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Shape of the Landau subbands in disordered graphene
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The question of why different experiments obtain different shapes of Landau subbands of two-dimensional
electron gases (2DEG’s) is investigated. In particular, we consider disordered graphene within the tight-binding
formulation in a high magnetic field and in the presence of impurity potentials of a finite interaction range. It is
found that the shape of the total density of states (DOS) of Landau subbands is well described by a Gaussian
function, while the shape of the local density of states (LDOS) can be fitted to either a simple Lorentzian function
or a sum of several Lorentzian functions. This finding explains well why the experiments that measure the DOS
of a Landau subband appear to be Gaussian, and those experiments that are sensitive to the LDOS can only be
fitted well by Lorentzian functions. Thus, our results provide a natural explanation to this long-standing puzzle
involving 2DEG’s in the quantum Hall regime.

DOI: 10.1103/PhysRevB.83.153408 PACS number(s): 81.05.ue, 71.55.−i, 71.23.−k

Graphene has attracted a lot of attention due to its
remarkable properties and its potential applications in
nanoelectronics.1 Its electronic properties are mainly due to
its two-dimensional nature and the fact that the low-energy
excitations are governed by the massless Dirac equation,2

confirmed by the interesting, uneven Landau level (LL)
distribution that varies with both the square root of the mag-
netic field B and the LL index n: En = sgn(n)

√
2eh̄v2

F |n|B,

where vF , e, and h̄ are the Fermi velocity, electron charge,
and the Planck constant, respectively. This emblematic LL
spectrum and its characteristic zero-energy state (n = 0) are
directly related to the anomalous quantum Hall effect (QHE)
in graphene.3 Many efforts have been made to determine
the electronic properties of the disorder-broadened Landau
subbands (LS’s). However, the shape of both the total density
of states (DOS) and the local DOS (LDOS) of an LS of
graphene is a controversial issue in the literature. Historically,
it has generally been believed that the shape of the DOS
of LS’s in a conventional two-dimensional electron gas
(2DEG) is Gaussian-like,4,5 but experiments seem to present
a different picture. Initially, this consensus was supported by
careful measurements of specific heat,6 magnetization,7 and
magnetocapacitance8 on GaAs-GaxAl1−xAs heterostructures.
However, a recent scanning-tunneling-microscopy–scanning-
tunneling-spectroscopy (STM-STS) measurement on conven-
tional 2DEG’s of the n-InSb(110) [or n-InAs(110)] surface,9

as well as the cyclotron resonance (CR) absorption line shape
on conventional 2DEG’s,10,11 observed a Lorentzian shape of
an LS. The situation for disordered graphene is similar. All
CR13–15 and STM-STS16–19 measurements suggested clearly
a Lorentzian shape for an LS. However, recent magnetoca-
pacitance experiments produced conflicting results: In one
experiment,20 an LS could be fitted well by the Lorentzian
functions, while another experiment21 observed a Gaussian
shape for an n = 0 LS. On the theoretical side, the DOS of an
LS of graphene is initially found to be Gaussian-like.22–24

Champel et al.25 found from a recent Green’s function
calculation that the LDOS’s of LS’s are also Gaussian. Thus,

the theories do not explain the observed Lorentzian shape of
the DOS or the LDOS. This long-standing question regarding
Lorentzian or Gaussian LS’s is the focus of this study.

In this paper, we use the Lanczos recursion method
to numerically compute both the DOS and the LDOS of
disordered graphene in high magnetic field and in the presence
of a random potential of a finite interaction range. We find
that the shape of the DOS of the disorder-broadened LS’s
is Gaussian regardless of their potential range. However, the
shape of the LDOS of an LS can be fitted to either a simple
Lorentzian function or the sum of several Lorentzian functions.
Therefore, our results suggest that all local measurements
should be described by Lorentzian functions, while global
measurements such as specific heat and magnetocapacitance
are Gaussian.

