Q), (9)

where

PF (Q) = ZF (ωQ)[iωQ + ξ (q)]. (10)

On initial scale k = � we set ZF (ωQ) = 1 for all frequencies
in order to equal the kinetic term of the microscopic Hubbard
action [see Eq. (2)]. The flow of ZF (ωQ) is neglected for
all frequencies except for the two lowest Matsubara modes
ωQ = ±πT . The computation of the scale-dependent quantity
ZF (±πT ) is described in the following section. Self-energy
corrections to the dependence of PF (Q) on spatial momentum
are omitted. According to Ref. 51 the influence of self-energy

corrections due to the frequency dependence of PF (Q) seems
to be more important.

As motivated in the Introduction, the momentum-
independent part of the four-fermion coupling, which at k = �

is identical to the Hubbard interaction U , remains unmodified
during the flow. The corresponding part of the effective action
reads in our truncation

�U
F = 1

2

∑
K1,K2,K3,K4

U δ(K1 − K2 + K3 − K4)

× [ψ†(K1)ψ(K2)] [ψ†(K3)ψ(K4)]. (11)

We focus on the momentum and spin dependence of the
fermionic four-point function λF (K1,K2,K3,K4), which, due
to energy-momentum conservation, is a function of three inde-
pendent momenta (e.g., K4 = K1 − K2 + K3). We decompose
this vertex into a sum of four functions λa

F (Q), λρ

F (Q), λs
F (Q),

and λd
F (Q), each depending on only one particular combination

of the Ki . The chosen decomposition of the fermionic four-
point function is inspired by the singular frequency and
momentum structure of the leading contributions during the
renormalization flow; see Eqs. (9)–(12) in Ref. 41 for precise
definitions. In our approach, these functions are described by
the exchange of the four different bosons a, ρ, s, and d.

Practically, this is achieved by the technique of flowing
bosonization,52–54 which was adapted to our purposes in
Refs. 39 and 41. The basic idea is to introduce scale-dependent
bosonic fields in order to transform the momentum-dependent
four-fermion vertex into Yukawa-type interactions between the
fermions and bosons. In this way we keep the terms �a

F , �
ρ

F ,
�s

F , and �d
F at zero during the flow and replace their effects

by flowing Yukawa interactions between fermions and bosons.
These interaction terms read in our truncation

�Fa = −
∑

K,Q,Q′
h̄a(K) a(K) · [ψ†(Q)σψ(Q′)]

× δ(K − Q + Q′ + ),

�Fρ = −
∑

K,Q,Q′
h̄ρ(K) ρ(K) [ψ†(Q)ψ(Q′)] δ(K − Q + Q′),

�Fs = −
∑

K,Q,Q′
h̄s(K) {s∗(K) [ψT (Q)εψ(Q′)] (12)

− s(K) [ψ†(Q)εψ∗(Q′)]} δ(K − Q − Q′),

�Fd = −
∑

K,Q,Q′
h̄d (K)fd [(Q − Q′)/2]

×{d∗(K) [ψT (Q)εψ(Q′)]
− d(K) [ψ†(Q)εψ∗(Q′)]} δ(K − Q − Q′),

where σ = (σ 1,σ 2,σ 3)T is the vector of the Pauli matrices and
ε = iσ 2. The Yukawa-couplings h̄a(Q), h̄ρ(Q), h̄s(Q), and
h̄d (Q) are running couplings which vanish on the initial scale
k = � of the renormalization flow since there is no nontrivial
momentum dependence in the initial four-fermion term in the
Hubbard action Eq. (2). Note the presence of the d-wave form
factor

fd (Q) = fd (q) = 1
2 [cos(qx) − cos(qy)] (13)
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in the second-to-last line of Eq. (12), which is kept fixed on all
scales.

The purely bosonic part of our truncation for the effective
average action consists of the bosonic kinetic terms together
with the bosonic effective potential. The kinetic terms of the
bosons are defined as the momentum-dependent pieces Pi(Q)
of the inverse bosonic propagators. The inverse propagator of,
for instance, the antiferromagnetic boson is given by P̃a(Q) ≡
Pa(Q) + m̄2

a , where m̄2
a is its minimal value and Pa(Q) the

(strictly positive) kinetic term which we parametrize as

Pa(Q) = Zaω
2
Q + AaF (q). (14)

In this equation we employ for F (q)

Fc(q) = D2
a · [q]2

D2
a + [q]2

, (15)

if commensurate antiferromagnetic fluctuations dominate.
Here [q]2 is defined as [q]2 = q2

x + q2
y for qx,y ∈ [−π,π ]

and continued periodically otherwise. If incommensurate
antiferromagnetic fluctuations dominate, we use

Fi(q,q̂) = D2
aF̃ (q,q̂)

D2
a + F̃ (q,q̂)

, (16)

where the momentum dependence is quartic in momentum and
explicitly includes the incommensurability q̂:

F̃ (q,q̂) = 1

4q̂2
{(q̂2 − [q]2)2 + 4[qx]2[qy]2}. (17)

The shape coefficient Da used in Eqs. (15) and (16) is defined
as

Da = 1

Aa

(P̃a(0,π,π ) − P̃a(0,q̂,0)). (18)

For the prescriptions used in the computation of Za and Aa in
the symmetric regime and the parametrizations of the kinetic
terms of the other bosons, see Eqs. (B6)– (B8) in Ref. 41. No
linear frequency term is included in the kinetic terms of the
superconducting bosons.

The contributions to the effective average action where the
bosonic kinetic terms appear are

�a = 1

2

∑
Q

aT (−Q)Pa(Q)a(Q), (19)

�ρ = 1

2

∑
Q

ρ(−Q)Pρ(Q)ρ(Q), (20)

�s =
∑
Q

s∗(Q)Ps(Q)s(Q), (21)

�d =
∑
Q

d∗(Q)Pd (Q)d(Q). (22)

One can reconstruct the momentum-dependent four-fermion
interactions �i

F by solving the field equation for the bosons
i as a functional of fermionic variables (as derived by
variation of � with respect to the field for the boson i)
and reinserting this functional into �. Our results for the
fermionic four-point function are one-loop exact in the sense
that the scale derivatives of all contributions up to second
order in the Hubbard interaction U are taken into account

by our truncation, including their full dependence on spatial
momentum.

We may summarize that in one-loop order the complicated
spin and momentum dependence of the fermionic four-point
function, as it emerges during the renormalization flow, is
completely expressed by the bosonic propagators and Yukawa
couplings connecting the fermions to the different bosons.
We expect that also beyond one-loop order the dominant
features of the momentum dependence of λF are reasonably
well reproduced by the solution of the flow equations in our
truncation.

