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Various superconductors, including cuprate superconductors, exhibit peculiar features above the transition
temperature Tc. In particular the observation of a large diamagnetism and Nernst signal N in a wide temperature
window above Tc attracted considerable attention. Noting that this temperature window exceeds the fluctuation
dominated regime drastically and that in these materials the spatial extent of homogeneity is limited, we explore
the relevance of the zero-dimensional (0D) model, neglecting local thermal fluctuations. It is shown that both the
full 0D model as well as its Gaussian approximation mimic the essential features of the isothermal magnetization
curves md (H ) in Pb nanoparticles and various cuprates remarkably well. This analysis also provides estimates
for the spatial extent of the homogeneous domains giving rise to a smeared transition in zero magnetic field. The
resulting estimates for the amplitude of the in-plane correlation length exhibit a doping dependence reflecting
the flow to the quantum phase transition in the underdoped limit. Furthermore it is shown that the isothermal
Nernst signal of a superconducting Nb0.15Si0.85 film, treated as N ∝ −md , is fully consistent with this scenario.
Accordingly, the observed diamagnetism above Tc in Pb nanoparticles and in the cuprates La1.91Sr0.09CuO4 and
BiSr2Ca2CuO8−δ , as well as the Nernst signal in Nb0.15Si0.85 films, is in excellent agreement with the scaling
properties emerging from the 0D model, giving a universal perspective on the interplay between diamagnetism,
Nernst signal, correlation length, and the limited spatial extent of homogeneity. Our analysis also provides
evidence that singlet Cooper pairs subjected to orbital pair breaking in a 0D system are the main source of the
observed diamagnetism and Nernst signal in an extended temperature window above Tc.
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I. INTRODUCTION

The detection of Cooper pairs above the superconducting
transition temperature Tc has a long history, dating back to
1969.1 It implies that the average of the order parameter
squared, 〈|ψ |2〉, does not vanish above Tc, due to either
thermal fluctuations or the limited effective spatial extent
of the system. While the regime where thermal fluctuations
dominate is reasonably well understood in terms of the scaling
theory of critical phenomena subjected to finite-size effects,2–9

novel features have been observed considerably outside the
fluctuation dominated regime. Recently, Li et al.10,11 have
compiled the results of an extended experimental study of
the isothermal magnetization of several families of cuprate
superconductors over a rather broad range of temperatures and
magnetic fields. From these, they infer that above the transition
temperature Tc, the isothermal diamagnetic contribution to
the magnetization md decreases initially with increasing
magnetic field H , applied parallel to the c axis, consistent
with md = −χdH , where χd is the diamagnetic susceptibility.
However, as H increases md tends to a minimum at Hm

and in excess of this characteristic field the magnetization
increases and appears to approach zero, as shown in Fig. 1 for
La1.91Sr0.09CuO4, showing data taken from Li et al.11

Related behavior was reported earlier for oriented powder
samples of underdoped YBa2Cu3O6+x

12 and MgB2,13 oriented
powder samples of underdoped Y1−xCaxBa2Cu3Oy

14 and
YNi2B2C single crystals,15 La1.9Sr0.1CuO4 single crystals,16

irradiated MgB2 and Al-doped MgB2,17 and polycrystalline
SmBa2Cu3−yAlyO6+δ .18 However, these investigations un-
covered in the isothermal magnetization curves in the low
field limit an upturn in the low field regime where thermal
fluctuations are relevant.14,19,20 In this work we concentrate

on the upturn phenomenon observed in La1.91Sr0.09CuO4

(see Fig. 1) and Bi221210,11 at rather high fields and suf-
ficiently above Tc where thermal fluctuations in the phase
and magnitude of the order parameter are expected to be
negligible. Here, the magnetization was inferred from torque
magnetometry.10,11 However, the torque measurements reveal
a temperature dependent paramagnetic background mp (T ,H ).
The diamagnetic contribution to the magnetization is then
derived from11

md (T ,H ) = mexp (T ,H ) − mp (T ,H ) , (1)

where

mp (T ,H ) � (a + bT ) H, a � bT . (2)

Although this subtraction leads to uncertainties in the high
field limit, where the diamagnetic signal becomes small, it
appears unlikely that the main feature, the occurrence of the
minimum in md (T ,H ) at fixed temperature T > Tc, is an arti-
fact of this subtraction. Although the crossover from the initial
linear (md = −χdH ) to nonlinear behavior is an expected
feature of thermal fluctuations in homogeneous two (2D) and
three (3D) dimensional superconductors, the occurrence of the
minimum cannot be explained invoking these scenarios.2–7 On
the other hand, there is considerable evidence that cuprate and
amorphous conventional superconductors are homogeneous
over a limited spatial domain only.8,21–27 In this case, the
growth of the correlation lengths is limited by approaching
the transition temperature Tc because it cannot exceed the
respective extent of the homogenous domains. Within a two-
dimensional superconductor, consisting of a stack of super-
conducting layers with insulating spacing sheets in between,
the adoption of this scenario where the magnetization stems
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FIG. 1. (Color online) The solid lines show isotherms md vs H

at various temperatures above Tc � 23 K for La1.91Sr0.09CuO4 taken
from Li et al.11 The star indicates the minimum in the curves for the
presented isotherms.

from homogeneous domains with limited extent only would
result in an effective 0D superconductor. As a consequence,
the isothermal magnetization curves would exhibit a minimum,
reminiscent of the observation in nanoparticles.28

Related behavior was also observed in the isothermal
Nernst signal of superconducting and amorphous Nb0.15Si0.85

films above Tc.29–31 In this system, the Nernst signal due
to normal quasiparticles is particularly low. This allows one
to probe the contribution associated with superconductivity
without the subtraction of the background due to the normal
quasiparticles.29–31 At low magnetic field, the Nernst signal
N = νH increases linearly with field, where ν is the Nernst
coefficient. Upon increasing the magnetic field, N deviates
from this linear field dependence, reaches a maximum at Hm,
and decreases afterward. In analogy to the position of the
minimum in the magnetization, the maximum shifts to higher
fields with increasing temperature. This behavior confirms the
evidence that the isothermal Nernst signal is proportional to
the magnetization in terms of N ∝ −md .32–35

