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Dynamical gap generation in graphene nanoribbons: An effective relativistic field theoretical model
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‘We show that the assumption of a nontrivial zero band gap for a graphene sheet within an effective relativistic
field theoretical model description of interacting Dirac electrons on the surface of graphene describes the
experimental band gap of graphene nanoribbons for a wide range of widths. The graphene band gap is dynamically
generated, corresponding to a nontrivial gapless solution, found in the limit of an infinitely wide graphene ribbon.
The nanoribbon band gap is determined by the experimental graphene work function.
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Introduction. Graphene sheets, carbon nanotubes (CNTs)
and graphene nanoribbons (GNRs) are very closely related
subjects governed by quantum mechanical effects in a con-
strained two-dimensional (2D) surface. In this compactified
dimensional world, symmetry and scale drive the astonishing
properties that these one-atom-thick materials exhibit. GNRs
are recognized today as promising nanosheets to be used
in nanoelectronic and spintronic devices.! Such material has
attracted a lot of attention since free-standing graphene sheets
were reported by using different experimental techniques. Ex-
periments confirmed that the charge carriers can be described
as massless Dirac fermions,” opening a solid basis for its
relativistic treatment. It is expected that massless fermions
moving through graphene have an approximate ballistic trans-
port behavior with very small resistance due backscattering
suppression.’ Graphene is also a good thermal conductor,
when compared with other semiconductor junctions, due to
the high mobility of carriers at room temperature.*>

Energy band gaps for GNRs were measured in Refs. 6 and 7
using different methods. First-principles ab initio methods,?
density functional theory (DFT),” and tight binding (TB)
models'® were applied to calculate GNR band gaps for a
reasonable range of not too small widths. In opposition to TB
models, first-principles calculations do not support metallic
nanoribbons.® On the other hand DFT calculations predict
energy gap oscillations as a function of the GNR for very
small widths.’

The two-dimensional graphene sheet is essentially a zero-
gap semiconductor (with the Fermi level E precisely at E =
0), with a linear chiral carrier kinetic energy dispersion relation
given by E = hvyk?, where k is the 2D carrier wave vector
and vy is the Fermi velocity (independent of carrier density).

The fermion behavior on the graphene sheet has been
discussed within the free Hamiltonian, 1-70, picture using four
different approaches:'! (i) as Schrodinger fermions Hy =
ﬁz /2m*, where m* is an effective mass; (ii) as ultrarelativistc
Dirac fermions, where ﬁo = co p; (iii) as massless Dirac
fermions with I-?o = vy0 p, where & are the Pauli matrices; and
(iv) as massive chiral fermions with Hy = & p%/2m*, where &
is a pseudospin matrix describing the two sublattices of the
honeycomb lattices.'?
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This work is based on a relativistic effective field theory
of electrons containing a local four-fermion interaction. The
effective interaction Lagrangian parametrizes the actual forces
acting on the electrons. It assumes the relevant dynamics from
the atom-electron and electron-electron interactions within the
many-body system (including, e.g., electron-phonon interac-
tions). The rationale to use effective contact interactions goes
back to the claim'®!# that the Hartree-Fock approximation of
the single-particle energy of the many-fermion system with the
point-coupling interaction can be compared to the first-order
contribution of the surface density in a density functional
theory. '

The relativistic picture of interacting fermions has to be un-
derstood together with the concept of an effective mass. In the
case of graphene the effective mass vanishes, corresponding
to a gapless material. A nonvanishing effective mass for GNRs
means that a gap is open. Our model provides a mechanism
for dynamical mass generation for the nanoribbons, even for a
gapless graphene.

We assume a homogeneous 2D system of electrons (or
holes),> where the free part of the electron Hamiltonian
corresponds to case (iii), i.e., ﬁo = vrG p. The two sublattices
of graphene, associated with the Dirac points K and K’, are
taken into account by introducing a factor 2 in the electron
multiplicity.

The model is based on a relativistic Lagrangian field
theoretical approach in which a four-fermion scalar and a
vector pointlike interaction are considered and the many-
fermion problem solved in the Hartree-Fock approximation
on a 2D surface. The model has only two free parameters,
one related to the strengths of the four-fermion interaction and
the Fermi momentum cutoff A. Exploring the connection of
the model with graphene, i.e., by assuming that graphene is a
nontrivial gapless solution of the dynamical equations, we are
able to relate the strengths of the interactions and cutoff to the
graphene work function. This procedure allows us to fix the
parameters and calculate the gaps of the nanoribbons without
any further assumptions.

Our work is organized as follows. In Sec. II, we present
the model and derive the gap equations. In Sec. III, we
present the solution of the gap equations for the nanoribbon
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and compare our results with the experimental data.® Our
concluding remarks are given in the last section.

The model. The electron-hole dynamics is described by
a relativistic quantum field effective Lagrangian in a 2 4 1
space-time, where the interaction has a pairwise and contact
form, which generalizes a nonrelativistic 2D model'®

L=V(@iy"d, —mV + G,(¥W)> + G,(Ty"¥):, (1)

where s and v refer to scalar and vector couplings, respectively,
and W refers to fermion fields. In the following, we use a
system of units such thatz = vp = 1.