We also include in our truncation a local effective potential
UB(a,ρ,s,d) (not to be confused with the Hubbard interaction
U ). Here we make an expansion in powers of fields a, ρ, s,
and d up to second order in ρ and s and up to the fourth
order in a and d. This expansion has its limitations. For
instance, it cannot describe first-order transitions between two
different phases with the same symmetries. For our purposes
the polynomial expansion is expected to work reasonably well.
Spontaneous symmetry breaking in the antiferromagnetic or
superconducting channels can be described by a minimum of
UB away from the origin in a-d space. In case of a second-order
phase transition this means that the terms quadratic in the fields
a and d, d∗, evaluated at a macroscopic scale kph, turn negative
for temperatures below the critical temperature T < Tc and
vanish for T = Tc. We denote the quartic coupling in the
antiferromagnetic channel by λ̄a , the coupling in the d-wave
superconducting channel by λ̄d , and the coupling between
these two channels by λ̄ad . In the symmetric regime SYM we
expand the effective potential around the zero value of the
fields:∑

X

UB(a,ρ,s,d)

=
∑
Q

1

2

[
m̄2

a aT (−Q)a(Q) + m̄2
ρ ρ(−Q)ρ(Q)

]
+ m̄2

s s∗(Q)s(Q) + m̄2
d d∗(Q)d(Q)

+ 1

2

∑
Q1,Q2,Q3,Q4

δ(Q1 + Q2 + Q3 + Q4)

× [λ̄a α(Q1,Q2)α(Q3,Q4) + λ̄d δ(Q1,Q2)δ(Q3,Q4)

+ 2λ̄ad α(Q1,Q2)δ(Q3,Q4)], (23)

where we have defined the quantities α(Q1,Q2) = 1
2 a(Q1) ·

a(Q2) and δ(Q1,Q2) = d∗(Q1)d(Q2) (which has to be dis-
tinguished from the Dirac δ function by the number of
arguments).

In the spontaneously broken regime SSBad the minimum
of the effective potential occurs at nonzero values of the fields
a and d. In this case, we neglect the ρ and s bosons in our
truncation and expand around the minimum of the effective
potential at (α0,δ0):

∑
X

UB(a,d) = 1

2

∑
Q1,Q2,Q3,Q4

δ (Q1 + Q2 + Q3 + Q4)

× (λ̄a{α(Q1,Q2) − α0δ(Q1)δ(Q2)}
× {α(Q3,Q4) − α0δ(Q3)δ(Q4)}

+ λ̄d{δ(Q1,Q2) − δ0δ(Q1)δ(Q2)}
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×{δ(Q3,Q4) − δ0δ(Q3)δ(Q4)}
+ 2λ̄ad{α(Q1,Q2) − α0δ(Q1)δ(Q2)}

× {δ(Q3,Q4) − δ0δ(Q3)δ(Q4)}). (24)

In the regimes SSBa and SSBd, where only either α0 or δ0 is
nonzero, the mass term for the boson with zero order parameter
is kept in the truncation for the effective potential.

The parametrization we use for the frequency and momen-
tum dependence of the bosonic propagators and the Yukawa
couplings can be found in Appendix B of Ref. 41. The sole
difference between the truncation used here for the symmetric
regime SYM and in Ref. 41 is that nonzero quartic bosonic
couplings λ̄a , λ̄d , and λ̄ad and a fermionic wave function
renormalization factor ZF (πT ) are taken into account in the
present work. The presence of the quartic bosonic couplings
is crucial for the flow in the symmetry-broken regimes. In a
purely fermionic language they correspond to vertices with
eight fermions.

III. INITIAL CONDITIONS AND REGULATORS

As the microscopic scale k = � goes to infinity, the flowing
action must be equivalent to the microscopic action of the
Hubbard model, so the initial value of the four-fermion
coupling must correspond to the Hubbard interaction U . The
bosonic fields decouple completely at this scale, where the
initial values of the Yukawa couplings are given by

h̄a|� = h̄ρ |� = h̄s |� = h̄d |� = 0. (25)

In practice, we choose a finite but very large �, which is a very
good approximation.

For the bosonic mass terms we take m̄2
i,� = t2 and Pi,� = 0.

The choice m̄2
i,� = t2 amounts to an arbitrary choice for the

normalization of the bosonic fields, which are introduced as
redundant auxiliary fields at the scale k = �, where they do not
couple to the electrons. Of course, this changes during the flow,
where the bosons are transformed into dynamical composite
degrees of freedom, with nonzero Yukawa couplings and a
nontrivial momentum dependence of their propagators. The
quartic bosonic couplings vanish on initial scale k = �.

In addition to the truncation of the effective average action,
regulator functions for both fermions and bosons have to be
specified. We use “optimized cutoffs”55,56 for both fermions
and bosons. The regulator function for fermions is given by

RF
k (Q) = sgn[ξ (q)][k − |ξ (q)|]�[k − |ξ (q)|], (26)

while the regulator functions for the real bosons are given by

R
a/ρ

k (Q) = Aa/ρ · [k2/t2 − Fc/i(q,q̂)]�[k2/t2 − Fc/i(q,q̂)],

(27)

allowing for an incommensurability q̂ with Fc/i as defined in
Appendix B of Ref. 41 (with Aa = Am and an additional 

shift for the a-boson). Regulator functions for the Cooper-pair
bosons are of the same form, but no incommensurability needs
to be accounted for in these cases.

IV. FUNCTIONAL RENORMALIZATION
FOR THE SYMMETRIC REGIME

The flow equations for the couplings follow from projection
of the exact flow equation for the effective average action onto
the various different monomials of fields. The right-hand sides
of these flow equations are given by the 1PI diagrams having
an appropriate number of external lines, including a scale
derivative ∂̃k = (∂kRk) ∂

∂Rk
acting only on the IR regulator Rk .

Diagrams contributing to the flow of boson propagators and
Yukawa couplings which do not include any quartic bosonic
couplings have been discussed in Ref. 41. Here we focus
our discussion on diagrams which contribute to the flow of
the quartic bosonic couplings λ̄a , λ̄d , and λ̄ad and on how
these couplings affect the flow of the bosonic mass terms and
Yukawa couplings. We neglect the quartic couplings for the s

and ρ bosons since the corresponding channels do not exhibit
critical behavior in the parameter regimes studied.

A. Bosonic mass terms

The flow of the antiferromagnetic and d-wave supercon-
ducting mass terms is given by the following two equations:

k∂km̄
2
a = 2h̄2

a(0)
∑
P

k∂̃k

1

P k
F (P )P k

F (P +  + Q̂)

−
∑
P

k∂̃k

(
5

2

λ̄a

P k
a (P ) + m̄2

a

+ λ̄ad

P k
d (P ) + m̄2

d

)
(28)

and

k∂km̄
2
d = −4h̄2

d (0)
∑
P

k∂̃k

fd (p)2

P k
F (P )P k

F (−P )

−
∑
P

k∂̃k

(
2

λ̄d

P k
d (P ) + m̄2

d

+ 3

2

λ̄ad

P k
a (P ) + m̄2

a

)
.

(29)

The first and second lines of these equations correspond to
the fermionic and bosonic loop contributions, respectively. In
Fig. 2 we show a graphical representation of the contribution

FIG. 2. Diagrams involving the quartic bosonic couplings λ̄a , λ̄d ,
and λ̄ad which contribute to the flow of the antiferromagnetic and
d-wave superconducting propagators in SYM. Scale derivatives of the
diagrams in the first line contribute to the flow of the propagator for
the antiferromagnetic spin waves, those in the second line to the one
for d-wave superconductivity. Wiggly lines denote antiferromagnetic,
dashed lines superconducting bosons.
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from bosons, while the fermionic diagrams can be found in
Fig. 2 of Ref. 41. The momentum vector Q̂, which appears
in the denominator of the fermionic contribution to k∂km̄

2
a

in Eq. (28), accounts for the dominance of incommensurate
over commensurate antiferromagnetic fluctuations in a wide
range of parameters. In this case the minimum of the inverse
antiferromagnetic propagator P̃a(Q) + m̄2

a no longer occurs
for Q = 0. Rather, there exist four discrete minima at vectors
±Q̂x = ±(0,q̂,0) and ±Q̂y = ±(0,0,q̂), either of which can
be used as the vector Q̂ in Eq. (28). For a detailed description
of how incommensurate antiferromagnetism is treated within
the present approach, see Ref. 40.