Here we review the properties of the isothermal mag-
netization curves of a 0D superconductor, neglecting local
thermal fluctuations, and explore the consistency with ex-
perimental magnetization data of Pb nanoparticles,28 bulk
La1.91Sr0.09CuO4,11 and BiSr2CaCu2O8+δ (Bi2212) with Tc �
45 K and Tc � 85 K.11 To explore whether this scenario
also accounts for the Nernst signal N in terms of the
relation N ∝ −md , we consider the data for superconducting
Nb0.15Si0.85 films taken above Tc.29–31 In Sec. II we sketch
the theoretical background including the properties of the 0D
model. The neglect of thermal fluctuations implies that the
model is applicable outside the critical regime only, which
is sufficiently above Tc, the regime where the experimental
data of La1.91Sr0.09CuO4 and Bi2212 were taken. Invoking
quantum scaling the doping dependence of the minimum in the
isothermal magnetization curves is also addressed. In Sec. III
we present the analysis of the data based on the 0D model, ne-
glecting local thermal fluctuations. The remarkable agreement

with the measured isothermal magnetization curves, achieved
for reasonable values of the model parameters, suggests that
the occurrence of the minimum is attributable to a finite extent
of the homogeneous domains. The doping dependence of the
Bi2212 data is also consistent with the flow to a quantum
phase transition in the underdoped limit. Furthermore it is
shown that the profile of the isothermal Nernst signal of
the superconducting Nb0.15Si0.85 film, treated as N ∝ −md ,
is fully consistent with the 0D model. Accordingly, singlet
Cooper pairs subjected to orbital pair breaking in a 0D
system are the main source of the observed diamagnetism
and Nernst signal in an extended temperature window above
Tc. Finally, we show that the 0D model provides for a variety
of conventional and hole doped superconductors a universal
perspective on the interplay between diamagnetism, Nernst
signal, correlation length, and the limited spatial extent of
homogeneity. We close with a brief summary and some
discussion.

II. THEORETICAL BACKGROUND

The fluctuation contribution to the free energy per unit vol-
ume of a homogeneous and anisotropic type II superconductor
scales above Tc as2,3,5–7

f = kBT

ξxξyξz

G

(
ξxξy

L2
Hz

)
, L2

Hz
= �0

Hz

, (3)

where G (z) is a scaling function of its argument and LHz

is the magnetic field induced limiting length giving rise to a
finite-size effect.36 We assume that the magnetic field is applied
along the z axis. ξx,y,z denote the correlation length along
the respective axis in zero field. In the limit ξxξy � L2

Hz
=

�0/Hz, attainable for sufficiently high fields, this expression
reduces to

f ∝ kBT

L2
Hz

ξz

= kBT Hz

�0ξz

, (4)

because the zero field correlation lengths ξxξy cannot grow
beyond L2

Hz
. In this limit the magnetization md = −∂f/∂Hz

tends to

md

T
∝ − kB

�0ξz

. (5)

On the other hand, in the opposed limit ξxξy � L2
Hz

= �0/Hz

the scaling function adopts the limiting behavior, G (z) ∝ z2,
to recover md = −χdH . In this case we obtain

md

T
∝ −2kBξxξy

�0ξz

Hz. (6)

Accordingly, in both the 3D and 2D cases, where ξz = d and
d denotes the thickness of the superconducting sheets, the
magnetization saturates at sufficiently high fields due to the
magnetic field induced finite-size effect, reducing the effective
dimensionality D of the system from D to D − 2.36,37 In this
limit the system corresponds in D = 3 to independent super-
conducting cylinders of radius LHz

∝ (�0/Hz)1/2 and height
ξz and in D = 2 with height ξz = d. Detailed calculations in
D = 2 reveal that the crossover from the low to the high field
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limit occurs monotonically and according to that there is no
minimum.4

So far we have considered homogeneous systems only. In
practice any real and highly anisotropic type II superconductor
is homogenous within, e.g., a cylinder of radius R and height
d. Concentrating on temperatures sufficiently above Tc where
local thermal fluctuations in the phase and amplitude of the
order parameter can be neglected, we are left with a 0D system
with an order parameter ψ which does not depend on the space
variables. The temperature and magnetic field dependence
follows then from the Ginzburg-Landau (GL) model for a 0D
system as treated by Shmidt.9,38 The partition function in this
case reads

Z =
∫

dRe(ψ)dIm(ψ)exp (−f [ψ]) , (7)

with the GL free energy functional

f [ψ] = V

kBT

[
r0

(
ln

(
T

Tc

)
+

(
2π

�0

)2

ξ 2
0 〈A2〉

)

× |ψ |2 + u0

2
|ψ |4

]
, (8)

and

t = T/Tc0 − 1, ξ 2
0 = h̄2

2mr0
, ξ 2 = ξ 2

0 t−1. (9)

A is the vector potential and ξ the correlation length with
amplitude ξ0. Setting

ψ2 = |z|2 kBT

V
,

a = r0

(
ln

(
T

Tc

)
+

(
2π

�0

)2

ξ 2
0 〈A2〉

)
, (10)

u = u0

(
kBT

V

)
,

assuming a > 0 and u > 0, we obtain for the partition function
the expression

Z = π3/2kBT

V
√

2u
exp

(
a2

2u

)
erfc

(
a√
2u

)
. (11)

erfc(z) is the complementary error function. The magneti-
zation per unit volume follows then from the free energy
F = −kBT ln(Z) in terms of

md = − 1

V

dF

dH
= kBT

V

1

Z

dZ

dH
, (12)

yielding

md = kBT

V

(
a

u

da

dH
+ d

dH
ln

[
erfc

(
a√
2u

)])
. (13)

