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Enhanced thermopower under a time-dependent gate voltage
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We derive formal expressions of time-dependent energy and heat currents through a nanoscopic device using the
Keldysh nonequilibrium Green function technique. Numerical results are reported for a metal-dot-metal junction
where the dot level energy is abruptly changed by a step-shaped voltage pulse. Analytical linear responses are
obtained for the time-dependent thermoelectric coefficients. We show that in the transient regime the Seebeck
coefficient can be enhanced by an amount (as much as 40%) controlled by both the dot energy and the height of
the voltage step.
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Since their discoveries in 1821 by Seebeck1 and in 1834 by
Peltier,2 thermoelectric effects have been exploited for many
applications, such as heat voltage converters, thermocouples,
or refrigerators. The Seebeck coefficient, or thermopower
S, measures the voltage induced by a temperature gradient
through an open circuit, whereas the Peltier coefficient �

measures the heat flow induced by an applied current for
no temperature gradient. In the linear response regime, the
Onsager relation gives � = −ST , where T is the average
temperature of the sample.

Recent achievements in the field of nanoscale systems have
invigorated research activities in this area and renewed the
quest for enhanced thermopower (see Ref. 3 for a recent
review). Stationary Seebeck coefficients have been measured
in different nanoscale systems: quantum dots,4 atomic-size
contacts,5 spin valves,6 nanowires,7 and carbon nanotubes.8

The Landauer-Büttiker formalism used for the electrical
conductance was extended to model thermal transport in
microstructures with many terminals,9,10 including inelastic
effects.11 The validity of conventional thermodynamic linear
equations was deeply questioned in mesoscopic systems:
the Onsager relations between heat and charge transport
coefficients,9,12 the Wiedemann-Franz law, which links elec-
trical and thermal conductances,13 and the Fourier law.14

Time-dependent electric transport also benefits from active
research works. Single-electron time-control has been demon-
strated experimentally15,16 with a fair agreement with earlier
theoretical developments.17,18 More recently, deeper issues,
such as memory effects19 or interplay between multiple time
modulations,20 have been addressed theoretically. In addition,
calculation of time-dependent heat current in a linear phonon
chain has recently been achieved,21 and energy balance in
nanoscale junctions has been considered.22 However, ther-
mopower dynamics lacks both experimental and theoretical
investigations.

This Brief Report gives insight into time-dependent
nonequilibrium thermoelectric transport. As a major result,
illustrated in Fig. 1, we show that the thermopower can be
strongly enhanced during the transient regime in a metal-dot-
metal device (schematically presented in Fig. 2). The time
evolution of the thermopower exhibits promising features.
Indeed, it can be significantly modified and controlled by

changing the dot energy from ε̃0 to ε̃0 + γ̃0 at time t0 = 0:
starting from the stationary value at t < t0, it increases during
a finite time interval, and then it converges toward its new
stationary value at t → ∞.

The time-dependent heat current through the left (L) or the
right (R) reservoir in equilibrium reads

〈
Ih
L,R(t)

〉 = 〈
IE
L,R(t)

〉 − μL,R(t)

e

〈
I e
L,R(t)

〉
, (1)

where 〈IE
L,R(t)〉 is the energy current, 〈I e

L,R(t)〉 is the electric
current, and μL,R is the chemical potential. The time-
dependent Seebeck coefficient can be obtained from the ratio
between the voltage gradient �V and the temperature gradient
�T between the two reservoirs, when both left and right
time-dependent electric currents cancel:

S(t) = − �V

�T

∣∣∣∣
〈I e

L(t)〉=〈I e
R (t)〉=0

, (2)

whereas the time-dependent Peltier coefficient is defined as

�(t) =
〈
Ih
L(t)

〉 − 〈
Ih
R(t)

〉
〈
I e
L(t)

〉 − 〈
I e
R(t)

〉
∣∣∣∣∣
�T =0

. (3)

FIG. 1. Increase of the Seebeck coefficient in the transient
regime of a metal-dot-metal junction: ε̃0 = 0.5 with γ̃0 = 0.05 (solid
line), γ̃0 = 0.1 (dashed line), and γ̃0 = 0.15 (dotted line). We take
symmetric barriers �R = �L, t0 = 0, εF = 0, and kBT = 0.1. The
unit of energy is �.
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FIG. 2. Left panel: Schematic representation of a metal-dot-
metal junction with current directions for each lead. Right panel:
Time dependence of the dot energy level. We define the chemical
potentials and the temperatures of the left and right leads as μL,R =
εF ± e�V/2 and TL,R = T ± �T/2. The Fermi energy is εF and
T = (TR + TL)/2 is the average temperature.