In the symmetric regime, the fermionic contributions
decrease the bosonic mass terms during the flow, whereas the
bosonic contributions, proportional to the quartic couplings λ̄a ,
λ̄d , and λ̄ad , tend to increase them for positive λ̄a , λ̄d , and λ̄ad .
The closer the mass terms approach zero, the more important
the bosonic fluctuations become. Once the a- or d- boson
mass term becomes close to zero, bosonic fluctuations become
relevant, and the terms in the second lines of Eqs. (28) and (29)
may prevent it from actually reaching zero. Figure 3 shows
this by means of an example where the bosonic contribution
proportional to λ̄a inverts the direction of the flow of the mass
term m̄2

a so that it remains nonzero for k → 0.
Whenever a bosonic mass term m̄2

i becomes zero during the
flow, we change our description of the effective potential from
the form of Eq. (23) to that of Eq. (24) or the corresponding
versions for SSBa and SSBd. A negative quadratic term in
the effective potential indicates local order, since at a given
coarse graining scale k the effective average action evaluated at
constant field has a minimum for a nonzero value of the boson
field. The largest temperature where at fixed values of U,t ′,μ
one of the mass terms m̄2

i vanishes during the flow is called
the pseudocritical temperature Tpc. It can also be described as
the largest temperature where short-range order sets in. At this
temperature the effective momentum-dependent four-fermion
coupling diverges in the channel where m̄2

i hits zero, as seen
in the purely fermionic flow studies like Ref. 28. However, the
local order does not necessarily lead to long-range order, since
the tendency toward order may be countered by long-range
bosonic fluctuations.

FIG. 3. (Color online) Flow of the antiferromagnetic mass term
m̄2

a for U/t = 3, t ′/t = −0.1, μ/t = −0.77, and T/t = 0.0215. The
inset shows a detail of the flow where m̄2

a reaches its minimal value,
followed by an increase due to the bosonic contributions in the second
line of Eq. (28).

If the order persists for k reaching a macroscopic scale, the
model exhibits effectively spontaneous symmetry breaking,
associated in our model to (either commensurate or incommen-
surate) antiferromagnetism or d-wave superconductivity. The
true critical temperature Tc is defined as the largest temperature
for which local order persists up to some physical scale kph

corresponding to the inverse size of a macroscopic sample (see
Refs. 36 and 38). We choose here kph = (1 cm)−1 ≈ 10−9t . In
order to determine the true critical temperature for either a

or d type of order, it is therefore necessary to switch to the
truncation in which either α0 or δ0 (or both) are nonzero.
Already a quick inspection of the phase diagram for U/t = 3
and t ′/t = −0.1 (Fig. 1) reveals the importance of the flow
in the spontaneously broken regimes. The pseudocritical tem-
perature Tpc differs substantially from the critical temperature
Tc. In particular, the fact that local antiferromagnetic order
is found at higher temperatures than superconducting order
for 0.6 < |μ|/t < 0.79 does not imply that the system shows
antiferromagnetic long-range order for these values of μ.
For low-enough temperatures superconducting order actually
prevails for μ/t > 0.66. The flow equations for the regimes
with spontaneous symmetry breaking are discussed in more
detail in the following section.

The flow of the bosonic mass terms and Yukawa couplings
in the symmetric regime is shown in the first and second
panels of Fig. 4. Here we have chosen a chemical potential
where antiferromagnetism is the dominant instability. Since
the s-wave superconducting mass term falls slightly below
the antiferromagnetic mass term and the Yukawa coupling
in the d-wave channel h̄d rises above the Yukawa coupling
in the antiferromagnetic channel, one has to look at the ratios

FIG. 4. (Color online) Flow of the bosonic mass terms m̄2
a ,

m̄2
ρ , m̄2

s , and m̄2
d (upper left panel), the Yukawa couplings h̄a(0),

h̄ρ(), h̄s(0), and h̄d (0) (upper right panel). The lower panel
shows a logarithmic plot of the effective fermionic four-point
couplings λF,i where λF,a = h̄2

a(0)/m̄2
a , λF,ρ = h̄2

ρ()/m̄2
ρ , λF,s =

h̄2
s (0)/m̄2

s , and λF,d = h̄2
d (0)/m̄2

d . The lines for all three panels
are green (dashed) for the antiferromagnetic boson, red (solid)
for the d-wave superconducting boson, blue (dotted) for the
charge density wave boson, and magenta (dashed-dotted) for the
s-wave superconducting boson. All dimensionful quantities are in
units of t . Parameters chosen are U/t = 3, t ′/t = −0.1, μ/t = −0.6,
and T/t = 0.07, where the system is always in the symmetric regime.
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FIG. 5. (Color online) Same as Fig. 4, now for U/t = 3, t ′/t =
−0.1, μ/t = −0.83, and T/t = 0.011.

h̄2
i /m̄

2
i in order to see that the coupling in the antiferromagnetic

channel is actually the dominant one. This is shown in the
third panel of Fig. 4 where one can see that for the given
choice of parameters the antiferromagnetic coupling is more
strongly enhanced than the couplings in the s- and d-wave
superconducting channels. The coupling in the charge density
channel grows least of all four. We observe the very small value
of the effective coupling for d-wave superconductivity at short
distance scales (large k). This reflects the fact that this coupling
is only generated by the antiferromagnetic fluctuations.

In Fig. 5 the flow of the bosonic mass terms, Yukawa
couplings and effective fermionic four-point couplings is
displayed for a combination of parameters where the coupling
in the d-wave superconducting channel is the dominant one.
Although this coupling is smallest on high scales of the flow
by several orders of magnitude, it is strongly enhanced during
the flow due to antiferromagnetic fluctuations, as discussed
within the context of the present framework in Ref. 41. At
temperatures slightly lower than in Fig. 5 the mass term m̄2

d

reaches zero and the d-wave coupling diverges at a nonzero
renormalization scale k = kSSB.

B. Quartic bosonic couplings

The flow of the quartic bosonic couplings λ̄a , λ̄d , and
λ̄ad is crucial for the long-range physics of the system
in the symmetry-broken regimes, which is dominated by
bosonic fluctuations. In order to obtain at k = kSSB the
appropriate starting values for the flow of these couplings in
the symmetry-broken regimes, however, one has to consider
their flow already in the symmetric regime. If commensurate
antiferromagnetic fluctuations dominate, the flow equation for
the antiferromagnetic quartic coupling λ̄a is given by

k∂kλ̄a

= ��̇(4)
a (0,0,0,0) = 4h̄4

a(0)
∑
P

k∂̃k

1[
P k

F (P )P k
F (P + )

]2

−
∑

P k∂̃k

(
11

2

λ̄2
a[

P k
a (P ) + m̄2

a

]2 + λ̄2
ad[

P k
d (P ) + m̄2

d

]2

)
,

(30)

where ��(4)
a denotes the one-loop contribution to the bosonic

four-point function, obtained as the fourth functional derivative
of the flowing action with respect to the field a, and the overdot
· indicates the insertion of k∂̃k under the measure of the loop
integral implicit in ��(4)

a . Where incommensurate fluctuations
dominate over commensurate ones the flow equation (30) for
λ̄a has to be modified, yielding

k∂kλ̄a = 1
2

[
��̇(4)

a (Q̂x, − Q̂x,Q̂x, − Q̂x)

+��̇(4)
a (Q̂x, − Q̂x,Q̂y, − Q̂y)

]
. (31)

For the quartic coupling λ̄d of the d-boson one has the flow
equation

k∂kλ̄d = 16h̄4
d (0)

∑
P

k∂̃k

fd (p)4[
P k

F (P )P k
F (−P )

]2

−
∑
P

k∂̃k

(
5

λ̄2
d[

P k
d (P ) + m̄2

d

]2 + 3

2

λ̄2
ad[

P k
a (P ) + m̄2

a

]2

)
.