There are two types of experiments. One is sensitive to
global electronic properties. For example, the specific heat6

and magnetocapacitance8 are directly related to the DOS of a
sample. The other type of experiment, such as STM, probes
the local energy level or the LDOS.9,16–19,26 The majority
of experiments on both graphene and conventional 2DEG’s
suggest that Gaussian LS’s appear in global measurements
while Lorentzian LS’s appear in local measurements. This is
a plausible conjecture because almost all electronic states in
two-dimensional QHE systems are localized except the one
at the center of each LS (necessary for observing QHE). By
definition, there is no correlation among different localized
states. Thus, the DOS is expected to be Gaussian since it
involves the distribution of a group of independent states that
should obey a large-number theorem. On the other hand, the
LDOS is dominated by one or a few states from an LS, and
the natural line shape of a single quantum level is known to be
Lorentzian. To test this conjecture, one needs to calculate both
the DOS and the LDOS of a 2DEG in the QHE regime. We
consider graphene in the presence of a high field and disorders
below.

Low-energy excitations of graphene come from the π

electrons that can be modeled by a tight-binding Hamiltonian
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on a honeycomb lattice,

H =
∑
〈ij〉

teiφij |i〉〈j | + H.c. +
∑

i

εi |i〉〈i|, (1)

where |i〉 denotes the π -electron state on site i. t = −2.7 eV
is the hopping energy between two nearest-neighbor sites.
The magnetic field is introduced by Peierls’ substitution in
the phase of the hopping parameter27 φij = 2πe/h

∫ j

i
A · dl,

where A is the vector potential. The disorders are introduced
through random on-site energy εi = V (ri) in the second term
of Eq. (1). In our model, we assume that the random potential
is generated by Ni randomly distributed impurities whose po-
tential takes a Gaussian form with an interaction range of d,28

V (ri) =
Ni∑

m=1

um

u0
exp

(
−|ri − rm|2

d2

)
, (2)

where um is a random number uniformly distributed
in [−W,W ]. u0 is a normalization constant that
guarantees the impurity potential satisfying the condition∑

ri
exp(−r2

i /d
2) = u0.29 For a lattice of a total of N lattice

sites, nimp = Ni/N is the impurity concentration. It is known
that the extrinsic spatial disorder is crucial for electronic
structures and transport properties of graphene.2 In what
follows, we will discuss the impurities potential with a very
short interaction range (d < a) (a is a lattice constant) and
an interaction range bigger than the lattice constant (d > a).
Since the spin degrees of freedom contribute only a tiny
energy through the Zeeman effect, and will be irrelevant to
the discussion below, we neglect the spin index in our model.

The LDOS of the Hamiltonian [Eq. (1)] can be evaluated
by ρ(ri ,E) = −Im〈i| 1

E−H+iν
|i〉/π , where ν is an infinitesimal

positive number. An accurate LDOS is numerically obtainable
by using the well-developed Lanczos recursive method.24 The
DOS can also be obtained by averaging over all LDOS’s
and/or through an ensemble average. In this approach, a small
artificial cutoff energy ε = 1 meV is introduced to simulate
the infinitesimal imaginary energy ν,31,32 which will lead to a
small width of LL’s in clean graphene. To reduce the finite-size
effects, a very large lattice of more than one million sites
(N > 106) is used. In the calculations, the periodic boundary
conditions are imposed.

In the absence of disorders, the system has a δ-like LL
spectrum as shown in Fig. 1(a). The seemingly nonzero width
is due to cutoff energy ε, which may describe electron-phonon
or electron-electron interactions in reality.24 Also, there are no
differences in the shape of the DOS and the LDOS. These natu-
ral broadened spectra follow the Lorentzian distribution as ex-
pected. In the presence of disorders, for the total averaged DOS
shown in Fig. 1(b), the highly degenerate LL’s are broadened
into LS’s due to the disorder effects.24 Similar to the DOS in
Fig. 1(b), the LDOS in Fig. 1(c) reveals also the LL’s spectrum,
but their shapes are asymmetric and much sharper in compar-
ison with DOS. In what follows, we will focus on the shape of
the DOS and the LDOS of LS’s, especially for n = 0 LS.