Using the gauge A = (0,Hzx,0) we obtain for a cylindrical
homogenous domain with radius R, height d, and a spherical
domain with radius r

〈A2〉 = H 2

V

∫
x2dV = a4H

2, H = Hz, (14)

where

a4 =
{

R2/4, V = πR2d,

r2/5, V = 4πr3/3.
(15)

The magnetization expression (13) can then be rewritten as

md = a3

(
4a1H

a2
2

x + d

dH
ln [erfc (x)]

)
, (16)

or

md = 2a3a1

a2

(
x

a1
− ln

(
T

Tc

))1/2

,

(17)(
2x + d

dx
ln [erfc (x)]

)
,

where

x = a1

(
ln

(
T

Tc

)
+

(
H

a2

)2 )
,

(18)

a1 = r0V
1/2

√
2u0kBT

, a2 = �0

2πξ0a
1/2
4

, a3 = kBT

V
.

In terms of the variable x, requiring the values of a1 and a2,
Eq. (16) adopts the simple scaling form

md

H
= 2a3a1

a2
2

f (x) , f (x) = 2x + d

dx
ln [erfc (x)] , (19)

with the limiting behavior

f (x)|x→∞ = −1/x,
(20)

f (x)|x→0 = −2/
√

π + (2 − 4/π ) x.

In the limit x → 0 md reduces then to

md = −4a3a1H

a2
2

√
π

, (21)

consistent with md = −χdH . Contrariwise, for x = ∞ it
approaches

md = −2a3H

a2
2

(
ln

(
T

Tc

)
+

(
H

a2

)2 )−1

. (22)

Accordingly, the isothermal magnetization curves adopt for
T > Tc a minimum between the low and high field limits. This
characteristic behavior also appears in Fig. 1. More specifically
the minimum at

xm (t) = a1

(
ln

(
T

Tc

)
+

(
Hm (t)

a2

)2 )
(23)

follows from

dmd

dH
= 0, (24)

yielding for sufficiently large a1 the solution

xm (T ) = xm (Tc) + 2a1 ln

(
T

Tc

)
, (25)

where

xm (Tc) = a1

(
Hm (Tc)

a2

)2

� 1.02634. (26)

Together with Eq. (23) and sufficiently large a1 we obtain for
the magnetic field Hm (T ), where the isothermal magnetization
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curves adopt a minimum, the relation

Hm (T ) = a2

(
1.02634

a1
+ ln

(
T

Tc

))1/2

. (27)

Accordingly, Hm (T ) does not vanish at Tc and the temperature
dependent part is related with a2 in Eq. (18) to the amplitude
of the correlation length. This differs from the Gaussian
approximation, valid for u0 = 0 (a1 = ∞). In this limit
Eq. (22), rewritten in the form

md = −2a3
H

H 2
m (T )

(
1 +

(
H

Hm (T )

)2 )−1

, (28)

applies. Here md (H,T ) /T adopts at fixed temperature a
minimum at

Hm (T ) = Hm0ln1/2

(
T

Tc

)
,

(29)

Hm0 = a2 = �0

2πξ0a
1/2
4

,

between the low and high field behavior. Furthermore, in the
cylindrical case is the ratio ξ 2

0 /d according to Eqs. (15) and
(29) given by

ξ 2
0

d
= �2

0

πkBT

a3

a2
2

. (30)

The Gaussian expression Eq. (28) for the magnetization also
implies that there is no particular depairing field. Indeed, the
magnetization vanishes as md = −2a3/H .

As mentioned above, the applicability of the Gaussian
approximation requires that

r0V
1/2

√
2u0kBT

(
ln

(
T

Tc

)
+

(
H

a2

)2 )
→ ∞ (31)

be very large. According to this, in systems with non-
negligible quartic term u0 it fails close to Tc in the low
field limit. Considering highly anisotropic cuprates, such as
La2−xSrxCuO4 with x = 0.09 and Bi2212, this corresponds
to the critical regime where a 3D-xy to 2D-xy crossover
occurs and phase fluctuations dominate.39 However, in this
regime and for sufficiently large R even the full model
fails because local fluctuations are neglected. In the light of
these considerations it is not unexpected that the Gaussian
version of the model mimics the essential features of the field
dependence of the magnetization shown in Fig. 1 well, namely
the occurrence of the minimum between the low and high
field behavior. The same qualitative agreement also emerges
from the magnetization data of La2−xSrxCuO4 with x = 0.0610

and 0.055,10 Bi2212 with Tc ≈ 85 K, underdoped Bi2212
with Tc ≈ 45 K,11 optimally and overdoped Bi2201Lay with
Tc � 30 K and Tc � 20 K,11 and Pb nanoparticles.28 To
substantiate this qualitative agreement we explore in Sec. III
the consistency of the measured isothermal magnetization
curves of Pb nanoparticles,28 of La2−xSrxCuO4 with x =
0.09,11 and of Bi221211 with the outlined scenario for a
zero-dimensional system. Because the partition function (11)
requires that a > 0 and with that according to Eqs. (10)

and (15)

ln

(
T

Tc

)
+ π2

�2
0

ξ 2
0 R2H 2 > 0, (32)

our analysis is essentially restricted to temperatures T > Tc.
One also expects that the diamagnetic contribution to the

magnetization exhibits a characteristic doping dependence.
Indeed, the phase transition line of La2−xSrxCuO4 is well
described by the empirical relation

Tc (x) = Tcm

(
1 − 2

(
x

xm

− 1

)2 )

