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Vortex-induced dissipation in narrow current-biased thin-film superconducting strips
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A vortex crossing a thin-film superconducting strip from one edge to the other, perpendicular to the bias current,
is the dominant mechanism of dissipation for films of thickness d on the order of the coherence length ξ and of
width w much narrower than the Pearl length � � w � ξ . At high bias currents I ∗ < I < Ic the heat released
by the crossing of a single vortex suffices to create a belt-like normal-state region across the strip, resulting in a
detectable voltage pulse. Here Ic is the critical current at which the energy barrier vanishes for a single vortex
crossing. The belt forms along the vortex path and causes a transition of the entire strip into the normal state.
We estimate I ∗ to be roughly Ic/3. Furthermore, we argue that such “hot” vortex crossings are the origin of dark
counts in photon detectors, which operate in the regime of metastable superconductivity at currents between I ∗

and Ic. We estimate the rate of vortex crossings and compare it with recent experimental data for dark counts.
For currents below I ∗, that is, in the stable superconducting but resistive regime, we estimate the amplitude and
duration of voltage pulses induced by a single vortex crossing.
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I. INTRODUCTION

Dissipation in superconducting wires thinner than the
coherence length ξ have been thoroughly studied both
theoretically1,2 and experimentally.3 In these one-dimensional
(1D) superconductors the dissipation arises due to 2π -phase
slips occurring in segments of length ξ of a wire that becomes
temporarily normal. Langer and Ambegaokar1 treated the
problem of dissipation in 1D wires with ring geometry
within the theory of nucleation rates of current-reducing
fluctuations in a superconductor. The transition between states
with different currents in a ring occurs via the nonstationary
state described by the saddle point solution of the Ginzburg-
Landau (GL) functional. Langer and Ambegaokar1 found such
a solution and the corresponding free-energy difference or
barrier U between the original metastable state with current
and the saddle point state (see also Ref. 4). Later McCumber
and Halperin derived the attempt frequency � in the phase-slip
rate R = � exp(−U/T ) using time-dependent GL theory.2

The problem of dissipation in superconducting thin-film
strips with the thickness d much smaller than the London
penetration depth λ, and of width w much smaller than the
Pearl length � = 2λ2/d � w, has been extensively discussed
in the context of a possible Berezinsky-Kosterlitz-Thouless
(BKT) transition in superconducting films.5–7 The interest in
current-carrying thin-film strips has been revived recently in
search for quantum tunneling of vortices,8–11 their dynamic
behavior,12 and the observation of so-called “dark counts”
in superconductor-based photon detectors.13,14 The detector
consists of a long and thin superconducting strip carrying
currents slightly below the critical value. Typically, in NbN
photon detectors w is of the order of 100 nm or more and
d ≈ 4–6 nm, while the zero-temperature coherence length
ξ (0) ≈ 4 nm. The low-temperature London penetration depth
λ ≈ 350 nm so that the Pearl length15 � ≈ 40 μm � w.

When a photon interacts with the strip it induces a hot spot
in the film that drives a belt-like region across the strip into

the normal state. Consequently, a voltage pulse caused by the
current redistribution between the superconducting strip and
a parallel shunt resistor is detected. After the normal belt of
the strip cools down, the strip returns to superconducting state.
Thus, single photons can be detected and counted by measuring
voltage pulses. However, similar pulses are recorded even
without photons (dark counts). These voltage pulses have peak
amplitudes similar to photon-induced pulses.16 Therefore, one
can conclude that dark counts are also caused by nucleation of
normal belts across the strip. In both cases and in the absence
of a shunt, the entire strip undergoes transition into the normal
state due to heat released by the bias current in the normal belt
region.

In fact, the observation of dark counts means that the
superconducting strip, at bias currents slightly below the
critical current, is in a metastable state. Photons or fluctuations
trigger the transition from this state to the normal state. Thus,
the central question is what kind of fluctuations trigger the
transition in the case of dark counts. The origin of dark counts
is still debated (see Refs. 13 and 14). The problem of dark
counts is related to the basic question of dissipation in thin
films and wires and is of technological relevance because
fluctuations resulting in the formation of normal belt across
the strip limit the ability of superconducting circuits to carry
supercurrents, in general, and the accuracy of photon detectors,
in particular. In the literature, dark counts are treated either
within the formal framework of 1D phase slips in thin wires
or within the picture of vortex-antivortex unbinding near the
BKT transition (see Refs. 13 and 14). Vortices crossing the strip
were employed to explain dc current-voltage characteristics of
thin-film strips.11,17

In this paper we discuss three types of possible fluctuations
in superconducting strips which result in dissipation. Each
one causes transition to the normal state from the metastable
superconducting state when currents are close to the critical
value Ic.
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(a) Spontaneous nucleation of a normal-state belt across the
strip with 2π -phase slip as in thin wires.

(b) Spontaneous nucleation of a single vortex near the
edge of the strip and its motion across to the opposite edge
accompanied by a voltage pulse.