(32)

The flow equation for the quartic coupling λ̄ad describing
the mutual interaction between the a and d boson is given by

k∂kλ̄ad

= 8h̄2
a(0)h̄2

d (0)
∑
P

k∂̃k

(
−2fd (p)2[

P k
F (P )

]2
P k

F (−P )P k
F (P + )

+ fd (p)fd (p + π )

P k
F (P )P k

F (−P )P k
F (P + )P k

F (−P + )

)

−
∑
P

k∂̃k

(
5

2

λ̄aλ̄ad[
P k

a (P ) + m̄2
a

]2 + 2
λ̄d λ̄ad[

P k
d (P ) + m̄2

d

]2

+2
λ̄2

ad[
P k

a (P ) + m̄2
a

][
P k

d (P ) + m̄2
d

]
)

. (33)

Graphical representations of the diagrams from which the
contributions to the flow of λ̄a , λ̄d , and λ̄ad are obtained as
scale derivatives are given in Fig. 6.

The left panel of Fig. 7 shows the flow of the quartic bosonic
couplings λ̄a , λ̄d , and λ̄ad for the same set of parameters as
used in Fig. 4. Although antiferromagnetism is the dominant
instability for this choice of parameters, the quartic coupling λ̄a

(green, dashed curve) is only comparatively weakly enhanced
during the flow. For smaller values of −t ′ and not so close to
half filling it may even turn negative during the flow so that
the effective potential, according to the truncation (23), is no
longer bounded from below so that the truncation is no longer
adequate and has to be replaced by a more extended one. A
negative value of λ̄a may either indicate a tendency toward a
first-order antiferromagnetic phase transition, but it may also
result from a more general inadequacy of the parametrization
of the effective potential as a polynomial in the fields in the
given range of parameters. To avoid these difficulties, which
do not arise at larger values of −μ (see the green, dashed curve
in the right panel of Fig. 7), we focus in this work on values
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FIG. 6. Contributions to the flow of the quartic bosonic couplings
λ̄a , λ̄d , and λ̄ad in SYM. The first line shows the contributions
from fermionic; the second and third lines show those from bosonic
loops. Wiggly lines denote antiferromagnetic; dashed lines denote
superconducting propagators. So the diagrams with four external
wiggly lines contribute to the flow of λ̄a , those with four external
dashed lines contribute to the flow of λ̄d , and those with two external
wiggly and two external dashed lines contribute to the flow of λ̄ad .

of the parameters t ′ and μ for which λ̄a is non-negative on all
scales.

While the coupling λ̄a stays rather small during the flow
and mostly has only a mild influence on the flow of the
antiferromagnetic mass term in SYM, the quartic coupling
λ̄d can grow very large. Already for the parameters used in
the left panel of Fig. 7, where the d-wave channel is far from
critical, the coupling λ̄d (red, solid curve) is substantially more
enhanced than the quartic coupling λ̄a . The increase of λ̄d

is even stronger in the range of parameters where d-wave
superconductivity is the dominant instability. This is shown in
the right panel of Fig. 7, where λ̄d is displayed after division
by ten. The eminent growth of λ̄d during the renormalization
flow is chiefly responsible for the fact that the transition to
d-wave superconductivity occurs only at rather large values
of −μ as compared to the results in Ref. 41 where no quartic
bosonic couplings were taken into account.

The quartic coupling λ̄ad , which describes the direct
interaction between the a and d boson can change its sign from
positive to negative, or inversely, during the renormalization
flow; see Fig. 7 (short-dashed curves). If it is positive, it
enhances the mass terms m̄2

a and m̄2
d ; otherwise, it decreases

them like the fermionic contributions to their flow.

FIG. 7. (Color online) (Left) Flow of the (unrenormalized) quartic
bosonic couplings λ̄a (green, dashed), λ̄d (red, solid), and λ̄ad (blue,
dotted) in SYM for U/t = 3, t ′/t = −0.1, μ/t = −0.6, and T/t =
0.07. (Right) The same for μ/t = −0.83 and T/t = 0.011, with λ̄d

multiplied by 0.1.

C. Anomalous dimensions and wave function renormalization

For the long-distance behavior of the system, the anomalous
dimensions ηa and ηd are of importance. They are defined as

ηa = −k∂k ln Aa ηd = −k∂k ln Ad, (34)

so they can be determined from the flow equations for Aa and
Ad . A description of how we access these quantities in the
present approach can be found in Appendix B of Ref. 41.

The flow equation for the fermionic wave function renor-
malization factor ZF = ZF (ω = ±πT ) is obtained from the
flow of the fermionic propagator at the lowest two Matsubara
modes ±πT . We use the formula

k∂kZF = 1

2πiT

[
��̇

(2)
F (πT,qF ) − ��̇

(2)
F (−πT,qF )

]
. (35)

Here the subscript F and the superscript (2) in ��
(2)
F indicate

that the derivative has to be taken two times with respect to the
fermionic fields. Again, the overdot · indicates the insertion
of k∂̃k under the measure of the loop integral implicit in
��

(2)
F . In our ansatz some choice has to be made for the Fermi

momentum qF appearing on the right-hand side of Eq. (35).
As we have checked, the increase of ZF during the flow is
in general stronger for qF close to the points (0, ± π ) and
(±π,0) than for qF close to the Brillouin zone diagonal,57 but
the precise choice does not matter for the semi-quantitative
features of the phase diagram. For the results displayed in the
figures, we have set qF = (0,π ).

The flow of the Z and A factors used in the parametrization
of the a- and d-boson propagators is displayed in the upper
panels of Fig. 8. The lower panel shows the fermionic wave
function renormalization factor ZF (πT ), which start its flow
from 1 and grows by some fraction for which the increase by
20% in Fig. 8 is representative.

FIG. 8. (Color online) (Upper left panel) Flow of the bosonic
wave function renormalization factors Za (green, dashed) and Zd

(red, solid). (Upper right panel) Flow of the gradient coefficients
Aa (green, dashed) and Ad (red, solid). (Lower panel) Flow of the
fermionic wave function renormalization factor ZF (πT ). All curves
are for the symmetric regime at U/t = 3, t ′ = −0.1, μ/t = −0.6,
and T/t = 0.07.
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V. FUNCTIONAL RENORMALIZATION FOR THE
SYMMETRY-BROKEN REGIMES

In the studied parameter region we observe spontaneous
symmetry breaking only in the antiferromagnetic and d-wave
superconducting channels. For the range of k where one of
these channels shows local order we drop the charge density
and s-wave superconducting bosons from our truncation and
neglect the fermionic self-energy corrections. Furthermore, we
restrict our attention to temperatures T > Tmin = 4 × 10−3t

and thus do not assess the ground-state properties of the model
at different values of μ and t ′. Furthermore, we neglect the
scale- and momentum-dependences of the Yukawa couplings
h̄a and h̄d , keeping their values fixed at those which they have
at kSSB: h̄a|k ≡ h̄a(0)|kSSB and h̄d |k ≡ h̄d (0)|kSSB for k < kSSB.
This neglect is made mainly due to computational reasons,
but it should not have an important impact on the flow in the
SSB regimes at low temperatures, which is dominated by the
long-range bosonic fluctuations, that is, the bosonic masses,
order parameters, and quartic couplings.