The general system we consider consists of N energy levels
in an interacting central region connected to noninteracting left
and right leads. The total Hamiltonian reads H = HL + HR +
Hc + HT with

HL,R =
∑

k∈L,R

εk(t)c†kck, (4)

Hc =
∑

n

εn(t)d†
ndn + Hint, (5)

HT =
∑

p=L,R

∑
k∈p,n

Vkn(t)c†kdn + H.c., (6)

where c
†
k (d†

n) and ck (dn) are the creation and annihilation
operators for the leads (dot), and Hint is the interacting part of
Hc (Coulomb interactions, phonon coupling, etc.). The energy
band εk of the reservoirs can be time dependent through a
bias change (source-drain voltage). The energy levels of the
central region, εn, can be time dependent through a modulation
of the gate voltage. For the sake of generality, the hopping
amplitudes, Vkn, are also allowed to be time dependent.
Extension to multiterminal systems with additional degrees of
freedom (e.g., spin) is straightforward. In this calculation we
only consider the electron contribution to the energy current.

The energy current operator is related to the time derivative
of the Hamiltonian describing the leads23 by IE

L,R = −ḢL,R .
After calculating the commutators [HL,R,H ], we end up with
(h̄ = 1)

IE
L,R(t) = i

∑
k∈L,R,n

εk(t)Vkn(t)c†kdn + H.c.

−
∑

k∈L,R

ε̇k(t)c†kck. (7)

Thus, the average energy current reads

〈
IE
L,R(t)

〉 = 2Re

{ ∑
k∈L,R,n

εk(t)Vkn(t)G<
nk(t,t)

}

− Im

{ ∑
k∈L,R

ε̇k(t)G<
kk(t,t)

}
, (8)

where G<
kk′(t,t ′) = i〈c†k′ (t ′)ck(t)〉 is the lead Green function.

We have introduced the mixed Green function G<
nk(t,t ′) =

i〈c†k(t ′)dn(t)〉, which obeys the Dyson equation

G<
nk(t,t ′) =

∑
n′

∫ ∞

−∞
dt1V

∗
kn′ (t1)

[
Gr

nn′(t,t1)g<
k (t1,t

′)

+G<
nn′ (t,t1)ga

k (t1,t
′)
]
. (9)

G<
nn′ (t,t ′) = i〈d†

n′ (t ′)dn(t)〉 is the dot Green function.

g<
k (t,t ′) = if (εk)e−i

∫ t

t ′ dt1εk(t1) and ga
k (t,t ′) = i�(t ′ − t)

e−i
∫ t

t ′ dt1εk (t1) are the Green functions of the isolated leads. The
expression of the energy current becomes

〈
IE
L,R(t)

〉 = 2Re

{
Tr

{ ∫ ∞

−∞
dt1

[
Gr

d (t,t1)�<
L,R(t1,t)

+ G<
d (t,t1)�a

L,R(t1,t)
]}}

− Im

{ ∑
k∈L,R

ε̇k(t)G<
kk(t,t)

}
, (10)

where we have defined the self-energy associated with energy
transfer as �

a,<
L,R(t,t ′) = ∑

k∈L,R V∗
k(t)ga,<

k (t,t ′)εk(t ′)Vk(t ′). In
these expressions, Vk is a vector whereas Gr,<

d and �
a,<
L,R

are matrices. The last term in Eq. (10) is a pure reservoir
contribution to the energy current.

We now consider a noninteracting metal-dot-metal junction
with a single dot level ε0 connected to reservoirs with constant
energy bands. This model is suitable for experiments in which
the Coulomb interaction is weak in the dot with strong coupling
to reservoirs.15,24 In that case, the energy current takes the form

〈
IE
L,R(t)

〉 = 2Re

{ ∫ ∞

−∞
dt1

∫ ∞

−∞

dε

2π
iεeiε(t−t1)�L,R(ε,t1,t)

×[
Gr

d (t,t1)fL,R(ε) + G<
d (t,t1)�(t − t1)

]}
,

(11)

where � is the Heaviside function, fL,R is the Fermi-Dirac
distribution function, ρL,R is the density of states, and
�L,R(εk,t,t