(c) Spontaneous nucleation of vortex-antivortex pairs and
their unbinding as they move across the strip to opposite edges
due to the Lorentz force, as well as the opposite process of
nucleation of vortices and antivortices at the opposite edges
and their annihilation in the strip middle.

The energy barrier for the nucleation of a temporary normal
phase-slip belt is too high to be of importance because the
belt volume �dξw is large. We will show that such a barrier
remains large at any current in the superconducting state.
Consequently, belt-like 2π -phase slips appear with extremely
low probability. On the other hand, as proposed in Refs. 11
and 17, thermally induced vortex crossings in current-carrying
strips result in 2π -phase changes along the strip just as in
the 1D scenario and hence cause dissipation. For the case
of quantum tunneling this mechanism of dissipation was
discussed in Refs. 8–11. The free energy barrier for vortex
crossing is much lower than for belt-like 2π -phase slips
since the vortex core volume is dξ 2 � dξw. The energy
cost of creating a vortex and moving it over the barrier is
w/ξ times smaller than for creating a belt-like phase slip.
An important point is that such a barrier for vortex crossing
vanishes as the current approaches Ic, whereas the barrier for
the belt-like phase slip remains nonzero at any current. As to
the vortex-antivortex process of the point (c), we show in the
following that the corresponding barrier is twice as high as for
the single vortex process.

We evaluate the amplitude of a voltage pulse and its
duration assuming that the belt-like area around the vortex
path remains superconducting. We call this process a “cold”
pulse. This is not always the case, because vortex motion
excites quasiparticles along the vortex path and their energies
depending on the bias current may suffice for creation of
a normal-state belt across the strip. This will result in
redistribution of current from the superconducting strip to the
shunt with the accompanied voltage pulse much bigger than
for cold pulses. Such a “hot” pulse will be similar to the one
induced by photons. In the following we will estimate at what
minimum bias current I ∗ a single vortex crossing can trigger
a hot voltage pulse and a corresponding dark count.

Thus we argue that dissipation and corresponding voltage
pulses in strips are caused predominantly by vortex crossings.
At high-bias currents such crossings release energy sufficient
for the formation of a normal belt along the vortex trajectory
[see Fig. 1(a)]. Such a belt triggers the transition of the whole
strip into the normal state in the absence of a shunt resistor, as
well as the redistribution of the bias current into the shunt in the
case of photon detectors. Note that a similar process happens
when a photon creates a normal hot spot on the strip. When this
spot is sufficiently large it destroys the superconducting path
for the transport current and the current redistribution leads to a
voltage pulse, the photon count. If the hot spot does not disrupt
completely the superconducting path, it will nevertheless lead
to a decrease of the energy barrier for subsequent vortex
crossings. At high bias currents, a hot vortex crossing can
happen directly [see Fig. 1(a)], or through a hot spot area
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FIG. 1. (Color online) Sketch of a segment of the strip in the
presence of a bias current I . (a) A single vortex (blue circle) causes
a hot crossing (pink belt). The width of the belt � is of the order
of superconducting coherence length. (b) A single photon creates
a hotspot (red disk) and induces a subsequent hot vortex crossing
(pink belt). Both processes result in detectable voltage pulses in a
superconducting nanowire single photon detector (SNSPD).

created by photon and forming a normal belt, which will result
in signal detection [see Fig. 1(b)].

The layout of this paper is as follows. In Sec. II we discuss
three energy barrier scenarios for vortex crossings. In Sec. III
we derive dc current-voltage characteristics and evaluate the
magnitude of induced voltage pulses. The concept of cold and
hot vortex crossings is introduced in Sec. IV. In Sec. V we
compare our results with data for dark count rates in NbN
films.18 We summarize our results in Sec. VI.

II. ENERGY BARRIERS AND VORTEX CROSSINGS

In this section we derive energy barriers for three dissipative
processes mentioned within the GL theory. Consider a thin-
film strip of width w � � and of length L � w. We choose
the coordinates so that 0 � x � w and −L/2 � y � L/2.
Since we are interested in bias currents which may approach
depairing values, the suppression of the superconducting order
parameter must be taken into account. We use the standard
GL functional with respect to the order parameter �(r)
(normalized to its zero-field value in the absence of current)
and the vector potential A:

F[�(r),A] = d

∫
d r

{
H 2

c

4π

[
− |�|2 + 1

2
|�|4

+ ξ 2

∣∣∣∣
(

∇ + i
2π

	0

)
�

∣∣∣∣
2 ]

+ B2

8π

}
. (1)

Here 	0 is the flux quantum, r = (x,y) is a point on
the film, ∇ is the 2D gradient, and Hc = 	0/2

√
2πλξ is

the thermodynamic critical field. The order parameter in the
presence of a uniform bias current I in zero applied magnetic
fields and with no vortices present can be found by minimizing
the GL functional and disregarding the current self-field, as is
done, for example, in Ref. 2. As discussed in the next section,
this is an accurate approximation for w � �. Thus we obtain
the solution

�κ (r) = (1 − κ2)1/2e−iκy/ξ+iϕ0 , (2)
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I = 2w

πξ
I0κ(1 − κ2), I0 = c	0

8π�
, (3)

where ϕ0 is an arbitrary constant phase. The parameter κ is
proportional to the phase gradient and describes the order
parameter suppression due to bias current. As a function of
κ the bias current in the superconducting state is limited to the
depairing current Imax = I0(4/3π

√
3)(w/ξ ), corresponding to

κmax = 1/
√

3, as for the case of the 1D wire.