As a final simplification, we neglect the incommensurability
q̂ in the SSB regimes, which would otherwise have to be
included in the truncation (24) for the effective potential.
Although including the incommensurability may have an
effect on the flow of the antiferromagnetic order parameter
at intermediate scales, we expect that it would not influence
its flow at low scales, which is mainly determined by the
number of Goldstone bosons. In addition to the continuous
symmetry associated to the antiferromagnetic order parameter,
incommensurate antiferromagnetic order breaks the symme-
try of rotations of the lattice by π/2. Nevertheless, the
spontaneous breakdown of this discrete symmetry does not
lead to the emergence of additional Goldstone modes. We
also do not think that the spontaneous breaking of lattice
translation invariance results in major changes of the flow.
Setting the incommensurability to zero in the spontaneously
broken regimes will presumably leave the universal aspects
of the flow of the running couplings in these regimes
intact.

A. Flowing potential for bosons

For the SSB regimes we derive the flow equations for the
order parameters and quartic couplings from the flow equation
of the local effective potential UB(α,δ) which is given by

∂kUB(α,δ) = 1
2 STr∂̃k lnPk[α,δ]. (36)

Here Pk[α,δ] corresponds to the cutoff-dependent full inverse
propagator �

(2)
k [α,δ] + Rk evaluated for constant bosonic

fields. Within our truncation, the right-hand side of the flow
equation for the effective potential (36) can be decomposed
into a fermionic and a bosonic contribution,

∂kUB(α,δ) = [∂kUB(α,δ)]F + [∂kUB(α,δ)]B. (37)

The bosonic part can be written as

(∂kUB[α,δ])B

= 1

2

∑
P,i,j

∂̃k ln
[
Pi(P )δi,j + M̂2

i,j (α,δ) + Rk
i (P )δi,j

]
, (38)

where Pi(P ) = Pa(P ) and Ri(P ) = Ra(P ) for i = 1,2,3 and
Pi(P ) = Pd (P ) and Ri(P ) = Rd (P ) for i = 4,5, respectively.
The matrix M̂2

i,j (α,δ), which has to be diagonalized, has entries

M̂2
i,j (α,δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̄a(3α −α0) + λ̄ad (δ − δ0), i = j = 1,

λ̄a(α − α0) + λ̄ad (δ − δ0), i = j = 2,3,

λ̄d (3δ − δ0) + λ̄ad (α − α0), i = j = 4,

λ̄d (δ − δ0) + λ̄ad (α − α0), i = j = 5,

1
2 λ̄ad

√
αδ, i = 1 and j = 4,

1
2 λ̄ad

√
αδ, i = 4 and j = 1,

0, otherwise.

(39)

The first and fourth lines and columns of the matrix M̂2
i,j (α,δ)

are associated to the radial, the others to the Goldstone modes.
The radial modes of the two bosons are coupled to each
other through the coupling λ̄ad , whereas the Goldstone modes
remain unaffected. The form Eq. (39) for the matrix M̂2

i,j (α,δ)
is adequate only in SSBad where the minimum of the effective
potential U (α,δ) occurs at nonzero values α0, δ0 of both order
parameters α and δ. For α0 = 0, the first three diagonal entries
of M̂2

i,j (α,δ) have to be replaced by m̄2
a + 3λ̄aα (for i = 1)

and m̄2
a + λ̄aα (for i = 2,3). For δ0 = 0, the fourth and fifth

diagonal entries of M̂2
i,j (α,δ) have to be replaced by m̄2

d + 3λ̄dδ

and m̄2
d + λ̄dδ.

The fermionic part [∂kUB(α,δ)]F of the flow of the effective
potential is given by

(∂kUB)F = − 1
2 TrF ∂̃k lnP, (40)

where the sum in the tracex TrF is over fermionic indices
only. Introducing the antiferromagnetic gap �2

a = 2h̄2
aα0

and the (momentum-dependent) d-wave superconducting gap
�2

d (q) = 4h̄2
dfd (q)2δ0 this fermionic contributions to the flow

of the effective potential can be derived from

(�UB)F = −1

2
TrF lnP

= −T

∫
p

d2p

(2π )2

∑
ε={±1}

ln cosh

(
�ε

2T

)
, (41)

where

�ε =
[(

1

2
(ξp + ξp+π ) + ε

√
1

4
(ξp − ξp+π )2 + �2

a

)2

+�2
d (q)

]1/2

. (42)

By the help of Eqs. (38) and (40) the flow equations for the
quartic couplings λ̄a , λ̄d , and λ̄ad are obtained by appropriate
derivatives with respect to the fields α and δ on both sides of
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Eq. (36),

∂kλ̄a = d2

dα2
[∂kU (α,δ)]|α=α0, δ=δ0 ,

∂kλ̄d = d2

dδ2
[∂kU (α,δ)]|α=α0, δ=δ0 , (43)

∂kλ̄ad = d2

dαdδ
[∂kU (α,δ)]|α=α0, δ=δ0 .

These formulas are also valid if one of the symmetries remains
unbroken in which case one has to set either α0 or δ0 to zero.
For α0 = 0 or δ0 = 0 the flow of the mass term obeys

∂km̄
2
a = d

dα
[∂kU (α,δ)]|α0=0, δ=δ0 (44)

or

∂km̄
2
d = d

dδ
[∂kU (α,δ)]|α=α0, δ=0. (45)

While in the symmetric regime the fermionic contributions
to the flow of the mass terms are always negative and drive
the masses toward zero, in the regimes with spontaneous
symmetry breaking they may change sign. In this case even
the fermionic contribution can lead to an increase of the mass
terms of the bosonic fields with vanishing order parameters. In
particular, if the antiferromagnetic order parameter acquires
a nonzero value, this may change the sign of the fermionic
contribution to the flow of the superconducting mass term m̄2

d

and prevent it from becoming zero. This effect is shown in
Fig. 9. In that sense the presence of antiferromagnetic order
in the system has a tendency to prevent the establishment
of d-wave superconducting order. Similarly, in the regimes
where both α0 and δ0 are nonzero, a large value of α0 has a
diminishing influence on the fermionic contribution to the flow
of δ0, which therefore grows less quickly or decreases faster
for k → 0 than if α0 were zero. This effect acts against the
coexistence of antiferromagnetic and d-wave superconducting
order. Indeed, the phase diagram in Fig. 1 shows no region of
coexistence of both orders, in contrast to what one might have
expected from the flow of the masses and Yukawa couplings
in the symmetric regime and the pseudocritical temperatures.