′) = 2πρL,R(εk)V ∗
k (t)Vk(t ′) measures the strength

of the coupling between the dot and each lead.
We investigate the time-dependent thermoelectric response

to a unique change ε0(t) = ε̃0 + γ0(t) with γ0(t) = γ̃0�(t −
t0). This models a dot energy switching from ε̃0 to ε̃0 + γ̃0 by
applying a gate voltage at t0 (see Fig. 2). The time-dependent
heat current defined by Eq. (1) for p = L,R is now expressed
in terms of the spectral function A(ε,t) as

〈
Ih
p (t)

〉 = − 1

h
�p

[
2
∫ ∞

−∞
(ε − μp)fp(ε)Im{A(ε,t)}dε

+
∑

p′=L,R

�p′

∫ ∞

−∞
(ε − μp)fp′ (ε)|A(ε,t)|2dε

]
, (12)

with17

A(ε,t) = ε − ε̃0 + i�/2 − γ̃0e
i(t−t0)(ε−ε̃0−γ̃0+i�/2)

(ε − ε̃0 + i�/2)(ε − ε̃0 − γ̃0 + i�/2)
, (13)
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FIG. 3. Electric current (left panel) and heat current (right panel) through the left lead (solid lines) and the right lead (dashed lines) as a
function of time t , for �R = �L, t0 = 0, ε̃0 = 0.5, γ̃0 = 2.5, kBTL = 1, kBTR = 0, and μL,R = ±0.5. The insets show the dot occupation (left
inset) and the dot heat (right inset). Dashed lines indicate the stationary limits at t → ∞. The unit of energy is �.

and � = �L + �R , for which we assume that �p does not
depend on energy (wide-band limit) and simply reduces to
�p = 2πρp|Vp|2.

The integration over energy in Eq. (12) has been performed
numerically. In Fig. 3 the time evolution of electric and
heat currents when the dot energy is modified abruptly at
t0 = 0 is plotted. Starting from constant values at t < 0, the
left and right currents converge toward constant values at
t → ∞. Between these two limits, currents show strong time-
dependent variations. Currents through the zero temperature,
TR = 0, in the right lead (see dashed lines in Fig. 3) exhibit time
oscillations whose period is related to ε̃0 and γ̃0, as Eq. (13)
explicitly indicates. These oscillations of the electric current
have been measured through a Ge dot.16 Regarding the heat
current, experimental results are still needed. In the left lead
(see solid lines in Fig. 3) these oscillations disappear due to
thermal effects given by TL 	= 0.

Using particle number conservation, the average dot
occupation number is calculated from electric currents as
〈Nd (t)〉 = e−1

∫ 〈I e
dis(t)〉dt , where I e

dis(t) = I e
L(t) + I e

R(t) is the
displacement current.16 In the left inset of Fig. 3, 〈Nd (t)〉 glob-
ally follows an exponential decrease 〈Nd (∞)〉(1 − e−t/τr ) +
〈Nd (0)〉e−t/τr (see dotted line) characterized by the relaxation
time τr = h̄/�; the weaker is the coupling between the dot and
the leads the longer is the relaxation time. The time evolution
of 〈Nd (t)〉 shows oscillations around this decrease that have
been already observed in experiments.16

Equation (1) comes from thermodynamic relations in the
leads at equilibrium: dHL,R = dQL,R + μL,RdNL,R , where
NL,R is the lead occupation number and QL,R is the lead
heat. Similarly, for the dot out of equilibrium we write
dHc = dQd − μLdNL − μRdNR; the energy change in the
dot reflects a balance between heat variation and charges
leaving the dot times their energies. Thus, we define and
numerically calculate an average heat in the dot as 〈Qd (t)〉 =∫ 〈Ih

d (t)〉dt , where Ih
d (t) = Ih

L(t) + Ih
R(t) − ḢT (t). This def-

inition perfectly agrees with energy conservation including
a contribution from tunneling. In the right inset of Fig. 3,
the time evolution of 〈�Qd (t)〉 = 〈Qd (t)〉 − 〈Qd (0)〉 shows a
behavior similar to the dot occupation number (left inset of
Fig. 3). However, dramatic differences occur in the stationary
regimes, for which 〈Nd (t)〉 is always constant, e.g., the dot

heat increases linearly with time, which is known as the Joule
effect.