A. Phase slip in the normal belt

When dealing with the situation of fixed uniform current I

instead of vector potential A it is more suitable to work with
the Gibbs free-energy functional rather than the free-energy
functional [Eq. (1)]. We perform the usual Legendre transform
(see Ref. 3) to obtain the corresponding free-energy density

fI {�} = H 2
c

4π

[
−|�|2 + 1

2
|�|4 +

(
Iπξ

2wI0

)2

|�|−2

]
. (4)

The equilibrium Gibbs free-energy density for a given current
is obtained by minimization with respect to �. It jumps at the
maximum current Imax from fI (Imax) = −(2/9)(H 2

c /8π ) to
zero at Imax as expected for a first-order transition. Hence, the
free-energy barrier U for creation of a belt-like normal-state
area with volume V = �wd (� is the width of the belt along
the y axis) decreases from (H 2

c /8π )V to (2/9)(H 2
c /8π )V as

the bias current increases from 0 to Imax. The barrier never
vanishes in this interval (“overheating” with respect to bias
current is absent). Note that for w � ξ and � � ξ the barrier
remains very high in comparison with the temperature at all
bias currents I < Ic resulting in low probability for phase slips,
except for temperatures close to Tc, where the barrier vanishes
as (1 − T/Tc)2.

B. Single vortex crossing

A vortex crossing from one strip edge to the opposite one
induces a phase slip without creating a normal region across
the strip width. We will treat the vortex as a particle moving in
the energy potential formed by the superconducting currents
around vortex center inside the strip and by the Lorentz force
induced by the bias current. We will derive the energy potential
and find the vortex crossing rate (phase slips and corresponding
voltage pulses) in the framework of Langevin equation for
viscous vortex motion and invoke the known solution of the
corresponding Fokker-Planck equation.

In the presence of a vortex, the order parameter in the
current-carrying strip, disregarding its suppression in the
vortex core, reads

�(r,rv) = μ exp{i[ϕ(r,rv) − κy/ξ + ϕ0]}, (5)

μ2 = 1 − κ2. (6)

In this approximation the vortex affects mainly the phase
ϕ(r,rv) of the order parameter. To describe voltage pulses we
need to know how the phase changes when the vortex moves
across the strip. Consider a vortex at a point r = (xv,yv); yv

can be taken to zero. As we ignore the change of the order
parameter amplitude in the vortex core, the current distribution

is governed by the London equation (integrated over the film
thickness)

hz + 2π (�/c) curlz g = 	0 δ(r − rv), (7)

where g is the sheet current density.
For narrow strips w � �, the field hz is of the order

g/c, whereas the term with derivatives is of the order �g/c.
Hence, supercurrents can be found by disregarding hz and
the corresponding vector potential of the order w/�.19,20

Introducing the scalar stream function G(r) such that

g = curl(G ẑ) (8)

we reduce the problem to solving the Poisson equation

∇2G = −(c	0/2π�)δ(r − rv) . (9)

Since the boundary condition at the strip edges requires
vanishing normal components of the current, we have G = 0
at x = 0,w. Therefore the problem is equivalent to one in
2D electrostatics: a linear charge at rv between two parallel
grounded plates at x = 0,w with the known solution21

G(r) = I0μ
2

π
ln

cosh Y − cos(X + Xv)

cosh Y − cos(X − Xv)
,

where capitals stand for coordinates in units of w/π , that is,
x = X w/π , y = Y w/π .

The energy of a vortex at x = xv and y = 0 is

εv = 	0

2c
G(xv,0), (10)

with the standard cutoff ξ at the vortex core.19 In the presence
of a uniform bias current the energy barrier reads

U(Xv) = μ2ε0

[
ln

(
2w

πξ
sin Xv

)
− I

μ2I0
Xv

]
, (11)

ε0 = 	2
0

8π2�
= H 2

c

8π
(2πξ 2)d, (12)

where ε0 is the characteristic energy of a vortex in thin films.
The vortex energy U(Xv) is maximum at Xs = tan−1(μ2I0/I )
and the energy barrier is given by

U
μ2ε0

= −1

2
ln

[
π2ξ 2

4w2

(
1 + I 2

μ4I 2
0

)]
− I

μ2I0
tan−1 μ2I0

I
.

(13)

This barrier decreases with increasing current and turns zero
at a critical value on the order of the depairing GL current:

Ic = 2μ2
cwI0

πeξ
= c	0μ

2
c

8π2eλ2ξ
wd, (14)

here e = 2.718 and μc = 1 − κ2
c with κc = 1/e. One can see

that the critical current Ic is slightly smaller than Imax discussed
above.

