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Nonlocal plasmon excitation in metallic nanostructures
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We investigate the excitation of electrostatic wake fields in metallic nanostructures (nanowires) due to the
propagation of a short electron pulse. For that purpose, a dispersive (nonlocal) dielectric response of the system
is considered, accounting for the conning along the transverse direction of the wire, which generalizes previous
results presented in the literature. We discuss the stability conditions of wake fields and show that the underling
mechanism can be useful to investigate new sources of radiation in the extreme-ultraviolet range.
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Experimental techniques1 have been developed for the
fabrication of metallic nanostructures (nanowires) of the order
of 10 nm or less, recently receiving a considerable amount of
attention from the scientific community. Nanowires, compared
to other low-dimensional systems, have two conned directions,
still leaving one unconned direction for electrical conduction.
Due to their unique density of states, such systems are
expected to exhibit significantly different optical, electrical,
and magnetic properties from their bulk three-dimensional
(3D) crystalline counterparts, especially in the limit of small
diameters. Even if the number of electrons involved in the
relevant features is high, and therefore a continuum description
is expected to be adequate, the current models still lack
completeness. One of the most striking cases is related to
the dielectric response. It was experimentally shown that
anomalous absorption can occur in thin metal films2 due to the
excitation of plasmons.3 Liu et al.4 have recently approached
this problem for arbitrarily shaped nanostructures, although
they neglected the wave-number dependence in their model.
Recently, McMahon et al.5 considered the effects of the
nonlocal response by adding dispersion terms (proportional
to the wave vector k) in the Drude dielectric function of the
bulk (conduction) electrons, as described by

ε(k,ω) = ε∞ − ω2
p

ω(ω + iγ ) − v2
F k2

, (1)

where ε∞(≈ 1) is the value for ω → ∞, ωp and vF stand
for the plasma frequency and the electron Fermi velocity,
respectively, and γ represents the electron collision frequency.
However, it is well known that further quantum-mechanical
effects participate in the dielectric response of electrons
at nanoscales. In Ref. 6, Manfredi and Haas have shown
that quantum diffraction (∼k4) plays a significant role in
the dispersion of collective modes and instabilities, which,
therefore, are expected to play an important role in nanowires
as well. In particular, such quantum effects become important
when the thermal wavelength is comparable to the typical
dimensions of the system.

In this Brief Report, we extend the dispersive Drude
model in Refs. 5 and 6 by taking into account the finiteness
of the system along the transverse direction in quasi-one-
dimensional nanostructures (nanowires). We then apply our
result to investigate the excitation of wake fields due to the

propagation of a finite electron pulse. It is shown that the
features of the wake fields are intrinsically connected with
the dispersive response of the system. We suggest that, due to
the competition between two spatial scales (say classical and
quantum), the excitation of wake fields in such materials can
also lead to the emission of radiation in the extreme ultraviolet
(XUV) range of frequency.

We start from a set of quantum hydrodynamic (QHD)
equations,

∂n

∂t
+ ∇ · (nu) = 0, (2)(

∂

∂t
+ iγ

)
u + u · ∇u = e

me

∇φ − ∇PF

men
+ FQ

me

, (3)

∇2φ = e

ε0
(n − n0), (4)

where n, u, and φ are the electron mean density, the electron
velocity, and the electrostatic potential, respectively. The
closure of the system is established via an equation of state for
the electrons of the conduction band,

PF = mev
2
F

3n2
0

n3, (5)

with me and e standing for the electron mass and charge. The
last term in Eq. (3) corresponds to the so-called quantum (or
Bohm) force and casts the effects of the quantum diffraction,

FQ = h̄2

2me

∇
(∇2√n√

n

)
. (6)

Equations (2)–(6) have also been used to model superdense
astrophysical bodies7 (i.e., the interior of Jupiter and massive
white dwarfs, magnetars, and neutron stars, etc.), intense
laser-solid density plasma experiments,8 and ultrasmall elec-
tronic devices,9,10 carbon nanotubes,11 and quantum diodes.12