= 2Tcm

x2
m

(x − xu) (xo − x) , (33)

from Presland et al.40 At Tc = 0 the systems are expected to
undergo a quantum phase transition. Here the amplitude of the
correlation length ξ0 diverges in a homogeneous system as6

ξ0 ∝ δ−ν, (34)

while Tc scales according to

Tc ∝ δzν. (35)

δ denotes the tuning parameter of the quantum phase transition
with dynamic critical exponent z and correlation length
exponent ν. Combining Eqs. (34) and (35), we obtain

ξ0 ∝ T −1/z
c , (36)

expected to apply in both the underdoped (x = xu) and
overdoped (x = xo) limits. Noting that ξ0 enters Hm0 = a2 =
�0/ (πξ0R) [Eqs. (15) and (29)] and that the magnetic field
Hm = Hm0 (ln (T/Tc))1/2, where the isothermal magnetization
curves exhibit a minimum, the approach to the underdoped or
overdoped limit should be observable. However, this behavior
may be masked by means of the doping dependence of R, the
radius of the homogeneous cylindrical domains.

III. DATA ANALYSIS

In this section we explore the consistency of isothermal
magnetization and Nernst signal data with the predictions
of the full 0D model and its Gaussian version. We con-
centrate on the magnetization data of Pb nanoparticles,28

La1.91Sr0.09CuO4,11 and bulk BiSr2CaCu2O8+δ (Bi2212) with
Tc � 85 K (slightly underdoped) and Tc � 45 K (heavily
underdoped),11 and on Nernst signal data of a Nb0.85Si0.85

film.29–31

A. Pb nanoparticles

The diamagnetism in Pb nanoparticles with average diam-
eters ranging from 150 to 750 Å, sizes for which effects of
finite-level spacing should be negligible, has been studied by
Benardi et al.28 By means of high-field resolution supercon-
ducting quantum interference device (SQUID) measurements,
isothermal magnetization curves were obtained for T � Tc.
Figure 2 shows isothermal diamagnetic magnetization curves
of the sample containing spherical nanoparticles with average
radius r = 375 Å. For comparison we included fits to the
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FIG. 2. (Color online) Diamagnetic magnetization isotherms md

vs H for Pb nanoparticles with average radius r = 375 Å taken
from Benardi et al.28 The dashed lines are fits to the Gaussian
approximation Eq. (28) with the parameters listed in Table I. The
dotted line at T = 7.11 K is a fit to Eq. (16) with the parameters
listed in Table II with Tc = 7.09 K. The black stars indicate the
respective minima of the experimental data at Hm.

Gaussian approximation Eq. (28) with the parameters listed in
Table I and at T = 7.11 K to the 0D model [Eq. (16)] yielding
the parameters

a1 = 1303.7,

a2 = Hm0 = 1407.46 Oe,

a3 = 0.09 emuOe/cm3, (37)

a5 = 0.00015 emu/cm3,

with Tc = 7.09 K in terms of the dotted line. To account for
a temperature dependent background contribution we added
to Eqs. (16) and (28) the parameter a5, which turns out to be
rather small. The agreement of the 0D model with the Gaussian
approximation at T = 7.11 K also reveals that for a1 ≈ 1300
the limit a1 → ∞ is nearly attained. Indeed, the fit parameters
a2, a3, and a5 as obtained from the 0D model [Eq. (37)]
and the Gaussian counterpart (see Table I) nearly coincide at
T = 7.11 K.

On the other hand, considering Hm vs T , from Eqs. (27) and
(37) one expects that this agreement does not hold sufficiently
close to Tc, because Hm (Tc) does not vanish in the full 0D
model for any a1 > 0 [Eq. (27)]. In Fig. 3 we observe that this
behavior is well confirmed. Nevertheless we observe that the

TABLE I. Fit parameters entering the Gaussian approximation
[Eq. (28)] for Pb nanoparticles including the additive background
correction a5. The amplitude a2 = Hm0 is obtained from Eq. (29)
with Tc = 7.09 K.

T (K) a3 (emu Oe/cm3) Hm (Oe) a5 (emu/cm3) a2 = Hm0 (Oe)

7.095 0.14 74.79 3.4 × 10−4 2816.8
7.11 0.09 76.99 1.6 × 10−4 1450.6
7.16 0.07 110.29 0.3 × 10−4 1112.7

FIG. 3. (Color online) Hm vs T obtained from the magnetization
data of the Pb nanoparticles. The dots mark the respective Hm’s of the
experimental data shown in Fig. 2 with 
Hm/Hm = 0.12. The solid
line is Eq. (29) with a2 = 1400 Oe and Tc = 7.09 K, and the dashed
one Eq. (27) with the parameters listed in Eq. (37).

Gaussian approximation describes Hm(T ) rather well except
very close to Tc. Contrariwise, in this regime local thermal
fluctuations are no longer negligible and even the 0D model is
not applicable. In this view it is gratifying that the Gaussian
approximation describes Hm(T ) for sufficiently large a1 and
away from Tc rather well.

Next we turn to the parameter a3 = kBT /V . In this context
it should be recognized that in the resulting V the packing
density of the nanoparticles (spheres) is not taken into account.
Indeed, the packing density η is the fraction of a volume
filled by spheres. Noting that η varies from 0.055 for the
loosest possible to 0.7405 for cubic close packing, it becomes
clear that V is not simply related to the radius of the
nanoparticles [V = (4π/3) r3]. For r = 375 Å corresponding
to 2.21 × 10−16 cm3 and V = kBT /a3 � 10.9 × 10−15 cm3

(a3 = 0.09 emu Oe/cm3 and T = 7.11 K) we obtain η � 0.02,
revealing that in the sample considered here the packing
density of the nanoparticles is worse than the loosest one.
Given the uncertainty in the actual packing density we invoke
for the amplitude of the correlation length the estimate ξ0 �
1000 Å,41 yielding with Eqs. (15) and (18) and a2 = Hm0 =
1450 Oe

r = �0

√
5

2πξ0a2
� 508 Å, (38)

in comparison with r = 375 Å, estimated from AFM images
of Pb nanoparticles onto a mica substrate.28

Even though the Hartree approximation works well for
sufficiently high fields and away from Tc, it should be kept
in mind that it fails inevitably in the zero field limit. Here the
quartic term in the GL functional is essential to remove the
divergence of the correlation length ξ at Tc. Indeed, ξ cannot
grow beyond r .

