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The two-dimensional (2D) spin- 1
2 Heisenberg antiferromagnet with exchange coupling J is investigated

on a periodic square lattice of spacing a at very small temperatures using the loop-cluster algorithm. Monte
Carlo data for the staggered and uniform susceptibilities are compared with analytic results obtained in the
systematic low-energy effective field theory for the staggered magnetization order parameter. The low-energy
parameters of the effective theory, i.e., the staggered magnetization density Ms = 0.307 43(1)/a2, the spin
stiffness ρs = 0.180 81(11)J , and the spin wave velocity c = 1.6586(3)Ja, are determined with very high
precision. Our study may serve as a test case for the comparison of lattice quantum chromodynamics Monte
Carlo data with analytic predictions of the chiral effective theory for pions and nucleons, which is vital for the
quantitative understanding of the strong interaction at low energies.

DOI: 10.1103/PhysRevB.83.155120 PACS number(s): 12.39.Fe, 75.10.Jm, 02.70.Ss, 11.30.Qc

I. INTRODUCTION

Partly motivated by the relation of antiferromagnetism
to high-temperature superconductivity, during the past 20
years quantum spin models, such as the spin- 1

2 Heisenberg
antiferromagnet on the square lattice, have been studied in
great detail. Since this system is strongly coupled, numerical
simulations play an important role in its quantitative analysis.
In this way, it has been shown that the SU(2)s spin sym-
metry breaks down spontaneously to its U(1)s subgroup at
zero temperature. As a result, massless Goldstone bosons—
the antiferromagnetic magnons—dominate the low-energy
physics. The magnon dynamics can be described quantitatively
using a low-energy effective field theory for the staggered
magnetization order parameter.1–5 Low-energy phenomena
can then be investigated analytically, order by order in a
systematic derivative expansion.

Systematic effective field theories also play an important
role in the low-energy physics of the strong interaction.
On the one hand, lattice quantum chromodynamics (QCD)
describes the underlying dynamics of quarks and gluons
beyond perturbation theory, but can only be investigated by
very-large-scale Monte Carlo calculations. On the other hand,
chiral perturbation theory, the systematic low-energy effective
field theory for pions—the pseudo-Goldstone bosons of the
spontaneously broken SU(2)L × SU(2)R chiral symmetry of
QCD—has been investigated analytically in great detail. The
predictions of the effective theory depend on a number of
low-energy parameters, including the pion decay constant,
the chiral condensate, as well as the higher-order Gasser-
Leutwyler coefficients. For the quantitative understanding
of the strong interaction at low energies, it is of central
importance to accurately determine the values of the low-
energy parameters by comparison of lattice QCD Monte
Carlo data with analytic chiral perturbation theory predictions.
In recent years, there has been substantial progress in this
direction, and the leading-order low-energy parameters have
been determined with a few percent accuracy. Extending this
to the higher-order low-energy parameters, as well as reaching

higher precision while keeping complete control of systematic
errors, will be a major challenge for lattice QCD in the near
future.

The two-dimensional (2D) spin- 1
2 Heisenberg antiferro-

magnet can serve as an ideal test case, in which the interplay
between high-precision numerical simulations of the under-
lying microscopic system and high-order calculations in the
corresponding systematic low-energy effective field theory
can be investigated quantitatively. In contrast to lattice QCD,
which is much more complicated, the Heisenberg model can
be simulated with very efficient methods, and has been in-
vestigated in several high-accuracy numerical studies.6–16 The
first very precise determination of the low-energy constants
of the 2D spin- 1