To have a better knowledge about the random potential
used in our calculations, Fig. 2(a) is the contour plot of a
typical random potential generated by randomly distributed
impurities of interaction range d = 0.1a, much smaller than
the lattice constant, so that each impurity generates only a

FIG. 1. (a) DOS-LDOS of LL’s of clean graphene. The effects of
the impurity potential of finite range d = 0.1a on (b) the DOS and
(c) the LDOS of LS’s of graphene for B = 22.0 T. The illustration of
the impurity potential is shown in Fig. 2(a).

random on-site energy. This local potential feature can indeed
been seen from the dot structure in the figure. In comparison,
Fig. 3(a) is a similar plot for the impurity potential of the
interaction range d = 5a. The contours of the generated
random potential have a loop structure. Figure 2(b) is the
total averaged DOS of an n = 0 LS in the random potential of
Fig. 2(a). The DOS can be well fitted by a Gaussian function,

A

	G

√
π/2

e−2E2/	2
G , with a broadening width 	G = 6.0 meV, in

agreement with an early study24 where 	G is proportional to
the random potential deviation and the square root of magnetic
field B. Figures 2(c) and 2(d) are two typical LDOS’s of an

FIG. 2. (Color online) (a) Contour plot of a randomly generated
impurity potential of finite range d = 0.1a. The impurity concentra-
tion and parameter are nimp = 5.6% and W = 1.0 eV, respectively.
(b) Total averaged DOS of n = 0 LS (open square) in the random
potential of (a). The heavy blue line is the fitted Gaussian curve.
For comparison, the DOS of clean graphene is also shown (red dotted
line). The LDOS of n = 0 LS at sites A (c) and B (d) in (a) are denoted
by open circles. The heavy red lines are the best fit to the sum of three
Lorentzian functions (thin green lines are the individual Lorentzian
curves). All the results are calculated in B = 22.0 T.
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FIG. 3. (Color online) (a) Contour plot of a randomly generated
impurity potential of finite range d = 5.0a. The impurity concentra-
tion and parameter are nimp = 1.0% and W = 4.0 eV. (b) The total
averaged DOS of n = 0 LS (open square) fits well to the Gaussian
function (heavy blue line). The DOS of clean graphene (red dotted
line) is also plotted for a comparison. (c) Typical LDOS (open circle)
at site A of (a). Only one Lorentzian curve (heavy red line) is used to
fit the data. (d) Typical LDOS (open circle) at site B. The heavy red
line is a fit to a sum of two Lorentzian functions (thin green lines).

n = 0 LS at sites A and B of Fig. 2(a), respectively. The peaks
are clearly shifted away (positive for A and negative for B)
from the Dirac point due to the random potential there. Two
shoulders indicate that the LDOS’s are mainly from three
states. Thus, it is natural to use the sum of three Lorentzian
functions

∑3
i=1

2Ai

π

	i

4(E−Ei )2+	2
i

to fit the numerical data. The

LDOS at A can be fitted by one dominating Lorentzian
function with A1 = 0.254, 	1 = 2.2 meV, E1 = −3.16 meV
and two minor Lorentzian contributions with parameters
A2 = 0.018, 	2 = 1.85 meV, E2 = −0.6 meV and
A3 = 0.006, 	3 = 2.0 meV, E3 = 2.5 meV. The fact that 	i

is bigger than the natural width in Fig. 1(a) suggests that the
widths of the LDOS are due to the random potential. The good
Lorentzian description for the LDOS applies also for other
parts of the sample. Figure 2(d) shows that the LDOS at point
B can be fitted by one dominating Lorentzian function with
A1 = 0.231, 	1 = 2.0 meV, E1 = 4.13 meV and two minor
Lorentzian functions with A2 = 0.024, 	2 = 1.95 meV, E2 =
1.8 meV and A3 = 0.022, 	3 = 2.26 meV, E3 =
−0.02 meV. These results suggest that the LDOS’s at
the sites are mainly from a few states in the zero LS, since the
natural shape of each state is Lorentzian and the LDOS is

ρ(rj ,E) = 1

π

∑
i

	i/2

(E − Ei)2 + (	i/2)2
|ψi(rj )|2, (3)

where Ei is the energy of the state ψi(r) and 	i is the level
broadening width due to the randomness. Of course, this is
consistent with the fact that all states must be localized except
one in each LS in order to observe a QHE.