Quantum hydrodynamic models have also revealed important
features occurring in superfluidity13 and superconductivity.14

We now consider a cylindrical nanowire of radius a and
length L � a, in such a way that the system can be regarded
as quasi-one-dimensional along the longitudinal direction.
In that case, we decompose the Laplacian operator, which
can be written as ∇2 = ∇2

⊥ + ∂2/∂2
z . Any relevant quantity
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�(= n,u,φ) present in the above equations can therefore be
decomposed as

�(r,θ,z,t) =
∑
l,m

�l,m(z,t)Jm(k⊥;l,mr) exp(imθ ), (7)

where l and m are integers (|l| � m), k⊥;l,m = αl,m/a is the
transverse wave number, and αl,m stands for the lth zero of the
Bessel function of order m. In the present work, we consider
the low-lying modes l = 1 and m = 0 only, without any loss
of generality but for the sake of definiteness (for simplicity,
we denote the transverse wave vector as k⊥ in the remainder of
the paper). After linearization, Eqs. (2)–(4) can be expressed
in the following form:

∂nl,m

∂t
+ n0

∂ul,m

∂z
= 0, (8)(

∂

∂t
+ iγ

)
ul,m = e

me

∂φl,m

∂z
− v2

F

n0

∂nl,m

∂z
+ h̄2

4m2
en0

∂3nl,m

∂z3
,

(9)(
∂2

∂2
z

− k2
⊥

)
φl,m = e

ε0
(nl,m). (10)

After Fourier transforming Eqs. (8) and (9) and using the
constitutive relation D(k,ω) = ε0ε(k,ω)E(k,ω), we can easily
derive the dielectric function for the conduction band,

ε(k,ω) = 1 − k2

k2 + k2
⊥

ω2
p

ω(ω + iγ ) − v2
F k2 + h2k4/4m2

.

(11)

This expression describes a nonlocal, dispersive dielectric
response of the system, where the finiteness of the system
along the transverse direction (∼ k2

⊥) is taken into account and
can also be used to described low-frequency electron waves in
quantum plasmas.15 In the limit of very-low-frequency waves,
a coupling is possible between plasmons (or electron phonons)
and the usual lattice phonons. Such a coupling, however,
is a second-order (nonlinear) effect, smaller than the effect
introduced on the electrons, and therefore without any major
consequence on the results of the present paper. Nonetheless,
we consider it worthwhile to unravel its physics in a future
work. In the limit where the transverse finiteness is negligible,
i.e., L ∼ a, one easily recovers the Drude model in Ref. 6 or
its truncated version in Eq. (1).

We now examine the consequences of a propagation of an
electron pulse in a dispersive medium with dielectric response
given by Eq. (11). In that case, the electron density is given
by n = n0 + nl,m + Nl,m, where Nl,m is the electron pulse.
Plugging into Eq. (10),(

∂2

∂z2
− k2

⊥

)
φl,m = e

ε0
(nl,m + Nl,m), (12)

and assuming a typical situation where the collision frequency
is negligible, γ 
 ωp,16 Eqs. (8), (9), and (12) easily yield(

∂2

∂t2
+ ω2

p − v2
F

∂2

∂z2
+ h̄2

4m2
e

∂4

∂z4

)(
∂2

∂z2
− k2

⊥

)

× nl,m + k2
⊥ω2

pnl,m = −ω2
p

∂2

∂z2
Nl,m. (13)

Assuming that the electron pulse propagates with velocity v0 =
v0ẑ, we introduce the axial Lagrange coordinate ζ = z − v0t

to get{
∂2

∂τ 2
+ (V 2 − 1)

∂2

∂ξ 2
− 2V

∂2

∂τ∂ξ
+ 1 + H 2

4

∂4

∂ξ 4

}

×
(

∂2

∂ξ 2
− K2

⊥l,m

)
ñl,m + K2

⊥l,mñl,m (14)