B. La1.91Sr0.09CuO4

A glance at the isothermal magnetization curves shown
in Figs. 1 and 2 uncovers, surprisingly enough, the same
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TABLE II. Fit parameters entering Eq. (28) for La1.91Sr0.09CuO4

including the additive background correction a5. The amplitude a2 =
Hm0 is obtained from Eq. (29) with Tc = 23 K.

T (K) a3 (AT/m) Hm (T ) (T) a5 (A/m) a2 = Hm0 (T)

25 376.66 8.56 −26.99 29.64
27 455.69 11.73 −17.29 29.29
30 561.41 15.67 −6.34 30.4
35 533.59 21.36 −2.73 32.96
50 294.95 30.01 −1.63 34.04

characteristic behavior. Indeed, md decreases initially with
increasing magnetic field, consistent with md = −χdH , where
χd is the diamagnetic susceptibility. However, as H increases
md tends to a minimum at Hm and in excess of this character-
istic field the magnetization increases and appears to approach
zero. Noting that 1 A/m = 10−3 emu/cm3, the most striking
difference concerns the magnitude of Hm which depends on the
amplitude of the correlation length in terms of a2 in Eq. (27).
As ξ0 in La1.91Sr0.09CuO4 is around 25 Å,42 compared to 1000
Å in Pb, the difference in Hm is not attributable to ξ0 only
but points to a substantial large value of a

1/2
4 = r/

√
5 in Pb

in comparison with a
1/2
4 = R/2 [Eq. (15)] in La2−xSrxCuO4,

where r is the radius of the nanoparticles, while R is the radius
of the homogenous cylindrical domains in the cuprate. To
explore these analogies and differences between the isothermal
magnetization curves of Pb and La2−xSrxCuO4 with x = 0.09
quantitatively, we analyzed the data shown in Fig. 1 on the
basis of the Gaussian model [Eq. (28)] yielding the parameters
listed in Table II. For comparison we included in Fig. 4 a fit to

FIG. 4. (Color online) Isothermal magnetization curves md vs H

at various temperatures above Tc � 23 K of La1.91Sr0.09CuO4 taken
from Li et al.11 Stars indicate the minima in the experimental
and large asterisks those of the Gaussian curves at the respective
fixed temperatures. The dashed curves are fits to the Gaussian
approximation [Eq. (28)] with the parameters listed in Table II and
the dotted one to the 0D model [Eq. (16)] with the parameters given
in Eq. (39). In both models we included the additive background
correction a5.

the 0D model [Eq. (16)] yielding at T = 27 K the parameters

a1 = 285.33,

a2 = 29.27 T,

a3 = 455.67 AT/m, (39)

a5 = −17.30 A/m,

where a5 is the additive background correction. Although the
parameter a1 is considerably smaller than its Pb counterpart
[Eq. (37)] we observe that the fit parameters a2, a3, and a5

as obtained from the 0D model [Eq. (37)] and the Gaussian
counterpart (see Table II) nearly coincide at T = 27 K. As
the Gaussian approximation requires Eq. (31) to be fulfilled,
this agreement is attributable to the fact that the temperatures
considered here are considerably above Tc � 23 K.

Given the estimate a2 = 31 T we obtain with Eqs. (15)
and (18)

Rξ0 = �0

πa2
� 2.13 × 103 Å2, (40)

in comparison with rξ0 � 5.1 × 105 Å2 in Pb corresponding
to a2 = 940 Oe. This difference is responsible for the large
amplitude of a2 of Hm (T ) [Eq. (27)] in La1.91Sr0.09CuO4. To
estimate the radius R of the homogeneous domains we invoke
for the amplitude of the in-plane correlation length the estimate
ξ0 ≈ 25 Å42 yielding with Eq. (40)

R = �0

πξ0a2
� 85 Å, (41)

which is comparable to the amplitude of the in-plane correla-
tion length. Noting that 1 A/m = 10 ergs/(cm3 T) we obtain
for d the estimate

d = V

πR2
= 36 Å, (42)

using T = 27 K and a3 = 455.69 AT/m, V = πR2d = 8.2 ×
10−19 cm3, and R = 85 Å. To check the reliability of these
estimates, based on the amplitude ξ0 ≈ 25 Å,42 we invoke
Eq. (30), yielding with T = 27 K, ξ0 = 25 Å and d = 36 Å the
estimate a3/a

2
2 = 0.49 A/mT, in reasonable agreement with

a3/a
2
2 = 0.53 A/mT, resulting from the fit listed in Table II.

Given a1 and a2, the temperature dependence of Hm, the
magnetic field where the isothermal magnetization curves
adopt a minimum, is readily calculated with Eq. (27) or
Eq. (29). In Fig. 5, showing the resulting Hm (t), we ob-
serve agreement with the experimental data. Noting that
the magnitude of Hm is controlled by the amplitude Hm0 =
�0/ (πRξ0) and therewith by Rξ0, the large difference between
Hm of Pb and La1.91Sr0.09CuO4 simply stems from the
different Rξ0 values, namely rξ0 � 5.1 × 105 Å2 in Pb and
Rξ0 � 2.13 × 103 Å2 in La1.91Sr0.09CuO4. Except for this
essential difference we observe a close analogy between the
diamagnetic contribution to the isothermal magnetization in
Pb nanoparticles and La1.91Sr0.09CuO4. Clearly, this analogy
breaks down close to Tc and in the zero field limit where local
thermal fluctuations dominate. Nevertheless, the observed
analogy and the agreement with the 0D scenario, requiring
an order parameter ψ which does not depend on the space
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FIG. 5. (Color online) Hm vs t = Tc/T − 1 for La1.91Sr0.09CuO4.
The dotted line is Eq. (27) with a1 = 285.33 and a2 = Hm0 = 33
T. The dashed line is the Gaussian approximation with a2 = 33
T [Eq. (29)]. The stars denote the Hm values derived from the
experimental data shown in Fig. 4.

variables, reveals that in the temperature regime considered
here local fluctuations can be ignored.