To show that the above results do not depend on the details
of the random potential, we have computed the same quantities

for other potentials (with various impurity concentrations
and interaction ranges 0.1a < d < 40a), and we obtained
the same results. For example, Fig. 3 shows the results for
the impurities potential of the interaction range d = 5.0a. The
total averaged DOS n = 0 LS (open squares) follows again the
Gaussian distribution (blue line with 	G = 7.0 meV), as
shown in Fig. 3(b). Figure 3(c) is the LDOS at site A in
Fig. 3(a). The curve is approximately symmetric and no
obvious shoulder exists so that we use a single Lorentzian to fit
the numerical data (open circles). The fit with 	1 = 2.96 meV
and E1 = −2.0 meV is excellent. The LDOS [Fig. 3(d)] at
site B in Fig. 3(a) is not symmetric around its peak and a
shoulder is clearly present so that two states contribute to the
LDOS. Indeed, the data [open circles in Fig. 3(d)] can be well
described by a dominating Lorentzian function with A1 =
0.273, 	1 = 2.6 meV, E1 = 2.5 meV and a minor Lorentzian
function with A2 = 0.013, 	2 = 1.76 meV, E1 = −0.7 meV.
These LDOS’s can again be understood from Eq. (3).

Our results provide a natural explanation to the puzzle
of why the shapes of LS’s can be either Gaussian or
Lorentzian, depending on whether an experiment measures
the DOS or the LDOS. There is no question that an STM-STS
experiment16,17,19 probes the LDOS. That is why all STM
results yield Lorentzian DOS’s whose peak position varies
from one location to another randomly, as was observed in
experiment.16 The cyclotron absorption between two LS’s
measures the LDOS if the far-infrared light spot size is
comparable with the localization length of the localized
electron states that they probe. This may be true for a 2DEG in
the QHE regime because the electron localization length near
the subband center is usually large. This may explain why the
cyclotron absorption curve is Lorentzian rather than Gaussian
for the DOS of LS’s.

We would like to make several remarks before ending this
paper. (i) Although the study is on disordered graphene, the
results on the shapes of the DOS and the LDOS should be valid
for conventional 2DEG’s in the QHE regime. This is because
the interpretation of our numerical data can also be applied to a
conventional 2DEG. Of course, it should still be interesting to
double check the results by carrying out a similar investigation
for conventional 2DEG’s. (ii) The electron-electron interaction
is neglected in this study. The interaction may modify the
peak positions and peak widths of LS’s since it introduces
extra scattering channels. It should be interesting to investigate
how the interaction modifies the DOS and the LDOS of LS’s
of graphene. (iii) Our focus is on the shape of an n = 0
LS. Although the results are expected to be applicable to
other subbands, one should anticipate that a small asymmetric
distortion may occur in higher LS’s in a finite magnetic field,
as explained in Ref. 24. (iv) Although most experiments are
consistent with our theory, there are also reports20,21,25 that
deviate, showing that the shape of the DOS and the LDOS of
LS’s of two-dimensional systems may be more complicated
and needs further investigations. For example, as explanation
should be sought as to why those few exceptional cases can
deviate from the plausible picture presented here.

In conclusion, the DOS and the LDOS of disordered
graphene in the QHE regime are evaluated numerically. It
is found that the DOS and the LDOS of LS’s can be described
by Gaussian and Lorentzian functions, respectively. Both
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shapes are robust against the interaction range of an impurity
potential. This finding provides a natural explanation to the
long-standing puzzle of why the local probes of the DOS
usually find a Lorentzian shape of an LS while the global
probes of the DOS detect a Gaussian shape.
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