2 Heisenberg antiferromagnet was performed
in Ref. 6 using the loop-cluster algorithm.17 This study
was based on a cubical space-time geometry, for which the
inverse temperature β = 1/T , which determines the extent of
Euclidean time, is compatible with the spatial size L, i.e., βc ≈
L. By comparison of the Monte Carlo data with analytic two-
loop results of Hasenfratz and Niedermayer, obtained in the
systematic low-energy effective field theory for the staggered
magnetization order parameter,5 the staggered magnetization
density Ms , the spin stiffness ρs , and the spin wave velocity
c were determined as Ms = 0.3074(4)/a2, ρs = 0.186(4)J ,
and c = 1.68(1)Ja. A few years later, the development of the
continuous-time simulation technique7 enabled numerical in-
vestigations of quantum spin models at very low temperatures.
This allowed a comparison of Monte Carlo data with analytic
one-loop results in the cylindrical space-time regime at very
low temperatures βc � L, which led to Ms = 0.3083(2)/a2,
ρs = 0.185(2)J , and c = 1.68(1)Ja, in statistical agreement
with the results obtained in the cubical space-time regime.
The fit in the cylindrical regime required an incorporation
of two-loop corrections with adjustable prefactors, because
these effects had not been determined analytically at that time.
Recently, Niedermayer and Weiermann have closed this gap
by performing the corresponding analytic two-loop calculation
in the effective theory.18 Slablike space-time geometries with
L � βc have been investigated in Ref. 9. In that study, using
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finite-size scaling, very long spatial correlation lengths up to
350 000 lattice spacings have been investigated. A combined fit
of Monte Carlo data in the cubical, cylindrical, and slab geome-
tries then gave Ms = 0.307 97(3)/a2, ρs = 0.1800(5)J , and
c = 1.657(2)Ja. In a recent study using a zero-temperature
valence-bond projector method, Sandvik and Evertz obtained
the very accurate result Ms = 0.307 43(1)/a2. Although the
discrepancy between these two results for Ms is at the per
thousand level, it is statistically significant. Indeed, in a
high-precision analysis of the constraint effective potential of
the staggered magnetization, which relied on two-loop predic-
tions in the effective theory by Göckeler and Leutwyler,19,20

we suspected that the previously obtained estimates Ms =
0.3083(2)/a2 (Ref. 7) andMs = 0.307 97(3)/a2,9 which were
dominated by Monte Carlo data in the cylindrical regime, are
afflicted by an underestimated systematic error resulting from
a truncation of the Seeley expansion described in Ref. 5. In
this paper, we return to the cylindrical regime and clarify the
discrepancy. This will result in a confirmation of the value
Ms = 0.307 43(1)/a2 obtained in Ref. 13, as well as in a
determination of ρs = 0.180 81(11)J and c = 1.6586(3)Ja

with unprecedented precision. In the cubical regime, we
determine c by tuning β until the squares of the spatial and
temporal winding numbers become identical. In this way, the
uncertainties of both Ms and ρs resulting from the fits are
drastically reduced.

While reaching fractions of per thousand precision for
the low-energy parameters may seem unnecessary from a
condensed matter physics perspective, it is reassuring for
the ongoing efforts to combine lattice QCD with chiral
perturbation theory to accurately determine the fundamental
low-energy parameters of the strong interaction. Using the 2D
Heisenberg model as a test case, our analysis demonstrates that
very precise Monte Carlo data combined with two-loop effec-
tive field theory predictions for a variety of physical quantities
indeed lead to a completely consistent very high precision
determination of the fundamental low-energy parameters.

II. MICROSCOPIC MODEL AND CORRESPONDING
OBSERVABLES

The spin- 1
2 Heisenberg model considered in this study is

defined by the Hamilton operator

H =
∑

x

J [ �Sx · �Sx+1̂ + �Sx · �Sx+2̂ ], (1)

where 1̂ and 2̂ refer to the two spatial unit vectors. Further, J in
Eq. (1) is the antiferromagnetic exchange coupling. A physical
quantity of central interest is the staggered susceptibility

χs = 1

L2

∫ β

0
dt

1

Z
Tr

[
M3

s (0)M3
s (t) exp(−βH )

]
. (2)

Here Z = Tr exp(−βH ) is the canonical partition function.
The staggered magnetization order parameter is defined
as �Ms = ∑

x(−1)x1+x2 �Sx . Another relevant quantity is the
uniform susceptibility

χu = 1

L2

∫ β

0
dt

1

Z
Tr[M3(0)M3(t) exp(−βH )]. (3)

Here �M = ∑
x

�Sx is the uniform magnetization. Both χs

and χu can be measured very accurately with the loop-
cluster algorithm using improved estimators.6 In particular,
in the multicluster version of the algorithm the staggered
susceptibility is given in terms of the cluster sizes |C| as
χs = 1

βL2 〈
∑

C |C|2〉. Similarly, the uniform susceptibility χu =
β

L2 〈W 2
t 〉 = β

L2 〈
∑

C Wt (C)2〉 is given in terms of the temporal
winding number Wt = ∑

C Wt (C), which is the sum of winding
numbers Wt (C) of the loop clusters C around the Euclidean
time direction. Similarly, the spatial winding numbers are
defined by Wi = ∑

C Wi(C) with i ∈ {1,2}.