Since the vortex mass is negligibly small, we use the
equation of purely diffusive motion (only includes first-order
time derivative) for describing the vortex propagation between
x = 0 and x = w:

γ
dXv

dt
= −dU(Xv)

dXv

+ F (t), (15)
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where γ = w2η/π2 and

η = 	2
0

2πξ 2c2R�
(16)

is the Bardeen-Stephen drag coefficient for film with R� =
ρn/d being the film’s sheet resistance slightly above Tc. F (t)
is the Langevin random force obeying statistical averages
〈F (t)〉 = 0 and 〈F (t)F (t ′)〉 = 2γ T δ(t − t ′).

The vortex motion described by Eq. (15) takes place in
the interval a < x < w − a, where a is of the order of ξ [the
energy of the system cannot be described by the potential
(11) in the intervals w − a < x < w and 0 < x < a]. The
most crucial interval for vortex motion is near the point
xs = Xsw/π , where the vortex should overcome the potential
barrier. Thus xs should be inside the interval (a,w − a), that
is, the conditions ξ � w and I < (e/2)Ic should be fulfilled
to consider the motion of vortex in the interval 0 < x < w.
To compute the average velocity in the interval 0 < x < w,
we consider the diffusion problem of a single particle that
propagates in the interval −∞ < x < ∞ under the effect of the
periodic potential εv(x) = εv(x + w) and the Lorentz force.
The average velocity is obtained from the known stationary
solution for this periodic model (see Ref. 22). This approach
was previously used by Gurevich and Vinokur.17

The corresponding Fokker-Planck equation (Smolu-
chowski equation) for the probability current in the case of the
periodic potential has a stationary solution with the statistical
average vortex velocity v given by22

γ v = πT P

Z+(π )Z−(π ) − P
∫ π

0 dxe−U(x)/T Z+(x)
, (17)

Z±(x) =
∫ x

0
du e±U(u)/T , P = 1 − e−πp, (18)

where v ≡ Ẋ and p = νI/μ2I0. Except for temperatures close
to Tc the parameter ν = μ2ε0/T � 1. At large ν the function
exp[U(x)/T ] has a sharp maximum between 0 and w, while
the function exp[−U(x)/T ] has two sharp maxima at the edges
of this interval. Since the integral Z+(π ) has the analytic
solution23

∫ π

0
dx e−px sinν x = π exp(−πp/2)�(ν + 1)

2ν |�(1 + ν/2 + ip/2)|2 , (19)

where �(x) is the Gamma-function and ν > −1, we obtain the
asymptotic solution for ν � 1:

Z+(π ) ≈
(

2w

πξ

)ν
√

2π

ν

(
1 + p2

ν2

)− ν+1
2

e−p tan−1(ν/p). (20)

Evaluating Z−(π ) we note that the main contribution comes
from the regions near the edges, where we approximate
sin(x) = sin(π − x) ≈ x and replace the low-integration limit
by πξ/w and the upper one by π − πξ/w. We obtain the
asymptotic limit

Z−(π ) ≈
(

2w

πξ

)−ν (
w

πξ

)ν−1
eπp + 1

ν − 1
. (21)

In the integral
∫ π

0 dxe−U(x)/T Z+(x) the function Z+(x) reaches
maximum at x = π and is small at low x. Hence the main
contribution to this integral comes from the region near x = π :∫ π

0
dx e−U(x)/T Z+(x) ≈

(
2w

πξ

)−ν(
w

πξ

)ν−1
eπp

ν − 1
Z+(π ).

(22)

It then follows that the dependence of the average vortex
velocity v on I at large p and ν is given by

γ v ≈ T

(
πν3

2

)1/2 (
πξ

w

)ν−1

Y

(
I

μ2I0

)
, (23)

Y (z) = (1 + z2)(ν+1)/2 exp[νz tan−1(1/z)]. (24)

Note the strong power-law dependence of v on the strip
width w.

For large currents I � I0, this expression reduces to

γ v ≈ T

(
πν3

2

)1/2 (
w

πξ

)2 (
I

Ic

)ν+1

, (25)

with Ic given by Eq. (14). Note that the average velocity
changes drastically near the critical current Ic, where the
energy barrier vanishes. Such defined critical current is about
16% smaller than the standard depairing current Imax defined
for 1D wires (vanishing energy barrier for phase slips in wires,
see Ref. 2).24

In the case of multiple simultaneous vortex crossings
happening in different parts of the strip, we must account for
their interactions. The interaction of vortices situated at (X1,0)
and (X2,Y ) has been evaluated in Ref. 19:

εint = ε0 ln
cosh Y − cos(X1 + X2)

cosh Y − cos(X1 − X2)
. (26)

If vortices are separated by y > w along the strip, the interac-
tion is exponentially weak and their crossings are uncorrelated.
Accounting for both vortex and antivortex crossings (which
are equivalent by symmetry), we estimate the rate for multiple
vortex crossings at I < Ic as R ≈ (2L/πw)v.

