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Dissipative dynamics of a two-qubit system: Four-level lasing
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The dissipative dynamics of a two-qubit system is studied theoretically. We make use of the Bloch-Redfield
formalism which explicitly includes the parameter-dependent relaxation rates. We consider the case of two flux
qubits, when the controlling parameters are the partial magnetic fluxes through the qubits’ loops. The strong
dependence of the interlevel relaxation rates on the controlling magnetic fluxes is demonstrated for the realistic
system. This allows us to propose several mechanisms for lasing in this four-level system.
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I. INTRODUCTION

Recently considerable progress has been made in studying
Josephson-junction-based superconducting circuits, which can
behave as effectively few-level quantum systems.1 When the
dynamics of the system can be described in terms of two
levels only, this circuit is called a qubit. Demonstrations
of the energy-level quantization and the quantum coherence
provide the basis for both possible practical applications and
for studying fundamental quantum phenomena in systems
involving qubits. Important distinctions of these multilevel
artificial quantum systems from their microscopic counterparts
are a high level of controllability and unavoidable coupling to
the dissipative environment.

Multilevel systems with solid-state qubits may be realized
in different ways. First, the devices used for qubits in reality
are themselves multilevel systems with the lowest two levels
used to form a qubit. For some recent studies of multilevel
superconducting devices, see Ref. 2. Then, a qubit can
be coupled to another quantum system, e.g., a quantum
resonator.3 Such a composite system is also described by a
multilevel structure. As a particular case of coupling with
other systems, the multiqubit system is of particular interest
(see, e.g., Ref. 4).

Operations with the multilevel systems can be described
with level-population dynamics. In particular, population
inversion was proposed for cooling and lasing with supercon-
ducting qubits.5,6 However, most of the previous propositions
were related to three-level systems, while for practical pur-
poses four-level systems are often more advantageous.7

The natural candidate for the solid-state four-level system
is the system of two coupled qubits. The purpose of this
paper is the theoretical study of mechanisms of population
inversion and lasing, as a result of the pumping and relaxation
processes in the system. We will start in the next section
by demonstrating the controllable energy-level structure of
the system. Our calculations are done for the parameters
of the realistic two-flux-qubit system studied in Ref. 8. To
describe the dynamics of the system we will present the
Bloch-Redfield formalism in Sec. III. The key feature of
the system is the strong dependence of the relaxation rates on
the controlling parameters. Then, solving the master equation
in Sec. IV, we will demonstrate several mechanisms for
creating the population inversion in our four-level system.
We will demonstrate further that applying additional driving
induces transitions between the operating states, resulting in

stimulated emission. We summarize our theoretical results in
Sec. V. and, based on our calculations, we then discuss the
experimental feasibility of two-qubit lasing.

II. MODEL HAMILTONIAN AND EIGENSTATES OF THE
TWO-QUBIT SYSTEM

The main object of our study is a system of two coupled
qubits. And although our analysis bears a general character,
for concreteness we consider superconducting flux qubits (see
Fig. 1). A flux qubit, which is a superconducting ring with
three Josephson junctions, can be controlled by constant (�dc)
and alternating (�ac sin ωt) external magnetic fluxes. Each of
the two qubits can be considered as a two-level system with
the Hamiltonian in pseudospin notation,1,9

Ĥ
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1q = − 1

2εi(t )̂σ (i)
z − 1

2�iσ̂
(i)
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where �i is the tunneling amplitude, σ̂ (i)
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p σ̂ (i)
z , with I (i)

p being the absolute
value of the persistent current in the ith qubit; then the
eigenstates of σ̂z correspond to the clockwise (̂σz |↓〉 = − |↓〉)
and counterclockwise (̂σz |↑〉 = |↑〉) current in the ith qubit.
The energy bias εi(t) is controlled by constant and alternating
magnetic fluxes,
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ε̃i(t) = 2I (i)
p �0fac sin ωt, fac = �ac

�0
. (2c)

The basis state vectors for the two-qubit system
{|↓↓〉,|↓↑〉,|↑↓〉,|↑↑〉} are composed from the single-qubit
states: |↓↑〉 = |↓〉(1)|↑〉(2), etc. For identification of the level
structure and understanding different transition rates, we will
start the consideration from the case of two noninteracting
qubits. Then, the energy levels of two qubits consist of the
pairwise summation of single-qubit levels,