Our method of solving the model for the nanoribbon starts
from a nanotube geometry where the fermions are constrained
to move on the cylindrical surface. The appropriate coordinates
are the position along the nanotube symmetry axis (z) and the
angle in the transverse plane (f)—see Ref. 16 for details.
The GNRs are obtained by unfolding an infinite-length carbon
nanotube. The resulting sheet is a GNR with a width W, after
eliminating dangling bonds. The procedure to obtain GNRs
from CNTs is described in Ref. 9.

The Dirac modes are quantized along the transversal
direction after demanding that the spinors vanish at the edges of
the nanoribbon. From this condition it follows that the allowed
fermion transverse momenta are given by k,, = nmw/ W, where
n==1,+2, ..., nmx With nn., being the largest integer
smaller than A W /7. The maximum momentum of the negative
energy electrons filling the valence band, as illustrated in Fig. 1,
is A.

The fermion mass, i.e., the electron self-energy, is generated
dynamically and is computed from the gap equations for the
GNRs, using a self-consistent Schwinger-Dyson equation at
one-loop level (Hartree-Fock approximation). Recall that the
Schwinger-Dyson equation has a cutoff in the momentum of
the negative electron energy in the valence band given by A.

A
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FIG. 1. Schematic graphene bands for conducting (upper) and
valence (lower) fermions. For the discussion of A see the text.
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The gap equations for the self-energies, after integration on
the longitudinal momentum, are given by

2G +max
So= s (St m) :Z Skn). )
2G A?
T =" f), 3)
T
2 G Fmax
6 __ _ ¥
= 2 St (k= X), )

N=—Nmax

A2 — k2 A2 — k2
S(k):ln\/ p +\/ il b ®)
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N=—Nmax

where

and a® = (k, — £9)* + (Z; +m)*.

In Egs. (2)—-(4) we define x = AW/m and G = G, — 3G,
and a factor of 2 was included to take into account electrons at
the K and K’ points. Note that the scalar G and the vector G,
coupling constants combine into a single coupling constant G.
Furthermore, the self-energies given by Egs. (2)—(4) include a
rest fermion mass m. However, hereafter we consider only the
m = 0 case.

The scalar self-energy X; is identified with the half-band-
gap nannoribbon. The self-energy vector part is actually a
quadrivector containing space-time components. However,
due to symmetry only the time component given by X
survives. This component is directly related to the number
of particles N through

(N

where L is the longitudinal length of the GNR.

In a relativistic picture, the infinite graphene sheet (W —
o0) has no electrons in the conducting band. The valence band
is fully occupied and there is no gap between the two bands,
ie.,, Xy = 0. Then, it remains to parametrize only Eq. (3),
since X; = 0 is a trivial solution for Eq. (2). Recall that
we are considering massless fermions m = 0. Anyway, when
considering very large but finite values for W, (2) admits other
solutions besides the trivial £; = 0 and one has an opening
gap generated dynamically.

Let us look for the nontrivial solution of (2). This defines
a unique coupling constant, a function of A, G = G, which
will be called the critical graphene limit. If one takes the
continuum limit of Eq. (2) with m = 0, after setting y = k,,/A
it follows that

2AGei [ 1 1
—‘/ dyln| [=—-14+4-])=1. (8)
72 Jo y? y

Given that the above integral is equal to /2, then the critical
graphene limit requires a

T
Geit = X . (9)
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The A dependence can be eliminated in favor of the graphene
experimental work function value W = 4.8 eV.!” The work
function is related to the chemical potential ©, which needs
to be computed in a consistent thermodynamic way.'®!8 The
pressure P and the density energy &£ of the system determine
the chemical potential by u = (P + £)/o, witho = N/A
and where A is the area of the GNR. P and £ are given by the
diagonal terms of the energy-momentum tensor constructed
from the model Lagrangian (1) in the usual way. In a mean
field approach,'”

£ = < T00>
= L 2 0_ 22y 2
= — n Q(ky)[22) — Q(k; — a®) — a*S(ky)]
1 o2
+ﬁ(zv) , (10
where Q(x) = vV A? — x, and
P=(T%)
___1 2 22y 2 _L 0\2 52
= — [Q(k7)Q(ky — a®) — a*S(ky)] 2G(E”) I

1)

where z is the longitudinal direction of the GNR. Then, the
expression for the chemical potential reads

G A?
n=—: fx) — A2+ 22 =W, (12)

where W is the work function. As a side remark, according to
Ref. 18, the chemical potential computed in the way described
above contains already both the bulk and surface contributions
from the energy density and pressure.

Graphene is recovered in the limit W — oo and, in this
case, x = AW/m also diverges, while f(x — o0) = /2.
Therefore, for graphene if one sets G = Gy and X =
0, one defines the parameters of the model. Then, using
G, it follows from Eq. (12) that A = 2WW. Given that
the experimental value for the graphene work function is
4.8 eV,'720 this determines that A = 9.6 eV. From now on,
we will always use these results for computing the nanoribbon
gaps within the effective relativistic field theoretical model
given by the Lagrangian density (1).