Finally, we obtain the asymptotic estimate for the rate

R ≈ 4T c2R�L

	2
0w

(
πν3

2

)1/2 (
πξ

w

)ν+1

Y

(
I

μ2I0

)
. (27)

In obtaining this result we disregarded vortices crossing in
the direction opposite to the Lorentz force, the corresponding
probability for such processes is ∝ e−2p � 1. We note that
Gurevich and Vinokur took L/ξ as the number of statistically
independent vortex crossings.17 It differs by a factor ξ/w � 1
from our estimated number L/w of independent crossings.
Therefore, Ref. 17 overestimates the rate.

C. Vortex-antivortex pair scenario

The energy of a vortex-antivortex pair (vortex-antivortex
interaction included) was derived in Ref. 19 and is

εp

μ2ε0
= ln

[
4W 2

π2ξ 2
sin X1 sin X2

cosh Y − cos(X1 − X2)

cosh Y − cos(X1 + X2)

]
.

(28)
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This energy increases with increasing separation Y , so that one
expects the lowest barriers for Y = 0:

εp

μ2ε0
= ln

[
4w2

π2ξ 2
sin X1 sin X2

sin2[(X1 − X2)/2]

sin2[(X1 + X2)/2]

]
.

(29)

One can show that if a pair is formed at X0 and the pair
members are pushed apart a distance 2b, the lowest energy
increase (for a given b) corresponds to the initial position
X0 = π/2 in the middle of the strip. The energy barrier for such
a pair, in the presence of bias current I , is obtained by setting
X1,2 = π/2 ∓ b and adding the Lorentz force contribution:

Up(b) = 2μ2ε0

[
ln

w sin(2b)

πξ
− Ib

μ2I0

]
. (30)

This energy is maximum if 2b = tan−1(2μ2I0/I ) so that the
energy barrier for vortex-antivortex pairs is given by

Up

μ2ε0
= − ln

[
π2ξ 2

w2

(
1 + I 2

4μ2I 2
0

)]
− I

μ2I0
tan−1 2μ2I0

I
.

(31)

For I � I0 this barrier is twice as large than that for a
single vortex crossing [Eq. (13)] and the ratio of these
barriers increases for smaller currents. Note also that the core
contribution to the pair energy (neglected here) is at least twice
that for a single vortex.

Based on our estimates for the three different fluctuation
scenarios presented here, we conclude that single vortex
crossings are the main source for dark counts.

III. VOLTAGE INDUCED BY VORTEX CROSSING

Let us now find how the phase of the order parameter varies
when a vortex crosses the strip. The current is expressed either
in terms of the gauge invariant phase ϕ or via the stream
function G: g = −(c	0/4π2�)∇ϕ = curl[G ẑ]. Written in
components, this gives the Cauchy-Riemann relations for
functions [4π2�0/c	0μ

2]G(r) and ϕ(r). Hence they are
real and imaginary parts of an analytic function of complex
argument z = x + iy:21

G(Z) = ln
sin[(Xv + Z)/2]

sin[(Xv − Z)/2]
(32)

(recall the capitals are coordinates in units of w/π , so that
0 < X < π , etc.). We then obtain

ϕ(r,rv) = Im[G(Z)]

= tan−1 sin Xv sinh(Y − Yv)

cos X − cosh(Y − Yv) cos Xv

. (33)

Note that the characteristic length of variations for ϕ in both
x and y directions is w. For long strips of interest, L � w,
and for distances |Y − Yv| � 1, we have at the strip ends
ϕ(±L/2) = ∓Xv . Hence when the vortex moves from the strip
edge at Xv = 0 to the opposite edge at Xv = π and |L/2 −
Yv| � 1, the phase difference at the ends of the strip changes
by ϕ(L/2) − ϕ(−L/2) = 2Xv = 2π , that is, a vortex crossing
results in a global phase slip of 2π .

A. dc voltage

The motion of vortices causes the phase difference at the
strip ends to vary in time. Using the Josephson relation for the
phase, we obtain the induced voltage due to a single vortex
crossing:

V (t) = 	0

2πc

d

dt
[ϕ(L/2) − ϕ(−L/2)] = 	0v(t)

cw
, (34)

where the vortex velocity is v(t) = dxv/dt = (w/π )dXv/dt

and we used ϕ(L/2) − ϕ(−L/2) = 2Xv . A quasistatic ap-
proach employed here is justified as long as the characteristic
crossing time �t = w/v is large compared to L/c. Note that
for each crossing, that is, for each voltage pulse between time
t and t + �t , the relation∫ t+�t

t

dt ′ V (t ′) = 	0

c
(35)

is satisfied as in the case of voltage pulses due to phase slips
in 1D wires.2 Thus we obtain the average (dc) voltage

Vdc = 	0

c
R. (36)

This relation also follows directly from comparing the dissi-
pated power VdcI with the work per unit time done by the
Lorentz force (	0I/cw)wR. It is worth to remember that we
have derived the crossing rate assuming an isothermal strip. In
continuous measurements of current-voltage characteristics at
currents of the order of the critical one, the strip temperature is
certainly higher than that of the bath. In principle, this heating
may be reduced using short bias current pulses.