III. LOW-ENERGY EFFECTIVE THEORY FOR MAGNONS

Due to the spontaneous breaking of the SU(2)s spin
symmetry down to its U(1)s subgroup, the low-energy physics
of an antiferromagnet is governed by two massless Goldstone
bosons, the magnons. A systematic low-energy effective
field theory for magnons was developed in Refs. 1–4. The
staggered magnetization of an antiferromagnet is described
by a unit-vector field �e(x) that takes values in the coset
space SU(2)s/U(1)s = S2, i.e., �e(x) = (e1(x),e2(x),e3(x))
with �e(x)2 = 1. Here x = (x1,x2,t) denotes a point in (2 +
1)-dimensional space-time. To leading order, the Euclidean
magnon low-energy effective action takes the form

S[�e ] =
∫ L

0
dx1

∫ L

0
dx2

∫ β

0
dt

×ρs

2

(
∂1�e · ∂1�e + ∂2�e · ∂2�e + 1

c2
∂t �e · ∂t �e

)
, (4)

where t refers to the Euclidean time direction. It should be
noted that the effective field theory described by Eq. (4) is valid
as long as the conditions Lρs � 1 and βcρs � 1 are satisfied.
As demonstrated in Ref. 6, once these conditions are satisfied,
the low-energy physics of the underlying microscopic model
can be captured quantitatively by the effective field theory.
Using the systematic effective theory, detailed calculations of
a variety of physical quantities including two-loop corrections
have been carried out in Ref. 5. Here we only quote the results
that are relevant to our study. The aspect ratio of a spatially
quadratic space-time box of spatial size L is characterized
by l = (βc/L)1/3 , which distinguishes cubical space-time
volumes with βc ≈ L (known as the ε regime in QCD) from
cylindrical ones with βc � L (the so-called δ regime in QCD).
In the cubical regime, the volume and temperature dependence
of the staggered susceptibility is given by

χs = M2
sL

2β

3

{
1 + 2

c

ρsLl
β1(l)

+
(

c

ρsLl

)2

[β1(l)2 + 3β2(l)] + O

(
1

L3

)}
, (5)

while the uniform susceptibility takes the form

χu = 2ρs

3c2

{
1 + 1

3

c

ρsLl
β̃1(l) + 1

3

(
c

ρsLl

)2

×
[
β̃2(l) − 1

3
β̃1(l)2 − 6ψ(l)

]
+ O

(
1

L3

)}
. (6)
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TABLE I. Values of c = L/β extracted for different lattice sizes
L/a by tuning β such that the average squares of the spatial and
temporal winding numbers are the same.

L/a c

24 1.6589(6)
32 1.6586(5)
48 1.6585(5)
64 1.6585(5)

In Eqs. (5) and (6), the functions βi(l), β̃i(l), and ψ(l), which
only depend on l, are known shape coefficients of the space-
time box defined in Ref. 5. Finally, in the cylindrical regime,
when the condition L2ρs/(βc2) � 1 is satisfied, the volume
dependence of the staggered susceptibility is given by

χs = 2

3

M2
s ρsL

4

c2

{
1 + 3a

c

ρsL
+ 3a2

(
c

ρsL

)2

− b

(
c

ρsL

)2

+ O

(
1

L3

)}
, (7)

where a = 0.310 373 220 7 and b = 0.000 430 499 9.18 It
should be noted that χs given in Eq. (7) is temperature-
independent.