In the linear response limit, the time-dependent Seebeck co-
efficient, defined by Eq. (2), can be obtained from the approx-
imate Fermi-Dirac distribution function9 fL,R(ε) ≈ f0(ε) +
f ′

0(ε)[μL,R − (ε − εF )TL,R/T )], where f0 is the Fermi-Dirac
distribution function for the leads when μL = μR . Taking the
left and right electric currents equal to zero, we obtain the linear
response for S(t) in the case of strong coupling to reservoir
and small energy variation:

S(t) = −
∫ ∞
−∞ dεf ′

0(ε)(ε − εF )T (ε,t)

eT
∫ ∞
−∞ dεf ′

0(ε)T (ε,t)
, (14)

where T (ε,t) = −2�L�RIm{A(ε,t)}/� is the time-dependent
transmission coefficient. This result is a generalization of
the Seebeck coefficient expression obtained in the stationary
case3,9 including the time dependence of the transmission
coefficient. For the steady-state situation we have 〈I e

L〉 =
−〈I e

R〉 [constant 〈Nd (t)〉], as can be seen in the left panel
of Fig. 3. But in the time-dependent case, 〈I e

L(t)〉 = 0 does
not imply 〈I e

R(t)〉 = 0 because of the displacement current.
Since the Seebeck coefficient is measured in an open circuit,
we must find the adequate �V and �T that simultaneously
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FIG. 4. Percentage of increase of the Seebeck coefficient max-
imum in the transient regime S tran

max as a function of γ̃0/ε̃0 for
kBT = 0.05 (solid line), kBT = 0.15 (dashed line), and kBT = 0.5
(dotted line). We take �R = �L and εF = 0. The unit of energy is �.
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cancel both currents. It is important to emphasize that Eq. (14)
is only valid under the following assumptions: (i) linear
response (small �V and �T in comparison to ε̃0 and T ),
(ii) high transmission through the barriers (large �L and �R in
comparison to other energies), and (iii) small gate voltage time
variation γ̃0 in comparison to ε̃0. Indeed, these assumptions
allow us to approximate |A(ε,t)|2 ≈ −2Im[A(ε,t)]/�, and,
hence, to cancel both 〈I e

L(t)〉 and 〈I e
R(t)〉 at any time.

Following the same assumptions, a similar expression can
be obtained for the time-dependent Peltier coefficient defined
by Eq. (3),

�(t) =
∫ ∞
−∞ dε(ε − εF ) [fL(ε) − fR(ε)] T (ε,t)

e
∫ ∞
−∞ dε [fL(ε) − fR(ε)] T (ε,t)

∣∣∣∣∣
�T =0

.

(15)

In the linear response regime, Eqs. (14) and (15) verify the
Onsager relation �(t) = −T S(t) at any time.

Figure 1 is obtained using Eq. (14) of the linear response. It
shows an increase of the thermopower after a step-shaped gate-
voltage pulse was applied. The reason for the increase is that in
the transient regime the system is much more sensitive to tem-
perature or electrostatic variations. Furthermore, we measure
the thermoelectric benefit of the transient regime by calculating
the percentage (S tran

max − Sstat
ave )/Sstat

ave , where S tran
max is the maximum

value of S and Sstat
ave = [S(t < t0) + S(t → ∞)] /2. In Fig. 4

we have plotted the percentage of thermopower increase as a
function of γ̃0/ε̃0. This ratio plays an important role since it
does control the thermopower increase. In such a junction, the
transient thermopower can be tuned by both ε̃0 and γ̃0, which
depend on the dot structural properties and on the applied
gate voltage (see Fig. 2). The higher the ratio the higher is the
thermopower increase. Here, an increase up to 40% is obtained
at small temperature.

We have proposed a first approach to heat dynamics in
nanoscale junctions. General formulas for the time-dependent
heat and energy currents flowing through an interacting
resonant-tunneling system have been obtained. We show
that an enhanced thermopower can be generated during the
transient regime in a metal-dot-metal junction and that its
maximum value can be tuned by both the dot energy and
the gate voltage. With such numerical investigations, it will be
possible to go beyond the linear response for the Seebeck
and Peltier coefficients, and further determine nonlinear
thermodynamic laws. Moreover, we shall consider interacting
systems in order to analyze the phonon-bath contribution21

and the impact of electron-phonon interaction,11 and to study
the influence of charging effects.25
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