B. Voltage pulses

In this section we consider the time evolution of the voltage
pulse V (t) induced by single vortex crossing. Here we use the
equation of vortex motion [Eq. (15)] for X > Xs and neglect
random forces (thermal noise). Therefore the velocity is

v ≡ ẋv = πε0

ηw

(
I

I0
− μ2 cot X

)
. (37)

This can be written in the form

Ẋ = β (cot Xs − cot X) , β = π2ε0μ
2

ηw2
, (38)

which is valid for X > Xs . It is worth noting that for currents
of the order of Ic the saddle point is very close to the strip
edge,

Xs ≈ I0μ
2

I
= eπ

2

μ2Ic

μ2
cI

ξ

w
� 1 . (39)

Integration of Eq. (38) results in an implicit solution for X(t):

X(t) cos Xs + sin Xs ln sin [X(t) − Xs] = β (t − t0)

sin Xs

. (40)

We choose the constant t0 so that t = 0 corresponds to the
vortex exit at X = π . Note that any instant for which 0 <

X(t) < Xs is beyond this approximation, because in this early
time interval the process is described by thermal activation
rather than by the equation of motion (37) with random force
omitted. The instant for which X(t) = Xs is also inappropriate
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FIG. 2. (Color online) The dimensionless vortex velocity dX/dτ

vs τ for parameters Xs = 0.1, 0.3, and 1.0. Note that dX/dτ = v/v̄,
where v is the velocity in common units and v̄ is the average velocity,
which is identical to the one solely due to the Lorentz force.

as an initial moment, because at this point the velocity vanishes
Ẋ = 0. Thus Eq. (40) can be written as

[X(t) − π ] cos Xs + sin Xs ln
sin [X(t) − Xs]

sin Xs

= β t

sin Xs

.

(41)

Clearly X(0) = π and X(t → −∞) = Xs . Hence, formally,
the motion from the saddle point Xs to the edge takes infinite
time because the velocity goes to zero as X → Xs . In reality,
the dynamic viscous vortex motion starts at some distance
from the saddle point where the vortex is kicked by random
force (an activation driven process) and the total “time-of-
flight” is finite. To see this, consider the situation of large
currents for which Xs is given by Eq. (39) and

X(t) − π + Xs ln
sin [X(t) − Xs]

sin Xs

= β t

Xs

. (42)

Denote as δX a small distance from the saddle at Xs and
evaluate the time τ0 of motion from Xs + δX to the edge
X = π :

−β τ0

Xs

= Xs + δX − π + Xs ln
δX

Xs

.

Since both δX and Xs are small, all terms on the right-hand
side, except for π , are negligible and we obtain

τ0 ≈ πXs

β
= cηw2

	0I
= w2	0

2πξ 2cR�I
, (43)

so that the time-of-flight τ0 does not depend on a particular
choice of δX. In fact, this estimate coincides with the time it
takes a vortex to cross the strip being pushed solely by the
Lorentz force.

Solving numerically Eq. (41) for X(t) and substituting
the result in Eq. (38) we obtain v(t). The result is shown
in Fig. 2. For convenience, we use Xs/β as the unit of
time. The dimensionless time τ = βt/Xs varies between
−π < τ < 0.

The divergence at the edge x = w must be cut off at
distances of the order of ξ from the edge. We obtain from
Eq. (38) an estimate for the maximum velocity at the exit,

vmax ≈ φ0

cwη

(
I + e Ic

2

)
, (44)

where the critical current is given by Eq. (14).
For large currents, Xs � 1, we solve Eq. (42) perturba-

tively: X = X1 + δX with X1 = π + βt/Xs and δX � X1:

X = π + τ − Xs ln
sin (Xs − τ )

sin Xs

. (45)

Thus the velocity for Xs � 1 is

dX

dτ
= 1 + Xs cot(Xs − τ ), (46)

the unity corresponds to a constant velocity due to the Lorentz
force, whereas the second term is caused by the vortex
potential.

The velocity v(t) is peaked near the edge x = w and it is of
interest to estimate the width �τ of this peak in the velocity
and in the voltage V (t) ∝ v(t). The width �τ is definition
dependent. For example, one can define it as the time interval
between instants when v = vmax and time τ1 when v = (vmax +
v)/2, where v is the background velocity due to the current
I . In dimensionless units, v corresponds to dX/dτ = 1. Thus
we obtain

τ1 ≈ −Xs

6wXs + πξ

3wXs − πξ
(47)

with

πξ

wXs

= 2μ2
cI

eμ2Ic

< 1, (48)

so that τ1 < 0. Since |τ1| ∼ Xs � τm, we estimate the width
of the velocity peak near the edge as �t ∼ �τXs/β ∼ X2

s /β,
where the fraction of order unity in Eq. (47) has been neglected.
Therefore, the ratio of this width relative to the total crossing
time τ0 of Eq. (43) is