FIG. 9. (Color online) Flow of the d-wave superconducting mass
term m̄2

d (red, solid) and (unrenormalized) antiferromagnetic order
parameter α0 (green, dashed), the latter multiplied by ten. Here
nonzero α0 inverts the sign of the fermionic contribution to the
flow of m̄2

d so that it no longer decreases but rather increases and
later saturates during the flow. Parameters chosen are U/t = 3,
t ′/t = −0.1, μ/t = −0.65, and T/t = 0.04.

B. Flowing minimum

To derive the flow equations of the order parameters
α0 and δ0 we use the condition that UB(α0,δ0) should be
the minimum of the effective potential UB(α,δ). From the
necessary condition

∂αUB(α0,δ0) = ∂δUB(α0,δ0) = 0, (46)

which has to hold on all scales, one obtains the prescription

d

dk
∂αUB(α0,δ0) = d

dk
∂δUB(α0,δ0) = 0. (47)

Together with Eq. (43) the flow equations for the order
parameters follow:

∂kα0 = − λ̄d

λ̄aλ̄d − λ̄2
ad

∂α∂kUB,k(α,δ)|α=α0, δ=δ0

+ λ̄ad

λ̄aλ̄d − λ̄2
ad

∂δ∂kUB,k(α,δ)|α=α0, δ=δ0 ,

(48)

∂kδ0 = − λ̄a

λ̄aλ̄d − λ̄2
ad

∂δ∂kUB,k(α,δ)|α=α0, δ=δ0

+ λ̄ad

λ̄aλ̄d − λ̄2
ad

∂α∂kUB,k(α,δ)|α=α0, δ=δ0 .

For parameter regions where λ̄aλ̄d − λ̄2
ad reaches zero

the polynomial approximation for the flowing potential
UB(α,δ) is no longer appropriate, and we discuss this issue
below.

For the studied temperature regime T > Tmin the lowest
Matsubara mode n = 0 dominates in the spontaneously broken
regimes (k < kSSB) and the dimensionality of the problem is
effectively reduced from 2 + 1 to 2, a mechanism which is
known as “dimensional reduction.” Within our flow equation
approach dimensional reduction occurs automatically and in a
smooth way due to the effective form of the flow equations.58

It occurs effectively already for k somewhat above kSSB where
the contribution of bosons with n �= 0 becomes small. For
computational simplicity, we therefore neglect contributions
from all bosonic Matsubara modes except the lowest ones in
the spontaneously broken regimes. This assumption becomes
exact in the limit of k � πT , and we expect it to involve only
a small quantitative inaccuracy at scales close to the critical
scale. For very low temperature T � kSSB these arguments are
no longer valid. This is the reason why the phase diagram
in Fig. 1 is not shown for temperatures close to T = 0. If
α0 or δ0, but not both, are nonzero, the long-range behavior
of the system at finite temperature can be described by the
O(3)-symmetric59 or O(2)-symmetric linear σ model, depend-
ing on whether α0 or δ0 is nonzero. The properties of these
models are well known and well understood.

In a regime where the lowest Matsubara mode dominates
over the others by far, one is dealing with an effectively
two-dimensional problem, the unrenormalized field expec-
tation values α0 and δ0 have to vanish in the infrared limit
k → 0 in accordance with the Mermin-Wagner theorem.
However, for the O(2)-symmetric model, which can be used
as an approximation in the dimensionally reduced regime
for superconducting order, the renormalized field expectation
value κd = t2Adδ0/T may remain nonzero even if δ0 drops to
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zero as the gradient coefficient Ad may diverge in this case.60

This behavior is characteristic of a Kosterlitz-Thouless phase
transition;61 for functional renormalization group treatments,
see Refs. 38, 62, and 63. Although the polynomial expansion of
the effective potential in Eq. (24) is not sufficient to account for
the finiteness of κd down to k = 0, it is sufficiently accurate
to describe its being nonzero down to scales k � kph much
smaller than any realistic inverse probe size l−1; see Ref. 38
for a more detailed discussion.

In order to make contact with the familiar results from
the O(N)-symmetric models, it is convenient to introduce the
dimensionless (renormalized) quantities α̃, κa , δ̃, κd , λa , λd ,
and λad , which are given by

α̃ = t2Aa

T
α, κa = t2Aa

T
α0,

δ̃ = t2Ad

T
δ, κd = t2Ad

T
δ0,

(49)

λa = T

t2k2A2
a

λ̄a, λd = T

t2k2A2
d

λ̄d ,

λad = T

t2k2AaAd

λ̄ad .

In terms of these quantities, when the fermions are fully gapped
and dimensional reduction is efficient so that k � 2πT and
k � π , the flow equations for the order parameters and quartic
couplings at vanishing λ̄ad = 0 reduce to those familiar from
the O(2)- and O(3)-symmetric linear σ -models, namely,

k∂kκa = (4 − ηa)

16π

(
3

(1 + 2λaκa)2
+ 2

)
− ηaκa, (50)

k∂kλa = λ2
a

(4 − ηa)

8π

(
9

(1 + 2λaκa)3
+ 2

)
− 2(1 − ηa)λa

(51)

for the a-boson, and

k∂kκd = (4 − ηd )

16π

(
3

(1 + 2λdκd )2
+ 1

)
− ηdκd, (52)

k∂kλd = λ2
d

(4 − ηd )

8π

(
9

(1 + 2λdκd )3
+ 1

)
− 2(1 − ηd )λd

(53)

for the d-boson. Since in the regime with two nonzero order
parameters the absolute value of λad is normally driven to
zero much faster than the two other quartic couplings λa and
λd , the flow of κa , κd , λa , λd is generally well described by
Eqs. (50)–(53). If, however, |λad | is larger than the geometric
mean of λa and λd , that is, if |λad | >

√
λa · λd , the effective

potential U (α,δ) no longer has a minimum at (α0,δ0) and this
signals the breakdown of our truncation which relies on an
expansion of U (α,δ) around (α0,δ0), assumed to be the location
of a minimum. Fortunately, however, our numerical results
for the truncation Eq. (24) yield a violation of the condition
|λad | <

√
λa · λd only in regions where antiferromagnetism

strongly dominates over d-wave superconductivity. In this
regime, the effect of d-wave superconducting fluctuations on
the emergence of antiferromagnetic order is negligible and
the truncation Eq. (24) is not natural. Consequently, if in
this regime |λad | rises above

√
λa · λd , we set λad to zero

on all scales whereby the expansion for the effective potential
becomes again well-defined.

The main difference between the flow equations for κa and
λa on the one hand and κd and λd on the other concerns the
“+2” in Eqs. (50) and (51) as opposed to the “+1” in Eqs. (52)
and (53). This corresponds to the different numbers 2 and 1 of
Goldstone bosons in the symmetry-broken phases of the O(3)-
and O(2)-symmetric linear σ -models, respectively. Since in
the presence of a non-negligible order parameter the Goldstone
modes have a much stronger influence than the radial modes
in driving the order parameter to zero, their number is crucial
for how long (in terms of the renormalization group flow)
the system remains in the symmetry-broken regime. The β-
functions for κa and κd are qualitatively different, since for κd

the contribution “+1” is canceled by the anomalous dimension,
as we see next.