E±
i = ±�Ei

2
= ±1

2

√
ε

(0)2
i + �2

i , (3)

which are the eigenstates of the single-qubit time-independent
Hamiltonian (1) at fac = 0. We demonstrate this in Fig. 2(a),
where we plot the energy levels, fixing the bias in the first
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FIG. 1. (Color online) Schematic diagram of the two-qubit
system. Two different flux qubits are biased by independent constant
magnetic fluxes, �

(1)
dc and �

(2)
dc , and by the same alternating magnetic

flux �ac sin ωt . The former controls the energy-level structure, while
the latter changes the populations of the levels. The dissipation
processes are described by coupling the system to the bath of
harmonic oscillators.

qubit f1, as a function of the partial bias in the second
qubit f2. Then the single-qubit energy levels appear as (dashed)

horizontal lines at E±
1 = ± 1

2

√
ε

(0)2
1 + �2

1 for the first qubit and

as the parabolas at E±
2 (f2) = ± 1

2

√
ε

(0)
2 (f2)2 + �2

2.
After showing the two-qubit energy levels in Fig. 2(a), we

assume that the relaxation in the first qubit is much faster
than in the second (this will be studied in the next section),
which is shown with the arrows in the figure. And now our
problem, with four levels and with fast relaxation between
certain levels, becomes similar to the one with lasers.7 This
allows us to propose three- and four-level lasing schemes in
Figs. 2(b) and 2(c). This is the subject of our further detailed
study.

We have analyzed the relaxation in the system of two
uncoupled qubits. However, this system cannot be used for
lasing, since this requires pumping from the ground state to
the upper excited state [see Figs. 2(b) and 2(c)]. Such excitation
of the two-qubit system requires simultaneously changing the
state of both qubits, and this can be done provided the two
qubits are interacting. That is why in what follows we consider
in detail the system of two coupled qubits. The coupling
between the two qubits we assume to be determined by an
Ising-type (inductive interaction) term J

2 σ̂ (1)
z σ̂ (2)

z , where J is
the coupling energy between the qubits. Then the Hamiltonian
of the two driven flux qubits can be represented as the sum of
time-independent and perturbation Hamiltonians,

Ĥ2q = Ĥ0 + V̂ (t), (4)

Ĥ0 =
∑
i=1,2

(
−1

2
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(0)
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)
+ J

2
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z σ̂ (2)
z , (5)

V̂ (t) =
∑
i=1,2

−1

2
ε̃i(t )̂σ

(i)
z , (6)

where σ̂ (1)
x,z = σ̂x,z ⊗ σ̂0, σ̂ (2)

x,z = σ̂0 ⊗ σ̂x,z, and σ̂0 is the
unit matrix. When presenting concrete results we will use
the parameters of Ref. 8: �1/h = 15.8 GHz, �2/h =

FIG. 2. (Color online) Energy-level structure of two uncoupled
qubits (J = 0). (a) One-qubit and two-qubits energy levels are shown
by dashed and solid lines as a function of partial flux f2 at fixed flux f1.
We mark the energy levels by the current operator eigenstates, |↓↓〉,
etc. Particularly, we will consider the energy levels and dynamical
behavior of the system for the flux biases f2 = f2L (marked by the
square) and f2 = f2R (marked by the circle). By the arrows we show
the fastest relaxation, for qubit 1. (b) Scheme for three-level lasing at
f2 = f2L. The driving magnetic flux pumps (P) the upper level |3〉.
Fast relaxation (R) creates the population inversion of the first excited
level |1〉 with respect to the ground state |0〉; these two operating
levels can be used for lasing (L). (c) Scheme for four-level lasing at
f2 = f2R. Pumping (P) and fast relaxations (R1 and R2) create the
population inversion of the level |2〉 with respect to level |1〉.

3.5 GHz, I (1)
p �0/h = 375 GHz, I (2)

p �0/h = 700 GHz, J/h =
3.8 GHz.