C. Bi2212

To explore the established analogy between the dia-
magnetic contribution to the isothermal magnetization in
Pb nanoparticles and La2−xSrxCuO4 with x = 0.09 fur-
ther we extend the analysis to the Bi2212 data of Li
et al.11 shown in Fig. 6. We include fits of the Gaussian
model [Eq. (28)] yielding the parameters listed in Table III

FIG. 6. (Color online) The solid lines show md vs H at various
temperatures above Tc � 85 K of Bi2212 taken from Li et al.11

The stars indicate the minima in the isotherms at the respective
fixed temperatures. The dashed curves are fits to the Gaussian
approximation [Eq. (28)] with the parameters listed in Table III and
the dotted one to the 0D model [Eq. (16)] with the parameters given
in Eq. (43). In both models we included the additive background
correction a5.

TABLE III. Fit parameters entering Eq. (28) for slightly under-
doped Bi2212 including the additive background correction a5. The
amplitude a2 = Hm0 is obtained from Eq. (29) with Tc = 85 K.

T (K) a3 (A/mT) Hm (T) a5 (A/m) a2 = Hm0 (T)

90 882.09 8.89 −35.7 37.18
95 945.60 14.93 −6.79 44.77
100 788.35 19.64 +1.11 48.72
110 322.64 24.5 +1.07 48.25

and a fit to the 0D model [Eq. (16)] yielding at T =
95 K

a1 = 311.06,

a2 = 44.32 T,

a3 = 945.29 AT/m, (43)

a5 = −6.80 A/m.

a5 is again an additive background correction. Although the
parameter a1 is considerably smaller than its Pb counterpart
[Eq. (37)] we observe that the fit parameters a2, a3, and a5

as obtained from the 0D model [Eq. (43)] and the Gaussian
counterpart (Table III) nearly coincide at T = 95 K. In
analogy to La2−xSrxCuO4 we attribute this agreement to the
fact that the temperatures considered here are considerably
above Tc � 85 K. Indeed, the magnetic penetration depth
measurements of Osborn et al.43 and their analysis26 clearly
reveal that the temperature window around Tc, where local
thermal fluctuations dominate, is roughly 1 K only.

Using a2 = 45 T we obtain with Eqs. (15) and (18)

Rξ0 = �0

πa2
� 1.46 × 103 Å2, (44)

in comparison with rξ0 � 3.7 × 105 Å2 for Pb corresponding
to a2 = 940 Oe, and Rξ0 � 2.13 × 103 Å2 for La2−xSrxCuO4

with Tc � 23 K [Eq. (40)]. To estimate the radius R of the
homogeneous domains we invoke R/ξ0 � 15,25 entering the
rounding of the specific heat singularity, to obtain

R � 148 Å (45)

and ξ0 � 10 Å, in comparison with ξ0 � 7 Å,26 derived
from the magnetic penetration depth. Noting that 1 A/m =
10 ergs/(cm3 T) we obtain for T = 95 K and a3 = 945 AT/m,
V = 1.38 × 10−18 cm3 and with R = 148 Å for d the estimate

d = V

πR2
= 19 Å. (46)

To check the reliability of these estimates, based on R/ξ0 �
15,25 we invoke Eq. (30), yielding with T = 95 K, ξ0 =
R/15 Å = 9.9 Å and d = 19 Å, a3/a

2
2 = 0.49 A/mT, in

reasonable agreement with a3/a
2
2 = 0.47 A/mT, resulting

from Table IV.
Given the estimates for a1 and a2 the temperature de-

pendence of Hm, the magnetic field where the isothermal
magnetization curves adopt a minimum, is readily calculated
with Eq. (27) or Eq. (29). In Fig. 7, showing the resulting
Hm (t), we observe excellent agreement with the values derived
from the experimental data.
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FIG. 7. (Color online) Hm vs t for Bi2212 with Tc � 85 K. The
solid line is Eq. (27) with a1 = 311.06 and a2 = 45 T. The stars
denote the Hm values derived from the experimental data as shown
in Fig. 4. The dotted curve is the Gaussian approximation [Eq. (29)].

To explore the effects of doping we consider the isothermal
magnetization data of Li et al.11 for Bi2212 with Tc = 45 K
shown in Fig. 8. We include fits of the Gaussian model
[Eq. (28)] yielding the parameters listed in Table IV and a
fit to the 0D model [Eq. (16)] yielding at T = 52.5 K,

a1 = 100.55,

a2 = 21.93 T,

a3 = 395.01 AT/m, (47)

a5 = −53.76 A/m.

a5 is again an additive background correction. Although the
parameter a1 is considerably smaller than in Bi2212 with Tc =
85 K [Eq. (43)] we observe that the fit parameters a2, a3, and
a5 as obtained from the 0D model [Eq. (37)] and the Gaussian
counterpart (Table IV) are close at T = 52.5 K.

For this reason the temperature dependence of Hm depicted
in Fig. 9 is reasonably well described by the Gaussian
approximation Eq. (29) with a2 = 25 T, yielding the estimate

Rξ0 = �0

πa2
� 2.6 × 103 Å2, (48)

in comparison with Rξ0 � 1.46 × 103 Å2 for Bi2212 with
Tc � 85 K.