C. Anomalous dimensions

In order to obtain the anomalous dimensions, one has to
determine the flow equations for Aa and Ad in the presence of
nonzero κa and/or κd . To this end, we take a second derivative
of the loop contributions to Pa(Q) and Pd (Q) with respect to
spatial momentum and a derivative with respect to the scale k:

∂kAa = ∂k

(
lim
l→0

1

2

∂2

∂l2
�Pa(0,l,0)

)
, (54)

∂kAd = ∂k

(
lim
l→0

1

2

∂2

∂l2
�Pd (0,l,0)

)
. (55)

In the regimes exhibiting spontaneous symmetry breaking,
the fermionic contributions to ηa and ηd quickly become
negligible as soon as the scale drops below the temperature, and
it suffices to consider the bosonic contributions. In case the two
bosons can independently be described by the two-dimensional
O(3)- and O(2)-symmetric models these contributions are,
assuming dimensional reduction,

ηa,d = 1

π

λ2
a,dκa,d

(1 + 2λa,dκa,d )2
. (56)

In the presence of nonzero λad , this formula has to be
generalized, yielding

ηa = 1

π

(
λ2

ad

κd

[
1 − 4κa

(
λa − κdλ

2
ad + 2κdλaλd

)]
[
1 + 2κdλd + 2κa

(
λa − 2κdλ

2
ad + 2κdλaλd

)]2

+ κaλ
2
a(1 + 2κdλd )2[

1 + 2κdλd + 2κa

(
λa − 2κdλ

2
ad + 2κdλaλd

)]2

)
,

(57)

ηd = 1

π

(
λ2

ad

κa

[
1 − 4κd

(
λd − κaλ

2
ad + 2κaλaλd

)]
[
1 + 2κdλd + 2κa

(
λa − 2κdλ

2
ad + 2κdλaλd

)]2

+ κdλ
2
d (1 + 2κaλa)2[

1 + 2κdλd + 2κa

(
λa − 2κdλ

2
ad + 2κdλaλd

)]2

)
,

(58)

which reduces to Eq. (56) for λad = 0.
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FIG. 10. (Color online) Renormalized order parameters κ̂a

and κ̂d at the “macroscopic” scale k = kph, corresponding to
an inverse probe size of ≈1 cm, as a function of temper-
ature T for U/t = 3 and different values of μ. (Upper left
panel) Temperature dependence κ̂a for μ/t = −0.4, (upper right
panel) κ̂d for μ/t = −0.81. (Lower panel) κ̂d and κ̂a for
μ/t = −0.72, where they are nonzero in different temperature
ranges.

VI. TEMPERATURE DEPENDENCE
OF THE ORDER PARAMETERS

We now turn to the discussion of our numerical results for
the order parameters and the gaps as functions of temperature
(Fig. 10), the flow of the running couplings in a selected
number of cases (Figs. 11 and 12), and the more general
features of the phase diagram (Fig. 1) in the symmetry-broken
regimes SSBa, SSBd, and SSBad.

A. Order parameters

Figure 10 displays the renormalized antiferromagnetic
and d-wave superconducting order parameters κa and κd as

FIG. 11. (Color online) (Left) Flow of the renormalized an-
tiferromagnetic order parameter κa (green, dashed), renormalized
d-wave superconducting order parameter κd (red, solid) at U/t = 3,
t ′/t = −0.1, μ/t = −0.72, and T/t = 0.0131. The dashed-dotted
magenta curve shows the (unrenormalized) d-wave superconducting
mass term m̄2

d when it becomes nonzero again. (Right) Same
as left panel, but neglecting the mutual influence of the or-
der parameters; that is, each order parameter is set to zero in
all contributions to the other boson, as well as the interboson
coupling λad .

FIG. 12. (Color online) (Left) Flow of the renormalized anti-
ferromagnetic order parameter κa (green, dashed) and renormalized
d-wave superconducting order parameter κd (red, solid) at U/t = 3,
t ′/t = −0.1, μ/t = −0.72, and T/t = 0.0118. (Right) Flow of the
quartic couplings λa (green, dashed), λd (red, solid), and λad (blue,
dotted), the latter two multiplied by a factor of 0.1, for the same
choice of parameters.

functions of temperature at different values of the chemical
potential μ for U = 3t and t ′ = −0.1t . Both κa and κd

are evaluated at kph = 10−9t ≈ 1 cm−1, corresponding to a
realistic inverse probe size. The upper left panel shows the
temperature dependence of κ̂a = κa|k=kph at the van Hove
filling μ = 4t ′. The shape of this curve for κ̂a is similar
to that of the curve presented Fig. 1 in Ref. 36 for t ′ =
μ = 0. The temperatures where κ̂a is nonzero, however, are
lower according to the results presented here since more
fluctuations have been included which have a tendency to
destroy antiferromagnetic order. The upper right panel of
Fig. 10 shows the temperature dependence of κ̂d = κd |k=kph

at μ/t = −0.81, where only d-wave superconducting order
and no antiferromagnetic order occurs. The steep fall to zero
of κ̂d at T = Tc can be seen as a remnant of the jump in
the superfluid density found for a Kosterlitz-Thouless phase
transition at Tc in an improved truncation.38,63

In the absence of electromagnetic interactions (as for the
pure Hubbard model) the superconducting phase is actually a
superfluid phase with superfluid density given by ns = κ̂d/a

2,
where a denotes the lattice spacing and ns the number of
particles per area. For nonzero electromagnetic coupling e

the “photon mass” responsible for superconductivity is given
by mγ = 2e

√
κ̂d . (Here we observe that the d-boson carries

charge two. More precisely, e is the effective renormalized
electromagnetic coupling at the scale kph.) Other observable
quantities are the effective gaps for the electrons. Indeed, the
antiferromagnetic and d-wave superconducting gaps �a and
�d are related to κ̂a and κ̂d by �a = √

2h2
aκ̂a and �d (q) =√

h2
dfd (q)2κ̂d , where the renormalized Yukawa couplings ha

and hd are given by h2
a,d = T

Aa,d t4 h̄
2
a,d . Figure 10 therefore

predicts measurable quantities.
The lower panel of Fig. 10 shows a situation where, at

μ/t = −0.72, we find nonzero κd at low temperatures and
nonzero κa at higher temperatures. In between, we observe a
small temperature region around T = 0.0125t where neither
of the two order parameters remains nonzero down to k = kph.
In this region only local but no long-range order is present. An
interesting feature of this graph is the steepness of the rise of
κ̂a at T = Tc, which contrasts with the behavior at van Hove
filling (upper left panel of Fig. 10) where the rise below Tc

is relatively smooth. The main reason for this feature is the
strong growth with temperature of the final value of λa in
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SYM close to T = Tc. This value has an important influence
on the initial growth of κa in the spontaneously broken regime
and therefore at its value at k = kph. This effect is mainly
responsible for the smallness of the temperature interval in
which κ̂a drops to zero as the temperature approaches Tc from
below.

The fact that both order parameters become zero during
the flow at values of k > kph in a temperature region around
T = 0.0125t results from the mutual negative influence of the
two types of order on each other. This influence is further
illustrated by the left and right panels of Fig. 11, where
the left panel shows the flow of κa together with that of
κd down to k = kph. For the temperature T = 0.0131t used
in this graph κa is nonzero during a much longer period
of the renormalization flow than κd , which becomes zero at
− ln(k/t) ≈ 4.6 so that the superconducting mass term m̄2

d

(magenta curve) becomes nonzero again. The right panel of
Fig. 11, in contrast, shows the flow of the same couplings, but
in this case the mutual influence of the order parameters has
been neglected. This means that each order parameter is set to
zero in all contributions to the other boson and the interbosonic
quartic coupling λad is set to zero. As described in the previous
section, this is equivalent to deriving the bosonic contributions
to the flow equations from the O(3)- and O(2)-symmetric linear
σ -models at finite temperature. According to this simplified
treatment, neglecting the mutual influence of the two types
of order, both order parameters remain nonzero down to
k = kph. Such a result would suggest a region of coexistence
of “global” antiferromagnetic and d-wave superconducting
order.