For a further analysis of the system, we have to convert to
the basis of eigenstates of the unperturbed Hamiltonian (5).
Eigenstates {|0〉,|1〉,|2〉,|3〉} of the unperturbed Hamiltonian
(5) are connected with the initial basis⎡

⎢⎢⎢⎣
|0〉
|1〉
|2〉
|3〉

⎤
⎥⎥⎥⎦ = Ŝ

⎡
⎢⎢⎢⎣

|↓↓〉
|↓↑〉
|↑↓〉
|↑↑〉

⎤
⎥⎥⎥⎦ , (7)

where Ŝ is the unitary matrix consisting of eigenvectors
of the unperturbed Hamiltonian (5). Making use of the
transformation Ĥ ′

0 = Ŝ−1Ĥ0Ŝ, we obtain the Hamiltonian Ĥ ′
0

in the energy representation: Ĥ ′
0 = diag(E0,E1,E2,E3). These

eigenvalues of the Hamiltonian H0 are computed numerically
and plotted in Fig. 3(a) as functions of the bias flux in the
second qubit f2. The distinction from Fig. 2(a), calculated
with J = 0, is in that, first, the crossing at f2 = f ∗

2 becomes
an avoided crossing, and second, the distance between the
(previously single-qubit) energy levels is not equal, e.g., now
E3 − E2 �= E1 − E0.
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FIG. 3. (Color online) (a) Energy levels of the system of two
coupled qubits. Arrows show the pumping and dominant relaxation,
as in Fig. 2. (b) The relaxation rates Wmn, which give the probability
of the transition from level n to level m, induced by the interaction
with the dissipative bath. Dominant relaxations are W13 and W02 to
the left from the avoided crossing at f2 = f ∗

2 and W23 and W01 to the
right. (The small relaxation rates W03 and W12 are not shown.)

Likewise, we could also convert the excitation operator V̂ (t)
to the energy representation

V̂ ′(t) = Ŝ−1V̂ (t)Ŝ =
∑
i=1,2

−1

2
ε̃i(t )̂τ

(i)
z , (8)

τ̂ (i)
z = Ŝ−1σ̂ (i)

z Ŝ. (9)

III. MASTER EQUATION AND RELAXATION

A. Bloch-Redfield formalism

Following Ref. 10, we will describe the dissipation in the
open system of two qubits, assuming that it is interacting
with the thermostat (bath) (see Fig. 1). Within the Bloch-
Redfield formalism, the Liouville equation for the quantum
system interacting with the bath is transformed into the
master equation for the reduced system’s density matrix. This
transformation is made with several reasonable assumptions:
The interaction with the bath is weak (Born approximation);
the bath is so large that the effect of the system on its state
is ignored; and the dynamics of the system depends on its
state only at present (Markov approximation). Then the master
equation for the reduced density matrix ρ(t) of our driven
system in the energy representation can be written in the form
of the following differential equations:10

ρ̇ij = −iωijρij − i

h̄
[V̂ ′,ρ̂]ij + δij

∑
n�=j

ρnnWjn − γijρij .

(10)

Here ωij = (Ei − Ej )/h̄, and the relaxation rates

Wmn = 2 Re �nmmn, (11)

γmn =
∑

r

(�mrrm + �∗
nrrn) − �nnmm − �∗

mmnn, (12)

are defined by the relaxation tensor �lmnk , which is given by
the Golden Rule,

�lmnk = 1

h̄2

∫ ∞

0
dt e−iωnk t 〈HI,lm(t)HI,nk(0)〉. (13)

Here ĤI(t) is the Hamiltonian of the interaction of our system
with the bath in the interaction representation; the angular
brackets denote the thermal averaging of the bath degrees of
freedom.

It was shown9,11 that the noise from the electromagnetic
circuitry can be described in terms of the impedance Z(ω)
from a bath of LC oscillators. For simplicity, one assumes that
both qubits are coupled to a common bath of oscillators, then
the Hamiltonian of interaction is written as

ĤI = 1
2

(
σ̂ (1)

z + σ̂ (2)
z

)
X̂ (14)

in terms of the collective bath coordinate X̂ = ∑
k ck�̂k . Here

�̂k stands for the magnetic flux (generalized coordinate) in
the kth oscillator, which is coupled with the strength ck

to the qubits. We note that the coupling to the environment
in the form of Eq. (14) applies only to correlated noise, or both
qubits interacting with the same environment. One could argue
that it would be more realistic to use two separate terms, one
for each qubit coupled to its own environment. However, since
this term leads to different relaxation rates in our qubits 1 and
2 (see below), then the form in Eq. (14) should give essentially
the same results as two separate coupling terms.