= − ∂2

∂ξ 2
Ñl,m, (15)

where ξ = ζ/λF , τ = ωpt , Ñl,m = Nl,m/n0, K⊥ = k⊥λF ,

and V = v0/vF are dimensionless variables. Here, H =
h̄ωp/(2kBTF ) is a dimensionless quantum. For short electron
pulses, ω−1

pe � τ , where τ is the typical duration of the pulse,
an electrostatic wake field is expected to be excited (for Au
nanowires, the plasma frequency ω−1

pe is of the order of a
few femtoseconds). The stationary solution in the moving
frame, (∂/∂τ → 0), corresponds to the case in which the
pulse propagates with negligible deformation and can be easily
solved. In that case, we may write Eq. (14) as(

K2
a

∂2

∂ξ 2
+ H 2

4

∂4

∂ξ 4
+ K4

b

)
ñl,m(ξ ) = −Ñl,m(ξ ), (16)

where K2
a = V 2 − 1 − H 2K2

⊥/4 and K4
b = 1 + K2

⊥(1 − V 2).
Taking the Fourier transform of Eq. (16), one obtains

n̂l,m(K) = −N̂l,m(K)Ĝ(K), (17)

where Ĝ(K) is the Fourier-transformed Green function and
can be expressed as

Ĝ(K) = 1

(K2 − K2+)(K2 − K2−)
, (18)

with

K2
± =

K2
a ±

√
K4

a − H 2K4
b

H 2/2
. (19)

We notice that the existence of two spacial frequencies K± is
a strong consequence of the quantum diffraction: in the limit
h̄ → 0, only one modulation frequency would be present [see
Eq. (15)]. The solution to Eq. (16) is therefore readily obtained
via the convolution theorem

ñl,m (ξ ) =
∫ ∞

−∞
Ñl,m(ξ0)G(ξ − ξ0)dξ0, (20)

where G(ξ − ξ0) is the inverse Fourier transform of G(K),
which leads to the following solution to the density perturba-
tion created by a short electron pulse moving along the axis of
the nanowire:

ñl,m(ξ ) = 1

K2+ − K2−

∫ ∞

−∞
dξ0

(
sin K+(ξ − ξ0)

K+

− sin K−(ξ − ξ0)

K−

)
�(ξ0 − ξ )Ñl,m(ξ0), (21)

with �(x) representing the step function. We can use
Ñl,m(ξ0) = N0 exp(−ξ 2

0 /σ 2) to describe a Gaussian electron
pulse of width σ . The latter equation describes the excitation
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FIG. 1. (Color online) Wake-field stability diagram for Au
nanowires (H ≈ 0.817) as a consequence of the finiteness of
the system along the transverse direction. The two curves co-
incide at kcr

⊥ ≈ 1.52/λF (vertical line). The shadowed area is
stable.

of a wake field when a short pulse is set to propagate in a
metallic nanowire.

Stable electrostatic wake fields can be excited provided the
inequalities K2

a > 0, K4
b > 0, and K4

a > H 2K4
b are simulta-
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FIG. 2. (Color online) The excitation of a wake field due to a short
electron pulse as function of (a) the velocity of the pulse, v0 = 1.85vF ,
blue dashed line (light gray dashed line), and v0 = 2.21vF , red solid
line (dark gray solid line), for a width of σ = 0.1λF ; (b) the width
of the electron pulse, σ = 0.1λF , blue dashed line (light gray dashed
line), and σ = 0.2λF , red solid line (dark gray solid line), obtained
for v0 = 2.21vF .
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FIG. 3. (Color online) Wave numbers k−, solid lines, and k+,
dashed lines, for different values of the quantum parameter H , plotted
for k⊥ = 0.5λF : H = 0.51, blue line (light gray line); H = 0.817,
black line (black line); and H = 1.2, red line (dark gray line). The
lower cutoff corresponds to the upper limit in Eq. (22) to the pulse
velocity v0, which is independent of H . For k⊥ ≈ 2.41/a, we have
v0 ≈ 2.24vF .

neously verified. These conditions constrain the velocity of the
electron pulse as follows:

(
1 + H − H 2K2

⊥
4

)1/2

< V <

(
1 + K2

⊥l,m

K2
⊥

)1/2

. (22)

We consider the concrete case of Au nanowires,6 for which
the electron density is n0 = 5.85 × 1022 cm−3 and the Fermi
temperature is TF = 63 736.8 K. In that case, we obtain ωp ∼
1.54 eV, VF ∼ 1.39 × 106 m/s, and λF ∼ 10.2 nm.