TABLE IV. Fit parameters entering the Gaussian approximation
[Eq. (28)] for heavily underdoped Bi2212 including the additive
background correction a5. The amplitude a2 = Hm0 is obtained from
Eq. (29) with Tc = 45 K.

T (K) a3 (A/mT) Hm (T) a5 (A/m) a2 = Hm0 (T)

47.5 315.68 4.66 −84.35 20.04
50 362.76 6.61 −67.7 20.36
52.5 392.59 8.65 −54.11 22.03
55 467.32 11.07 −40.5 24.17
60 548.43 16.19 −18.89 30.18

FIG. 8. (Color online) The solid lines show the isothermal
magnetization curves of underdoped Bi2212 with Tc � 45 K taken
from Li et al.11 The stars indicate the minima in the isotherms at the
respective temperatures. The dashed curves are fits to the Gaussian
approximation [Eq. (28)] with the parameters listed in Table IV and
the dotted one to the 0D model [Eq. (16)] with the parameters given
in Eq. (47). In both models we included the additive background
correction a5.

Noting that Bi2212 with Tc = 85 K is close to optimum
doping while the sample with Tc = 45 K is underdoped,
the amplitude Hm0 is expected to exhibit the flow to the
quantum phase transition at Tc = 0. Supposing that the doping
dependence of R, the radius of the homogeneous cylindrical
domains, is weak a2 = Hm0 scales according to Eqs. (15), (29),
and (36) as

a2 = Hm0 ∝ T 1/z
c , (49)

and a3/(a2
2T ) scales according to Eqs. (30) and (36) as

a3/
(
a2

2T
) ∝ T −2/z

c . (50)

FIG. 9. (Color online) Hm vs T for Bi2212 with Tc � 45 K
derived from the isothermal magnetization data Li et al.11 The dotted
line is Eq. (27) with a1 = 100.55 and a2 = 25 T. The solid line is the
Gaussian approximation [Eq. (29)].
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FIG. 10. (Color online) a2 = Hm0 vs Tc and a3/(a2
2T ) for un-

derdoped and nearly optimally doped Bi2212. The solid line is
Hm0 = a2 = 0.55Tc and the dashed one a3/(a2

2T ) = 34.43/T 2
c . a2

and a3 are taken from Table III at T = 95 K and Table IV at T =
52.5 K.

In Fig. 10 we plotted our estimates for a2 = Hm0 and a3/(a2
2T )

vs Tc revealing consistency with the expected flow to the
quantum critical point with z = 1 over an unexpectedly large
Tc range.

D. Nb0.15Si0.85

The observation of a finite Nernst signal in the normal
state of cuprates has revived interest in the study of super-
conducting fluctuations.34,35 In conventional superconductors
the survival of Cooper pairs above Tc has been predominantly
examined through the phenomena of paraconductivity44 and
diamagnetism.28 To explore the relationship between the
Nernst signal and magnetization we consider the data of
Pourret et al.29–31 for a 350 Å thick Nb0.15Si0.85 film with
Tc � 0.38 K. In this amorphous superconductor the usual
Nernst signal due to normal quasiparticles is negligible.29–31

Furthermore, due to the small Hall angle the Nernst signal is
simply related to the Peltier coefficient αxy in terms of

N = νH = αxy

σxx

. (51)

ν denotes the Nernst coefficient and σxx the conductivity.
Above Tc, as the conductivity changes only weakly with
temperature and magnetic field, the evolution of the Peltier
coefficient is mainly controlled by the Nernst coefficient.29–31

TABLE V. Fit parameters a3, Hm, and a5 entering the Gaussian
approximation [Eq. (28)] for the Nb0.15Si0.85 film. a5 is the additive
background correction. Hm0 follows from Eq. (29).

T (K) a3 (μVT/K) Hm (T) a5 (μV/K) a2 = Hm0 (T)

0.41 −0.044 0.320 0 1.161
0.43 −0.042 0.386 0.003 1.098
0.45 −0.038 0.403 0.006 0.980
0.56 −0.047 0.742 0.003 1.192
0.65 −0.041 1.003 −0.001 1.369
0.72 −0.043 1.102 −0.003 1.378

FIG. 11. (Color online) Isothermal Nernst signal curves of a
350 Å thick Nb0.15Si0.85 film with Tc � 0.38 K taken from Pourret
et al.29–31 The solid lines are fits to the Gaussian approximation
[Eq. (28)] with the parameters listed in Table V. The black stars
indicate the maxima in the measured isotherms at the respective
temperatures.

In Fig. 11 we show the isothermal Nernst signal curves for
temperatures above Tc. For comparison we included fits to the
Gaussian approximation for the magnetization [Eq. (28)] with
the parameters listed in Table V and at T = 0.43 K to the
0D model [Eq. (16)] in terms of the dotted line, yielding the
parameters

a1 = 355.67,

a2 = Hm0 = 1.085 T,

a3 = −0.042 μVT/K, (52)

a5 = 0.003 μV/K.

With the exception of T = 0.41 K, which is rather close to
Tc � 0.38 K where local fluctuations are expected to con-
tribute, we observe remarkable agreement and a justification
of the Gaussian approximation. This agreement also reveals
that sufficiently above Tc the Nernst signal is proportional
to the negative magnetization. Indeed, Fig. 11 clearly reveals
that the Nernst signal mirrors the profile of the isothermal
magnetization and exhibits the characteristic maximum at
Hm. Because the Gaussian approximation is applicable, the
temperature dependence of Hm should follow from Eq. (29).