Then it follows that the relaxation tensor �lmnk is defined
by the noise correlation function S(ω),

�lmnk = 1

h̄2 �lmnkS(ωnk), (15)

�lmnk = (̂
τ (1)
z + τ̂ (2)

z

)
lm

(̂
τ (1)
z + τ̂ (2)

z

)
nk

, (16)

S(ω) =
∫ ∞

0
dt e−iωt 〈X(t)X(0)〉 . (17)

The noise correlator S(ω) was calculated in Ref. 11 within the
spin-boson model, and it was shown that its imaginary part
results only in a small renormalization of the energy levels
and can be neglected. The relevant real part of the relaxation
tensor,11

Re �lmnk = 1

8h̄
�lmnkJ (ωnk)

[
coth

h̄ωnk

2T
− 1

]
, (18)

is defined by the environmental spectral density J (ω). Here T

is the bath temperature (kB is assumed 1); for the numerical
calculations we take T/h = 1 GHz (T = 50 mK). The electro-
magnetic environment can be described as an Ohmic resistive
shunt across the junctions of the qubits, Z(ω) = R.9 Then the
low-frequency spectral density is linear, J (ω) ∝ ωZ(ω) ∝ ω,
and should be cut off at some large value ωc; the realistic
experimental situation is described by11

J (ω) = α
h̄ω

1 + ω2/ω2
c

, (19)

where α is a dimensionless parameter that describes the
strength of the dissipative effects; in numerical calculations we
take α = 0.01 and ωc/2π = 104 GHz [the cutoff frequency ωc

is taken much larger than other characteristic frequencies, so
that for relevant values ω : J (ω) ≈ αh̄ω].
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FIG. 4. (Color online) Relaxation rates Wmn vs partial biases
of the two qubits, f1 and f2. The square and the circle show the
parameters f1 and f2 = f2L(R), at which the calculations of other
figures are done.

B. Relaxation rates

From the above equations the expression for the relaxation
rates from level |n〉 to level |m〉 follows

Wmn = 1

4h̄
�nmmnJ (ωmn)

[
coth

h̄ωmn

2T
− 1

]
. (20)

These relaxation rates are plotted in Fig. 3(b) as functions
of the partial flux bias f2. This figure demonstrates that
the fastest transitions are those between the energy levels
corresponding to changing the state of the first qubit and
leaving the same state of the second qubit [cf. Fig. 3(a)].
Namely, the fastest transitions are those with the rates W13

and W02 to the left from the avoided crossing and W23 and W01

to the right, which correspond to the transitions |↑↑〉 → |↓↑〉
and |↑↓〉 → |↓↓〉. Note that we do not show in the figure the
rates W03 and W12; they correspond to the transitions with
simultaneously changing the states of the two qubits and they
are much smaller than the rates shown.

The relaxation rates Wij are shown in Fig. 4 as functions of
the two partial bias fluxes, f1 and f2. Again, one can see the
regions where certain relaxation rates are dominant. Such a
difference in the relaxation rates creates a sort of artificial
selection rules for the transitions, similar to the selection
rules studied in Refs. 12 and 13. In our case the transitions
are induced by the interaction with the environment, and the
difference is due to the different parameters of the two qubits.14

To further understand this issue, we consider the single-qubit
relaxation rates.

From the above equations we can obtain the energy
relaxation time T1 and the decoherence time T2 for a single
qubit. For the two-level system with two states |0〉 and |1〉
the relaxation time is given by10 T −1

1 = W01 + W10. The

Boltzmann distribution, W10/W01 = exp(−�E/T ), means
that at low temperature the major effect of the bath is the
relaxation from the upper level to the lower one. Now, from
Eq. (20) it follows that

T −1
1 = α�2

2h̄�E
coth

�E

2T
. (21)

Also from Eq. (12) we obtain the dephasing rate,10

T −1
2 = Re γ01 = 1

2
T −1

1 + αT

h̄

ε(0)2

�E2
. (22)

For the calculation presented in Fig. 2(a) for two qubits with
J = 0 in the vicinity of the point f2 = f ∗

2 , where �E(1) =
�E(2), we obtain

T
(1)

1

T
(2)

1

�
(

�2

�1

)2

. (23)

As we explained above, the lasing in the four-level system
requires the hierarchy of the relaxation times. In particular, we
assumed T

(1)
1 � T

(2)
1 . So, in our calculations we have taken

�1 � �2 and consequently the first qubit relaxed faster. This
qualitatively explains the dominant relaxations in Fig. 3(b).