�t

τ0
≈ Xs

π
� 1. (49)

IV. “COLD” AND “HOT” VORTEX CROSSINGS

A vortex moving from the saddle point x = xs to the strip
edge x = w, during the time τ0 = w/v, excites quasiparticles
along its path by the mechanism described by Larkin and
Ovchinnikov.25,26 This mechanism is appropriate for dirty
superconductors (for clean and intermediate clean regimes see
Refs. 27 and 28). Since NbN films are inherently dirty, we can
safely disregard the latter mechanism. We estimate the total
energy transferred to quasiparticles during the time τ0 along
the vortex path as

Q ≈ (	0I/c) ≈ 8π

e

H 2
c

8π

I

Ic

wξd. (50)

This is, in fact, the work done by the Lorentz force on the
vortex path of the length w − xs . This energy is distributed
near uniformly along the path at currents close to the critical
current, because the vortex velocity varies weakly for most
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of the crossing (see Fig. 1). In a belt of width � along the y

axis with the volume Vb = �wd, the energy increase per unit
volume is (8πξ/e�)(H 2

c /8π )(I/Ic).
We now estimate the time τ0. For a strip with resistivity

ρ(Tc) = 240 μ� cm, w = 120 nm, d = 4 nm, � = 45 μm,
and a bias current of the order Ic, the crossing time is roughly
τ0 ∼ 10 ps and corresponding vortex speed is 12 km/s. This
time is too short for any significant transfer of the electronic
excitation energy into the substrate and surrounding strip
area. Indeed, the phonon escape time was estimated as 160
ps in a strip of thickness d = 20 nm, whereas the electron-
phonon relaxation time is about 17 ps.29 During the time τ0

quasiparticles diffuse away from the vortex path by a short
distance (Dτ0)1/2 ≈ 8 nm as estimated from the electronic
specific heat Ce = 2.2 kJ/m3 K and the normal-state resistivity
at 10 K.30

Hence quasiparticles remain practically within the belt of
volume Vb = �wd along the vortex path. The quasiparticle
energy density within the belt is (8πξ/e�)(H 2

c /8π )(I/Ic).
Taking � ≈ 3ξ , we see that for I > I ∗ ≈ Ic/3 such an energy
is sufficient to turn the belt normal causing a dark count in the
photon detector. We call this process at high currents I > I ∗
a “hot” vortex crossing.

Therefore, we conclude that the superconducting strip with
a bias current in the interval I ∗ < I < Ic is unstable with
respect to the transition into the normal state, that can be
triggered by a vortex overcoming the barrier. Clearly photons
can trigger such a transition as well. The photon efficiency
increases as I approaches Ic and so does the rate of dark
counts.

In fact, the true critical current of a strip, below which the
strip remains superconducting, is I ∗. At currents below I ∗, the
superconducting state is stable, but remains resistive due to
the presence of quasiparticles in normal cores of vortices
crossing the strip. In this scenario a single vortex crossing
leaves the strip in the superconducting state and thus we call
this process a “cold” vortex crossing.

V. COMPARISON WITH EXPERIMENTAL DATA

In Fig. 3 experimental dark count rates are shown for three
different NbN samples of SNSPDs.18 We fit the data using
Eqs. (27) and (24) by writing

ln(R/L) = ln(a) + ln[Y (	0I/πνcT )], (51)

a = 4T c2R�
	2

0w

(
πν3

2

)1/2 (
πξ

w

)ν+1

. (52)

The dimensions of samples 1, 2, and 3 are d = 6 nm,
w = 53.4, 82.9, 170.6 nm, L = 73.9, 145.1, 141.4 μm,
respectively. The sheet resistance R� = 445, 393, 431 �, and
data were taken at T = 5.5 K. According to Bartolf et al., at
low currents the data was dominated by electronic noise in
the measurement circuit.18 The data for samples 1 and 2 agree
well with the theoretical results for high currents, while the
data for sample 3 yield an unreasonably large exponent ν.

For sample 1 with fit parameter ν = 	2
0/8π2�, we extract

the Pearl length �(5.5 K) = 57.1 μm, and from ln(a/L)
we estimate the coherence length ξ (5.5 K) = 3.9 nm. The
authors of Ref. 18 estimated ξ (0) = 4 nm from independent
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FIG. 3. (Color online) The dark count rates of three SNSPDs at
5.5 K by Bartolf et al.18 and fits based on Eqs. (27) and (24). The
current is in units IV = αIc, where α = 0.72, 0.77, 0.60 for samples
1, 2, and 3. Ic is the critical current defined as the current at which
the barrier for vortex crossings vanishes. At low currents electronic
noise in the measurement setup dominates over vortex crossings.

measurements of the upper critical field. They also estimated
the Pearl length for NbN films of thickness d = 6 nm, �(0) =
65.1 μm, from known resistivity ρn and the superconducting
gap �(0) ∼ 2–3 meV.31 By using Eq. (14), we find the critical
current Ic = 20.1 μA defined as the current at which the
energy barrier vanishes for vortex crossings. The authors of
Ref. 18 defined the “critical” current IV = 14.5 μA using
the 1% voltage criterion (current at which resistance is 1%
of the normal one). We see that the critical current defined
through such a voltage criterion is less than the critical current
defined by the current at which the energy barrier vanishes,
IV ≈ 0.72 Ic.