In our example this coexistence is destroyed by the
mutual influence of the antiferromagnetic and superconducting
bosons. It is precisely this type of influence which has been
taken into account in the left panel of Fig. 11. We therefore
conclude that the two types of order have a tendency to
destroy each other. On the basis of a renormalized mean-
field treatment Ref. 34 (see in particular Figs. 10 and 11)
reports on an analogous tendency of antiferromagnetism and
superconductivity to mutually suppress each other.

For the curves shown in Fig. 12 the temperature has been
reduced in comparison to Fig. 11, so that both order parameters
(left panel) are nonzero for an important interval of the flow.
Now d-wave superconducting order persists down to much
lower scales k of the renormalization flow. Although at an
intermediate stage of the flow κa is considerably larger than
κd , it vanishes earlier during the flow due to the larger number
of Goldstone modes for antiferromagnetism. In the right panel
of Fig. 12 the flow of the quartic couplings λa , λd , and λad is
displayed, where λad approaches zero much more quickly than
λa and λd so that the two bosons are more or less independent
and the flow is dominated by their Goldstone modes at low
scales.

Taking things together, the example shown in the lower
panel of Fig. 10 demonstrates that the phase transitions cannot
always be understood by the universal behavior of linear or
nonlinear uncoupled σ -models. For example, in the O(3)-σ
model it is not possible to find a restoration of disorder at
temperatures below the ones for which long-range order is
realized. The competition of different bosons is crucial for a
quantitative understanding of the phase diagram.

B. Phase diagram

We now turn to the discussion of the phase diagram obtained
for U = 3t and t ′ = −0.1t , as shown in Fig. 1. For values
of −t ′ which are substantially smaller than 0.1t the quartic
coupling λa eventually becomes negative during the flow,
which may indicate a tendency toward a first-order transition
which is not captured in the present truncation of the effective
potential (24). For values of −t ′ which are considerably
larger, in contrast, the system exhibits a tendency toward
ferromagnetism.31 In order to account for this instability, the
truncation for the effective action and the parametrization of
the bosonic propagators and Yukawa couplings specified in
Appendix B of Ref. 41 would have to be adjusted accordingly.
Upon small variations of t ′ the qualitative picture of the phase
diagram remains essentially unchanged. If −t ′ is reduced, all
phase boundaries are shifted toward smaller values of −μ, if
−t ′ is increased, they move in the other direction. For smaller
values of the Hubbard interaction U , critical temperatures are
lower and the phase boundaries are shifted in the direction of
the van Hove filling chemical potential μ = 4t ′. The results
we have obtained for calculations at values of U and t ′ other
than U = 3t and t ′ = −0.1t do not alter the picture described
in what follows.

At the van Hove filling we find a sizable difference
between the pseudocritical temperature Tpc and the true critical
temperature Tc for antiferromagnetism, which differ by a
factor of about 2, mainly due to the two antiferromagnetic
Goldstone modes. In the d-wave superconducting regime at
−μ/t > 0.75, in contrast, there is only a slight difference
between Tpc and Tc, in accordance with earlier results on
the O(2)-symmetric model.38 The non-negligible difference
between Tpc and Tc for d-wave superconductivity in the
region between −μ/t = 0.66 and −μ/t = 0.75 is not due
to Goldstone fluctuations but arises from the influence of
antiferromagnetic order on the flow of κd .

One of the most intriguing questions about the phase
diagram of the two-dimensional Hubbard model is whether it
exhibits a region in parameter space where antiferromagnetic
and d-wave superconducting order coexist. In principle the
setup employed in the present work makes it possible to
assess this question, but the results obtained by means of
the truncation used here do not permit a definite answer.
While they clearly suggest that the two types of order “do not
like each other,” they can hardly be taken to rule out the exis-
tence of a region in parameter space where antiferromagnetism
and d-wave superconductivity coexist. Where the two phases
border each other at low temperatures around −μ/t = 0.66 in
Fig. 1 there is always at least one type of order which persists
down to k = kph = 1 cm−1 ≈ 10−9t , and the value of k where
the second-order parameter drops to zero is often very close
to kph. Coexistence might occur, even within the truncation
used here at temperatures below Tmin = 4 × 10−3t , the lowest
temperature for which we have done calculations. In all cases
where both order parameters remain finite for a considerable
part of the flow, the values of the running couplings at
k = kph are highly sensitive to their values at the onset of
the spontaneously broken regime. Therefore, we expect that
further extensions of the truncation, which may influence the
flow on intermediate scales, can have an important effect on
the shape of the phase boundaries where the antiferromagnetic
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and d-wave superconducting phases are close to each other.
Self-energy corrections, higher order bosonic couplings, and
the effect of the antiferromagnetic incommensurability, which
we have neglected here in the SSB regimes, may be responsible
for whether there exists a region in the phase diagram where
antiferromagnetic and d-wave superconducting order coexist
at k = kph. The results presented here, however, suggest that
if there is a region in μ − T space where antiferromagnetism
and d-wave superconductivity coexist on a macroscopic level,
this region is probably not very extended.

VII. CONCLUSIONS

Our main conclusion is that functional renormalization
combined with partial bosonization can give direct and physi-
cally transparent access to the low-temperature behavior of the
Hubbard model. We have computed the temperature depen-
dence of the superfluid density or the antiferromagnetic order
parameter for temperatures below the critical temperature from
which the associated gaps for the electrons can easily be
determined. Taking into account the fluctuations of composite
bosons we can incorporate the important contributions from
collective spin waves or d-wave superconducting bosons. This
allows us to compute the critical temperature as a function
of the chemical potential and therefore to establish the phase
diagram.

The physics of collective boson fluctuations is quanti-
tatively important. This is demonstrated in Fig. 1 by the
substantial difference between the pseudocritical tempera-
ture (which is often associated with the critical tempera-
ture in other approaches) and the true critical temperature.
Also the understanding of the region with coexisting local

antiferromagnetic and superconducting order (in Fig. 1 for
−μ/t between approximately 0.6 and 0.8) would be different
without a proper understanding of the bosonic fluctuations.

It is obvious that more extended truncations can substan-
tially improve the quantitative accuracy. One may include into
the flowing momentum-dependent four-fermion vertex (in-
stead of a constant U ) the changes which cannot be absorbed by
bosonization into the present channels, or one could increase
the number of bosonic channels retained. Furthermore, a more
accurate parametrization of the momentum and frequency
dependence of the bosonic and fermionic propagators could
be helpful. One may go beyond the quartic polynomial
approximation for the effective bosonic potential, both in order
to account for possible first-order phase transitions and to give
a more accurate description of the universal critical behavior
for the second-order phase transitions.

Nevertheless, we believe that several of our findings are
rather robust. This concerns the existence of an extended region
in the phase diagram for which local order but no long-range
order exists. In particular, the transition between antifer-
romagnetic and superconducting order is rather complex,
with coexisting local antiferromagnetic and superconducting
order, but also a strong tendency of exclusion of coexisting
long-range order due to the bosonic fluctuations.
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