In Fig. 12 we plotted Hm vs T and included a fit to Eq. (29)
yielding Hm0 = 1.28 T, in reasonable agreement with the
estimates listed in Table V. It then follows that

Rξ0 = �0

πHm0
� 5.2 × 104 Å2, (53)

in comparison with rξ0 � 3.7 × 105 Å2 for Pb corresponding
to a2 = 940 Oe, Rξ0 � 2.13 × 103 Å2 for La2−xSrxCuO4 with
Tc � 23 K [Eq. (40)], Rξ0 � 1.46 × 103 Å2 in Bi2212 with
Tc = 85 K, and Rξ0 � 2.6 × 103 Å2 with Tc = 45 K. To
estimate the radius R of the homogeneous domains we invoke
ξ0 � 130 Å,29–31 to obtain

R � 400 Å, (54)
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FIG. 12. (Color online) Hm vs T for the Nb0.15Si0.85 film with
Tc � 0.38 K derived from the data shown in Fig. 11. The solid line is
Eq. (27) with Hm0 = 1.28 T.

in comparison with a limiting lateral length of 900 Å, obtained
from a detailed finite-size scaling analysis of the magnetic field
dependence of the conductivity in a 125 Å thick Nb0.15Si0.85

film.27 This limiting length also implies that the evidence for a
magnetic field driven quantum phase transition in this system
is constricted by the resulting finite-size effect.45

Remarkably, the Gaussian version of the 0D model de-
scribes the profile of the isothermal Nernst signal above Tc

and the temperature dependence of Hm in terms of N ∝ −md

very well. In the low field limit this relationship transforms
with Eq. (28) to

N ∝ −md ∝ −2a3π
2ξ 2R2

�2
0

H, (55)

which differs from the Gaussian fluctuation contribution N ∝
Hξ 2, valid close to Tc and in the zero magnetic field limit.33,46

To substantiate the neglect of local thermal fluctuations
in the 0D model further we invoke the Ginzburg criterion
for a 2D system, |
T |/Tc � |2Gi ln(Gi)|. 
T is the range
of temperatures where local thermal fluctuations are essential
and Gi = (e2/23h̄)Rn is the Ginzburg-Levanyuk parameter
for a dirty film with normal state resistance Rn.9 With
Rn = 0.3 k�30,31 and Tc = 0.38 K we obtain |
T | ≈ 0.01 K.
As a result the Nernst signal curves shown in Fig. 11 were
taken outside the critical regime where local fluctuations
dominate.

IV. SUMMARY AND DISCUSSION

Noting that in cuprate and amorphous conventional super-
conductors the spatial extent of the homogeneous domains
is limited,8,21–27 we explored the applicability of the 0D
model, neglecting local thermal fluctuations, to describe the
isothermal magnetization and Nernst signal curves above Tc.
Sufficiently above Tc we observed that both models, the full 0D
model and its Gaussian version, describe the essential features
of the curves, including the temperature dependence of the
minimum in the magnetization and maximum in the Nernst

FIG. 13. (Color online) Hm/Hm0 vs t = T/Tc − 1 for the data
shown in Figs. 3, 5, 7, 9, and 12. The solid curve is Hm/Hm0 =
ln1/2 (1 + t) corresponding to the Gaussian approximation
[Eq. (29)].

signal curves at Hm, rather well. The essential difference
between the magnetization curves of the Pb nanoparticles and
the bulk cuprates was traced back to the product between
the amplitude ξ0 of the correlation length and the radius R

of the spatial restriction. Indeed, the magnitude of Hm �
Hm0ln1/2(T/Tc) is controlled by the amplitude Hm0. It adopts
in the Pb nanoparticles the value Hm0 ∝ 1/ξ0r ≈ 10−6 Å−2

compared to 1/ξ0R ≈ 10−5 in the 350 Å thick Nb0.15Si0.85

film, and 1/ξ0R ≈ 10−3 Å−2 in the cuprates considered here.
Indeed, as shown in Fig. 13, the data for Hm vs T , depicted in
Figs. 3, 5, 7, 9, and 12 for Pb nanoparticles, La1.91Sr0.09CuO4,
Bi2212, and Nb0.15Si0.85, tend to fall on a single curve,
plotted as Hm/Hm0 vs t = T/Tc − 1. This curve is even
well described by the Gaussian version of the 0D model
[Eq. (29)]. Thus, for a variety of conventional and hole doped
cuprate superconductors it gives a universal perspective on the
interplay between diamagnetism, Nernst signal, correlation
length, and the limited spatial extent of homogeneity.

Although the assumption of an order parameter which does
not depend on the spatial variables fails in the temperature
regime close to Tc where local fluctuations dominate, we
established overall agreement between the 0D model, the
isothermal magnetization, and the Nernst signal treated as
N ∝ −md . As a consequence, thermal fluctuations associated
with the amplitude and the phase of the order parameter do
not contribute significantly in the temperature and magnetic
field regimes considered here. The agreement also implies that
singlet Cooper pairs in a 0D system subjected to orbital pair
breaking are the main source of the observed diamagnetism
and Nernst signal in an extended temperature window above
Tc. The monotonic decrease of the magnetization md and the
Nernst signal N with magnetic field H also reveals that there
is no particular depairing field. Indeed, N and md vanish as
|md | ∝ |N | ∝ 2a3/H [Eq. (28)]. Noting that N ∝ −md also
holds for Gaussian fluctuations close to Tc and in the zero
magnetic field limit,33 we have shown that it applies even
outside the fluctuation dominated regime.
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Clearly, the outlined approach cannot distinguish between
intrinsic and extrinsic inhomogeneities, or determine whether
the detected restricted extent of the homogeneous regions re-
flects an intimate relationship to superconductivity. However, it
implies that the reduced dimensionality not only is responsible
for the smeared zero field transitions seen in the specific
heat,24,25 in the temperature dependence of the magnetic
penetration depths,24,26 and in the resistive transition,27 but
also accounts for the observed characteristic minimum in

the isothermal magnetization curves and the corresponding
maximum in the Nernst signal.
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