C. Equations for numerical calculations

If we use the Hermiticity and normalization of the density
matrix, then the 16 complex equations (10) can be reduced to
15 real equations. After the straightforward parametrization of
the density matrix, ρij = xij + iyij , we get15

ẋii = −1

h̄
[V ′,y]ii +

∑
r �=i

Wirxrr − xii

∑
r �=i

Wii, i = 1,2,3,

(24a)

ẋij = ωijyij − 1

h̄
[V ′,y]ij − γij xij , i > j, (24b)

ẏij = −ωijxij + 1

h̄
[V ′,y]ij − γij yij , i > j, (24c)

yii = 0, x00 = 1 − (x11 + x22 + x33); xji = xij , yji = −yij .
This system of equations can be simplified if the relaxation

rates are taken at zero temperature, T = 0, and neglecting the
impact of the interqubit interaction on relaxation, J = 0. Then
among all the Wij and γij nontrivial are only the elements
corresponding to single-qubit relaxations [see Eqs. (21) and
(22)]. For example, consider f2 < f ∗

2 [see Fig. 2(a) for the
notation of the levels], and then nontrivial elements are

W13 = W02 = (
T

(1)
1

)−1 = α�2
1

2h̄�E1
, (25a)

W23 = W01 = (
T

(2)
1

)−1 = α�2
2

2h̄�E2
, (25b)

γ13 = γ31 = γ02 = γ20 = (
T

(1)
2

)−1 = 1
2

(
T

(1)
1

)−1
, (26a)

γ23 = γ32 = γ01 = γ10 = (
T

(2)
2

)−1 = 1
2

(
T

(2)
1

)−1
. (26b)

In our numerical calculations we did not ignore the influence
of the coupling on relaxation, i.e., we did not assume
J = 0. However, we have numerically checked that such
simplification, J = 0, resulting in the relaxation rates (25) and
(26), sometimes allows to describe qualitatively the dynamics
of the system.
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IV. SEVERAL SCHEMES FOR LASING

In Sec. II and in Fig. 2 we pointed out that in the system
of two coupled qubits there are two ways to realize lasing,
making use of the three or four levels to create the population
inversion between the operating levels. In this section we will
demonstrate the lasing in the two-qubit system by solving
numerically the Bloch-type equations (24) with the relaxation
rates given by Eqs. (11), (12), and (18). Besides demonstrating
the population inversion between the operating levels, we
apply an additional signal, with the frequency matching
the distance between the operating levels, to stimulate the
transition from the upper operating level to the lower one. So,
we will first consider the system driven by one monochromatic
signal, f (t) = fac sin ωt , to pump the system to the upper
level and to demonstrate the population inversion. Then we
will apply another signal stimulating transitions between the
operating laser levels:

f (t) = fac sin ωt + fL sin ωLt. (27)

Solving the system of equations (24), we obtain the population
of ith level of our two-qubit system, Pi = xii . The results of the
calculations are plotted in Figs. 5 and 6, where the temporal
dynamics of the level populations is presented for different
situations.

In Fig. 5 we consider the situation where the relevant
dynamics includes three levels (for definiteness, we take f1 =
14 × 10−3, f2 = 11 × 10−3, which is marked as the square
in Fig. 4). Pumping (|0〉 → |3〉) and relaxation (|3〉 → |1〉)
create the population inversion between the levels |1〉and
|0〉. For pumping we consider two possibilities: one-photon
driving, Fig. 5(a), when h̄ω = E3 − E0, and two-photon
driving, Fig. 5(b), when 2h̄ω = E3 − E0. In the latter case
we have chosen the parameters (namely, f1 and f2) so that
the two-photon excitation goes via an intermediate level
|2〉. We note here that, as was demonstrated in Ref. 8, the
multiphoton excitation in our multilevel system can be direct,
as in Fig. 6(b), or ladder type, via an intermediate level,
as in Fig. 5(b). Figure 5 was calculated for the follow-
ing parameters: ωL/2π = 13.7 GHz (h̄ωL = E1 − E0) and
also (a) ω/2π = 35.2 GHz, fac = 7 × 10−3, fL = 5 × 10−3;
(b) ω/2π = 17.6 GHz, fac = 2 × 10−3, fL = 5 × 10−3.