IV. DETERMINATION OF LOW-ENERGY PARAMETERS

To determine the low-energy parameters Ms , ρs , and c

for the spin- 1
2 Heisenberg model on the square lattice, we

have performed large-scale simulations for various inverse
temperatures β and box sizes L. We determine c using the
idea proposed in Ref. 21: for a fixed box size L, we vary β

until the condition 〈W 2
t 〉 = 1

2 (〈W 2
1 〉 + 〈W 2

2 〉) is satisfied. The
spin wave velocity then results as c = L/β. Using this method,
we obtain c = 1.6586(3)Ja (see Fig. 1). This value is obtained
by performing a weighted average over the values of c listed in
Table I, which are extracted in volumes ranging from L = 24a

to 64a. It should be noted that the above value of c is consistent
with the one quoted in Ref. 9, but the statistical error is reduced

1.655 1.656 1.657 1.658 1.659 1.66 1.661 1.662 1.663

L/(aβJ)

3.584

3.588

3.592

3.596

3.6

3.604

< W
2
 >

< Wt
2
 >

L = 48a

FIG. 1. (Color online) The determination of c using the squares
of spatial and temporal winding numbers at L = 48a.

by a factor of 7. In principle, using this method one could obtain
an even more precise estimate of c. After obtaining this very
accurate value of c, we carry out further large-scale simulations
in the cubical regime with βc ≈ L. Using c = 1.6586(3)Ja

and performing a combined fit of the Monte Carlo data for
χs and χu in the cubical regime to Eqs. (5) and (6), we
arrive at Ms = 0.307 43(1)/a2 and ρs = 0.180 81(11)J with
χ2/d.o.f. ≈ 1. Figure 2 illustrates the results of the fit. The
main contribution to the uncertainties of Ms and ρs results
from the error of c that enters the fit. Hence, with a more
precise estimate of c, one could improve the accuracy of Ms

and ρs even further. The values we obtain for ρs and c are more
accurate than earlier estimates of these low-energy parameters.
It should be noted that the value obtained for Ms is consistent
with that of Ref. 13, and the statistical error is the same in
both cases. Next we simulate the model in the cylindrical
regime where the condition βc � L is satisfied. Since a main
motivation of our study is to clarify the discrepancy between
the values of Ms presented in Refs. 9 and 13, and the accuracy
we must reach is hence below the per thousand level, we
adopt the following strategy. First, we note that at very low
temperatures, χs becomes temperature-independent. To avoid
underestimating the systematic errors in an extrapolation to
zero temperature, we simulate at sufficiently low temperatures
so that χs becomes independent of β within error bars. Second,
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FIG. 2. (Color online) Fits of χs and 〈W 2
t 〉 (and thus χu) to their

predicted behavior in magnon chiral perturbation theory. For better
visibility, some data used in the fits are omitted from the figure.
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FIG. 3. (Color online) Fit of Monte Carlo data for χs in the
cylindrical regime to their chiral perturbation theory prediction.

it should be noted that Monte Carlo data for χs in both the
cubical6 and the cylindrical regime7 were used to obtain the
value of Ms quoted in Ref. 9. Since both ρs and c obtained
in the cubical regime are consistent with the corresponding
results in the cylindrical regime, one may conclude that the
overestimation of Ms = 0.307 97(3)/a2 presented in Ref. 9 is
due to the cylindrical regime data for χs . To minimize statistical
correlations between χs and χu, in our fitting strategy we use
only cylindrical regime data for χs and cubical regime data for
χu. Applying these strategies and using c = 1.6586(3)Ja, we
arrive at Ms = 0.307 46(4)/a2 and ρs = 0.180 81(11)J (see
Fig. 3). It should be noted that this value of Ms , which we
obtain in the cylindrical regime, is consistent with the value
determined in the cubical regime. It is also consistent with the
most accurate result for Ms that was previously obtained.13

In the cylindrical regime, simulating larger lattices is
necessary to reach the same accuracy forMs as that obtained in
Ref. 13. This demonstrates the advantage of finite-temperature
simulations: applying the effective field theory predictions to
finite-temperature data, which can be obtained with moderate
computational effort, one achieves a very precise numerical
value for Ms . Using c = 1.6586(3)Ja, we arrive at Ms =
0.307 43(1)/a2 and ρs = 0.180 81(10)J from a combined fit
including all available data points. The accuracy of these
low-energy constants is not improved compared to those
obtained in the cubical regime alone. This is reasonable since
only a few more data points are included in the new fit.