For sample 2 we find the coherence length ξ (5.5 K) =
4.33 nm and �(5.5 K) = 51 μm. Independent estimates given
in Ref. 18 are ξ (0) = 4.2 nm and �(0) = 59.2 μm; the critical
current Ic = 31.5 μA, while IV = 0.77 Ic.18 We conclude that
our model for vortex crossing rates describes satisfactorily the
dark count rates in samples 1 and 2.

Next we estimate the peak of the voltage pulse for I slightly
below I ∗:

Vpeak ≈ c	0ξR�
πe�w

, (53)

and the duration of the pulse is τpeak < 	0/cVpeak. For sample
2 studied by Bartolf et al.18 we estimate Vpeak ≈ 0.8 mV, while
τpeak ≈ 3 ps slightly below I ∗. For comparison, dark counts
are characterized by peak voltages of ≈1 mV and by durations
of several nanoseconds (FWHM ∼2.5 ns16). For dark counts
the duration of pulses is caused by the current redistribution
and thus depends on the experimental setup used to detect the
pulses. Note that pulse duration differs significantly from that
caused by single-vortex crossing without formation of normal
belt.

The following experiment could, in principle, distinguish
between regimes at I < I ∗ and at I > I ∗: One induces a bias
current in a thin-film ring and measures the magnetic flux
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in the ring as a function of time. For I > I ∗, a single vortex
crossing destroys superconductivity and the flux vanishes. The
lifetime of this persistent current is 1/R and R is determined by
Eq. (27). If I < I ∗, the flux should decrease stepwise through
multiple transitions between quantized current states In, each
transition corresponds to a single vortex crossing. In this case,
the lifetime for the current In is 1/Rn where Rn is given by
Eq. (27) with I = In. The total decay time of the initial current
IN will be τ = ∑N

n=1 R−1
n . For 1D wires similar behavior due

to phase slips was described by McCumber and Halperin.2

In comparing theory and experiment, the issue of possible
inhomogeneities of the thickness d and the width w is often
raised. We note that the model developed here is only valid for
w � �. Each vortex in a narrow strip has mostly the kinetic
energy of its supercurrents which are confined within an area
of size ∼w × w. In other words, the model is not sensitive
to inhomogeneities of d and of the edge roughness on scales
small relative to w.

Finally, it is worth mentioning that we assumed in this work
that the strip temperature is equal to the bath temperature of the
substrate. This may not always be the case in measurements
of dark counts in photon detectors. After redistribution of the
bias current, the normal belt induced by a crossing vortex cools
down. The strip can carry the superconducting current equal
to the bias current I only if the temperature drops below the
value T ∗ defined by the condition I ∗(T ∗) = I . Slightly below
T ∗ vortices can cross the strip inside the warmer belt whose
temperature is close to T ∗ or inside the cooler areas whose
temperature is that of the bath. The rate of vortex crossings is
determined by both processes and the latter dominates only in
the limit of very large L. Again, we emphasize that the mea-
sured rate is higher than the calculated rate, and the difference
is larger for small currents because for them T ∗ is higher.

VI. CONCLUSIONS

In summary, we have found that the most plausible mech-
anism for dark counts in photon detectors is due to thermal
fluctuations related to vortex crossings in the metastable
current-carrying superconducting state, which is realized at

bias currents above some value I ∗ ∼ Ic/3. We conclude by
listing our main results:

(a) Vortices crossing the current-biased strip due to thermal
fluctuations induce voltage pulses which can be detected
experimentally. The barrier for vortex crossings vanishes at
the critical current defined by Eq. (14).

(b) In narrow and thin strips, the superconducting state is
unstable in the current interval I ∗ < I < Ic and a transition
into the normal state is triggered by vortices crossing the strip
accompanied by energy (heat) release.

(c) We estimated the threshold for hot vortex crossings to
be roughly I ∗ ≈ Ic/3.

(d) Dark counts in current-biased superconducting strips
reported in the literature were observed in the regime of
metastable superconducting state.

(e) At currents below I ∗, vortex crossings do not induce
transitions into the normal state, but still induce voltage
pulses and the superconducting state is resistive due to the
quasiparticles inside vortex cores of crossing vortices. We
proposed a ring experiment, which allows to distinguish
different decay processes of circular currents above and
below I ∗.

(f) We estimated the amplitude and duration of cold voltage
pulses which can be detected below I ∗.

Clearly it is desirable to test our theory by measuring
I-V characteristics with a pulsed current technique to avoid
heating. Furthermore, it will be interesting to study the rate
and the shape of cold pulses at currents below I ∗ at different
temperatures and see their evolution from thermally induced
crossings to quantum tunneling.
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