Next, we consider the scheme for the four-level lasing,
which occurs in a similar scenario, except the changing of the
levels. Then, the main relaxation transitions are |3〉 → |2〉 and
|1〉 → |0〉, and now the population inversion should be created
between levels |2〉 and |1〉. For this we take the partial biases
f1 = 14 × 10−3, f2 = 20 × 10−3 (marked by the circle in
Fig. 4). First, the system is pumped only with one signal
either with h̄ω = E3 − E0, Fig. 6(a), or with 2h̄ω = E3 − E0,
Fig. 6(b). Such pumping, together with fast relaxation (|3〉 →
|2〉), creates the population inversion between the levels |2〉and
|1〉. Fast relaxation from lower laser level |1〉 into the ground
state |0〉 helps creating the population inversion between the
laser levels |2〉 and |1〉, which is the advantage of the four-level
scheme.7 Then the second signal is applied with a frequency
matching the laser operating levels (h̄ωL = E2 − E1). This
stimulates the transition |2〉 → |1〉, which provides the scheme
for the four-level lasing. Figure 6 was calculated for the

FIG. 5. (Color online) Three-level lasing and stimulated tran-
sition. Time evolution of the numerically calculated occupation
probabilities at biases f1 = 14 × 10−3 and f2 = 11 × 10−3 is plotted
for (a) one-photon driving and (b) two-photon driving. As shown in
the inset schemes, the driving and fast relaxation create the inverse
population between the levels |1〉 and |0〉. So, these levels can be
used for lasing, which we schematically mark by the double arrow.
After some time delay (when the population inversion is reached),
an additional periodic signal (S) fL cos ωLt is turned on, matching
the operating levels, h̄ωL = E1 − E0. This leads to the stimulated
transition |1〉 → |0〉.

following parameters: ωL/2π = 9 GHz (h̄ωL = E2 − E1) and
also (a) ω/2π = 47.4 GHz, fac = 5 × 10−3, fL = 3 × 10−3;
(b) ω/2π = 23.7 GHz, fac = 5 × 10−3, fL = 5 × 10−3.

In the experimental realization of the lasing schemes
proposed here, the system of two qubits should be put in
a quantum resonator, e.g., by coupling to a transmission
line resonator, as in Ref. 5. Then the stimulated transition
between the operating states, which we have demonstrated
here, will result in transmitting the energy from the qubits to the
resonator as photons. For this, the energy difference between
the operating levels should be adjusted to the resonator’s
frequency.

V. CONCLUSIONS AND DISCUSSION

We have considered the dissipative dynamics of a system
of two qubits. Assuming different qubits makes some of the
relaxation rates dominant. With these fast relaxation rates,
population inversion can be created involving three or four
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FIG. 6. (Color online) Four-level lasing and stimulated transition.
Time evolution of the occupation probabilities at biases f1 = 14 ×
10−3 and f2 = 20 × 10−3 is plotted for (a) one-photon driving and
(b) two-photon driving. The driving and fast relaxation create the
inverse population between the levels |2〉 and |1〉. After a time
delay an additional periodic signal fL cos ωLt is turned on, matching
the operating levels, h̄ωL = E2 − E1. This leads to the stimulated
transition |2〉 → |1〉.

levels. The four-level situation is more advantageous for lasing
since the population inversion between the operating levels
can be created more easily. We demonstrated that the upper

level can be pumped by one- or multiphoton excitations. We
also have shown that, after applying additional driving, the
transition between the operating levels is stimulated.

When presenting concrete results, we have considered the
system of two flux superconducting qubits with the realistic
parameters of Ref. 8. For lasing in a generic two-qubit
(four-level) system, our recipe is the following. The hierarchy
of the relaxation times in the system is obtained by making
it asymmetric, with different parameters for individual qubits.
This makes transitions between the levels corresponding to
a qubit with a smaller tunneling amplitude � negligible,
which creates a sort of artificial selection rule. Based on our
numerical analysis, we conclude that the optimal combination
of pumping and relaxation is realized for �1 � �2 ∼ J .

Creation of the population inversion and the stimulated
transitions between the laser operating levels, demonstrated
here theoretically, can be the basis for respective experiments
similar to Ref. 5. In that work, a three-level qubit (artificial
atom) was coupled to a quantum (transmission line) resonator.
First, spontaneous emission from the upper operating level
was demonstrated. In this way the qubit system can be
used as a microwave photon source.16 Then, the operating
levels were driven with an additional frequency and the
microwave amplification due to the stimulated emission was
demonstrated. We believe that similar experiments can be
done with the two-qubit system (which forms an artificial
four-level molecule from two atoms-qubits). To summarize, we
propose to put the two-qubit system in a quantum resonator
with the frequency adjusted with the operating levels, and
to measure the spontaneous and stimulated emission as the
increase of the transmission coefficient. Such lasing in a
two-qubit system may become a useful tool in the qubit
toolbox.
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