Finally, we would like to clarify possible reasons for the
overestimation of Ms = 0.307 97(3)/a2 obtained in Ref. 9.
Because of the consistency of both ρs and c obtained in the
cubical and cylindrical regimes,6,7 one concludes that the slight
overestimation of Ms in Ref. 9 is due to the cylindrical regime
data for χs . In particular, to employ Eq. (7) to determine Ms ,
in Ref. 7 a Seeley expansion has been performed to extrapolate
the finite-temperature χs data to their corresponding zero-
temperature limit. However, terminating the Seeley series is a
subtle matter. Hence, the Seeley extrapolation may lead to an
underestimated systematic error if the data are outside the win-
dow in which such an extrapolation is justified. Because of this,
instead of repeating the analysis performed in Ref. 7, we adopt
another strategy. Specifically, we again simulate the model

with box sizes L/a = 10,12,14, . . . ,20 at sufficiently low
temperatures so that the χs data we obtain are independent of β.
A combined fit of these newly obtained data for χs at very low
temperature to Eq. (7) and the χu data we obtained earlier in
the cubical regime to Eq. (6) yields Ms = 0.3070(2)/a2, ρs =
0.182(2)J , and c = 1.66(1)Ja with χ2/d.o.f. ≈ 1.3. While
the obtained value Ms = 0.3070(2)/a2 is slightly below
Ms = 0.307 43(1)/a2, the numerical values of the low-energy
parameters that we just obtained are indeed consistent with
those found in the cubical regime calculations.6 Therefore, we
conclude that the overestimation of Ms in Ref. 9 is most likely
due to an underestimated systematic error of χs related to the
termination of the Seeley expansion used in Ref. 7.

V. CONCLUSIONS

In this paper, we have revisited the spin- 1
2 Heisenberg

model on the square lattice. In particular, we have refined the
numerical values of the corresponding low-energy parameters,
namely the staggered magnetization density Ms , the spin
stiffness ρs , and the spin wave velocity c. The spin wave
velocity is determined to very high accuracy using the
squares of spatial and temporal winding numbers. Remarkably,
using c = 1.6586(3)Ja together with two-loop magnon chiral
perturbation theory predictions for χs and χu in the cubical
regime, we obtained a good fit of more than 150 data points to
two analytic expressions with only two unknown parameters.
Specifically, from the fit we obtain Ms = 0.307 43(1)/a2

and ρs = 0.180 81(11)J with χ2/d.o.f. ≈ 1. The precision of
Ms = 0.307 43(1)/a2 is comparable to that in Ref. 13, which
was obtained by an unconstrained polynomial fit using up to
third or fourth powers of 1/L. Furthermore, the data used
in Ref. 13 were obtained at much larger L than those used
in our study. Thanks to the accurate predictions of magnon
chiral perturbation theory, it requires only moderate computing
resources to reach a fraction of a per thousand accuracy for the
low-energy parameters. This is encouraging for QCD, where
such accuracy is mandatory to reach a sufficiently precise
determination of the fundamental low-energy parameters of
the strong interaction. If calculations in the chiral limit were
to become feasible, the experience gained in the Heisenberg
model would suggest that the hypercubic ε-regime would be
best suited for extracting the low-energy parameters. We have
also resolved the puzzle of the per thousand level discrepancy
between the two values for Ms presented in Refs. 9 and 13
by resimulating the model in the cylindrical regime. Based on
a combined fit of χs in the cylindrical regime and χu in the
cubical regime, we arrived at Ms = 0.307 46(4)/a2, which
is consistent with the results of both Refs. 6 and 13. The
consistency of the values for Ms obtained in the cubical and
in the cylindrical regime is particularly remarkable in view
of the increased analytic two-loop accuracy in the cylindrical
regime,18 which demonstrates the quantitative correctness of
magnon chiral perturbation theory in describing the low-
energy physics of the underlying microscopic model. Finally,
we concluded that the small discrepancy in the values for Ms

between Refs. 9 and 13 may be attributed to the termination
of the Seeley expansion used in obtaining the former result.
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