The above definitions fully parametrize Eqgs. (2)-(4),
allowing the computation of a self-consistent solution for X
as a function of the nanoribbon width W. Furthermore, given a
value for A, one can compute the surface density o = A?/x.

Results. In order to solve the model numerically, besides
Gait and A = 9.6 eV, we use vy = c/300.12 Our numerical
procedure is as follows: (i) For a given W, x = AW /m and
k, = nm/W are defined, constraining the integer 1,y < x; (ii)
given that % = 0, a> = k2 + X2 and Eq. (2) can be solved
iteratively to compute E, = 2%;. X0 is calculated directly
from Eq. (3).

In Fig. 2 the results of the model for the band gap E, as
a function of the nanoribbon width are compared with the
experimental data of Ref. 6. As observed in the figure, the
model reproduces the GNR’s experimental gap for a large
range of nanoribbon widths. We call to the reader’s attention,
that the curve in Fig. 2 is the direct outcome from the model

PHYSICAL REVIEW B 83, 153405 (2011)

0.5 T T T T T 1 i T
A Experimental data from ref. [6]
— Our model
0.4
= -
ALA . } '
03@& | =
—_
>
N
o0
02 .
0.1 =
Un | | | L \ ) A
0 10 20 30 40 50

W (nm)

FIG. 2. GNR band gap as a function of ribbon width W.

without any ad hoc normalization to reproduce the right E,
scale. This striking agreement between experimental data
and theoretical predictions seems to indicate that the model,
as defined above, captures the essential physics required to
understand the gap formation in nanoribbons. Moreover, the
results summarized in Fig. 2 give support to the idea that the
concept of the effective interacting valence Dirac electrons
which generate dynamically a band gap is useful to describe
the electronic properties of GNRs.

The experiments reported in Refs. 17 and 20 show that for
CNTs with radius between 0.5 and 1.5 nm, the work function
oscillates with an amplitude of ~0.5 eV or less around the
graphene work function V. As the CNT radius increases, the
oscillations rapidly become very smooth. This consideration
may help in understanding why our model still works for GNRs
with small widths. Moreover, it also shows that the graphene
scale, used in the definition of our model, is robust regarding
the GNR finite-size details. Possibly, the massless fermions
picture reinforces this point, since the localization of carriers
is strongly suppressed favoring ballistic behavior for them.
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FIG. 3. (Color online) GNR band gap as a function of ribbon
width. Theoretical calculations from PBE and HSE density function-
als (Ref. 9).
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Let us now compare the model with other theoretical pre-
dictions. In Ref. 8, first-principles calculations for three types
of armchair-edged GNRs have been reported. Their results
are similar to ours. For smaller widths, previous theoretical
calculations® have been done using DFT functionals from the
works of Perdew et al. (PBE)?! and Heyd et al (HSE).??
According to the authors, the band gap oscillates as a function
of W. A similar behavior is observed in our model—see Fig. 3.
Typically, our results are in between those of the two DFT
(PBE, HSE) calculations.

From the point of view of the relativistic model, the
oscillations in the physical quantities are related to 7, . As the
width W decreases, x = AW /x decreases and higher values
for the integer n become possible. Whenever n,,x increases
by unity, due to the behavior of the derivative of N relative
to the single-particle energy, a Van Hove singularity shows
up. This explains the oscillatory behavior of the GNR band
gaps observed in our model. As seen in Fig. 3, whenever
W gets larger, the amplitude of oscillations diminishes and
they become sizable only for a width of the order of a few
nanometers or smaller.

Concluding remarks. Our results for the effective relativistic
field theoretical model show that it accounts reasonably well
for some of the physics require to understand the GNR from
small to large widths. Moreover, the graphene scale is used to
defined the model parameters and it seems to be a robust scale
regarding the GNR finite-size details. In this sense, our results
are very auspicious for further investigations of GNRs with
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the present model which may, as claimed before, represent a
first-order approximation to a DFT calculation. A nice feature
of the relativistic field approach is its simplicity. Indeed, it

allows for a detailed analytical description that, eventually,
can guide our intuition in'the investigation of GNRs and in

looking for general driving physics trends.

To conclude, we would like to make general comments
on how to improve the present effective model. For small
widths, due to the increase in the kinetic energy, some of the
fermions can jump into the conduction band. Therefore, for
small W’s the model, instead of having a single cutoff A, will
require two, one for the valence band A; and another for the
conduction band A,. The presence of the new scale could lead
to larger amplitude oscillations as the ab initio calculations
suggest—see Fig. 3. Moreover, when W becomes smaller, the
edges distinguish armchair and zigzag GNRs, as discussed
in Ref. 23. This requires refined boundary conditions for the
spinors at the GNR at the boundaries. In general Es vanishes
due to the symmetry between k, and —k,. However, if this
symmetry is broken due to the boundary conditions, then one
should solve Egs. (2)—(4) self-consistently. In any case, the
relativistic model still keeps its simplicity and the way we
have solved the model is, essentially, unchanged.
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