The stability diagram of the wake field is plotted in
Fig. 1 for H ∼ 0.817. The critical value of the wave number,
above which dynamical instability occurs, strongly depends
on the quantum parameter H (the ratio of the plasmon to the
Fermi energies) and is defined as kcr

⊥ = √
2/H ∼ 1.52/λF .

Stable wake-field solutions for different sets of parameters
are illustrated in Fig. 2. It is observed that the quantum
oscillations, of periodicity k+, are enhanced for very short
pulses, i.e., k+σ � 1. The pulse velocity v0 also plays a
role in the amplitude of the wake field, as it is related with
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FIG. 4. (Color online) Accessible wavelength range (shadowed
area) for the radiation emitted by the wake field as a function of the
transverse radius of the nanowire (k⊥ ≈ 2.41/a, see discussion in the
text). The lower and upper curves correspond to the boundaries of
stable wake fields in Eq. (22). The values fit the XUV wavelength
range.
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the value of k− and k+. The width of the pulse also seems
to change the amplitude of the wake field, and that can be
easily understood by noticing that Eq. (21) provides a factor
of the form exp(−k±σ ), which damps the amplitude of the
perturbation for long pulses. The difference between the modes
k± can be enhanced by changing the value of the quantum
parameter H (see Fig. 3). In practice, this simply corresponds
to choosing a different metal, since H only depends on the
nature of the sample.

The excitation of wake fields may also open the door
for the investigation of possible new sources of radiation
in nanoscale devices. The electron current created by the
wake field emits radiation at frequencies ω± ∼ ck±. In Fig. 4,
we evaluate the range of frequencies generated by a short
pulse propagating in a nanowire by plugging the stability
condition (22) into the definition of k+ and k−. For the
special case of Au nanowires mentioned earlier, typical
experiments are performed with cylinders of radius a ∼ 5 nm,
which corresponds to a transverse cutoff k⊥ ∼ 0.5/λF . Stable
structures can therefore modulate electrons at wavelengths of
λ ∼ 10–40 nm. We stress that the narrowness of the spectrum
strongly depends on the value of k⊥, as can be readily observed
in Eq. (22): in the limit k⊥ → 0, no upper limit would exist
for the beam velocity v0, which would broaden the spectrum.
Also, the emission range can be broader or narrower provided
that the value of H is decreased of increased, respectively (see
Fig. 3). When properly amplified, these signals can be used to
produce radiation in the XUV range. This may be particularly

interesting in experiments where high-sensitivity, low-power
XUV radiation is needed.

To summarize, we have extended the usual hydrodynamic
description of metallic nanowires and derived an expression
for the nonlocal (dispersive) dielectric constant accounting for
finite-size effects in the transverse direction. This dispersive
dielectric response of the system is then considered to investi-
gate the excitation of wake fields due to the propagation of a
short electron pulse. We show that stable wake-field generation
is expected to occur for a reasonable set of experimentally
accessible parameters. It was also shown that the competition
between the classical and quantum behaviors of the system
provides two scales of electronic modulation (k+ and k−),
which strongly depend on the finiteness condition along the
radial direction (a similar result without conning was obtained
in Ref. 17). Finally, we investigate a possible application
of wake-field excitation in nanowires as a narrow source of
radiation in the XUV range. With the available state-of-the-art
technology, very short pulses can be generated also at low
power (using, e.g., lasers diodes18), allowing wake fields to
be studied outside the traditional areas of plasma physics and,
in particular, the investigation of wake-field phenomena in the
context of nanotechnology.
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