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Understanding the origin of the pseudogap is an essential step toward elucidating the pairing mechanism in
the cuprate superconductors. Recently there has been strong experimental evidence showing that C4 symmetry
breaking occurs on the formation of the pseudogap. This form of symmetry breaking was predicted by the
fluctuating bond model (FBM), an empirical model based on a strong, local coupling of electrons to the square of
the planar oxygen vibrator amplitudes. In this paper we approach the FBM theory from a new direction, starting
from ab initio molecular dynamics simulations. The simulations demonstrate a doping-dependent instability
of the in-plane oxygens toward displacement off the Cu-O-Cu bond axis. From these results and perturbation
theory we derive an improved and quantitative form of the FBM. A mean-field solution of the FBM leads to C4
symmetry breaking in the oxygen vibrational amplitudes and to a d-type pseudogap in the electronic spectrum, the
features linked by recent experimental data. The phase diagram of the pseudogap derived from mean-field theory,
its doping and temperature dependences, including the phase boundary T ∗, agree well with experimental data.
We extend the theory to include the long-range Coulomb interaction on the same basis as the FBM interaction.
When the long-range Coulomb interaction is included in the FBM, a charge density wave (CDW) instability in
the charge channel is predicted, which explains the nanoscale, rather than spatially uniform, behavior of the C4
symmetry breaking. Taking the CDW into account, with the theoretical k dependence of the pseudogap, enables
the Fermi surface arc phenomenon to be understood.
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After years of intensive theoretical and experimental effort,
there is still no consensus as to the pairing mechanism in
cuprate high-temperature superconductors (HTSs) nor on the
origin of the pseudogap (PG),1 which needs to be an integral
part of the eventual solution to the HTS problem. Perhaps
it is time to extend our thinking beyond some of the most
attractively simple models explored over the last 20 years,
such as the large-U Hubbard model2 or models with linear
electron-phonon coupling.3

Symmetry breaking permeates all branches of physics, and
its study often allows us to gain insight into the nature of
the underlying physical phenomena. This approach can be
invoked in order to throw light on the origin of the PG in
cuprate HTSs, and ultimately to help elucidate the nature of the
pairing mechanism in these materials. Recent evidence shows
that the PG is associated with the presence of C4 symmetry
breaking;4–6 that is, the a and b directions in the CuO2

plane become nonequivalent. The nature of the C4 symmetry
breaking at low temperature is revealed by atomic-resolution
scanning tunneling microscopy (STM) studies,7 which show
that it is associated with the oxygens in the CuO2 plane, the
oxygens in the x-directed Cu-O-Cu bonds differing from the
oxygens in y-directed Cu-O-Cu bonds both in their electronic
properties and in their vibrational amplitudes. At low tem-
perature and under conditions where dopant nonuniformity
creates electronic nanoscale inhomogeneity8 (a novel form
of “nematic” rather than crystalline order9,10), C4 symmetry
breaking has been found to be coterminous in space with
the regions where the PG is present.5 At high temperatures,
around the temperature T ∗ at which the PG appears, C4
symmetry breaking has been found experimentally4 to turn on

at the temperature T ∗, and the simplest assumption is that this
high-temperature C4 symmetry breaking has the same origin
as that revealed by the low-temperature STM work. The most
straightforward reading of the evidence is then that the PG is
a symmetry-breaking phenomenon, involving a nematic phase
in which the oxygens in x-directed Cu-O-Cu bonds become
electronically and vibrationally different from the oxygens in
y-directed Cu-O-Cu bonds.

In an earlier study,11 which introduced an empirical model
for cuprate HTS, the fluctuating bond model, C4 symmetry
breaking was predicted prior to its initial observation,8 and
indeed in this theory oxygens in x- and y-directed Cu-O-Cu
bonds were shown to become electronically and vibrationally
distinct. The basis of the FBM is a nonlinear coupling between
the the vibrational coordinates of the oxygen atoms in the
CuO2 plane and the electron system, distinguishing it from
the linear electron-lattice coupling12 in conventional BCS
superconductivity. The FBM naturally explained11 the d-wave
superconducting properties of HTS,13 where earlier related
approaches14,15 were unsatisfactory as models of HTS as they
predicted s wave. Reference 16 explores superconductivity
arising from even higher-order couplings. For the FBM to
be convincing as a mechanism for C4 symmetry breaking,
it needs to be shown that electron-lattice coupling, and in
particular nonlinear coupling, is significant in HTS, and that
the FBM can describe the experimental behavior of the C4
symmetry-breaking/PG phenomenon. These are the objectives
of this paper.

The significance of electron-lattice coupling in cuprate HTS
can be inferred from experimental evidence regarding the
pairing mechanism,3 such as the universal doping-dependent
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oxygen isotope shift17,18 and the superconductivity-induced
softening in oxygen vibration frequency.19,20 However, con-
ventional linear electron-phonon coupling is not straightfor-
wardly related to C4 symmetry breaking and produces a
doping-independent isotope shift. Also, ab initio calculations
do not find a strong conventional linear electron-lattice
coupling in the cuprates.21,22 We shall see that these difficulties
can be resolved if we extend our thinking to include nonlinear
electron-lattice coupling.

Fundamental grounds for emphasizing nonlinear electron-
lattice coupling emerge when O motion transverse to the
axis of the Cu-O-Cu bond in the CuO2 plane (the transverse
modes turn out to be the key ones) is considered. We argue
from the symmetric environment of the Cu-O-Cu bond in
cuprates that the local effect of the transverse O motion on
the electrons should be independent of the O displacement’s
sign, and hence second order in the O displacement. Linear
coupling of the bond-transverse O modes23 should only come
in as a relatively long-range piece depending on nonuniversal
structural elements which violate inversion symmetry in the
bond axis—providing the basis for small linear coupling as
determined by ab initio methods.21,22

A strong argument can be made that the electron-electron
interaction in metallic-doped cuprates does not cause local
electron correlations negating treatment within medium-
coupling approximations such as the local-density approx-
imation (LDA) or random-phase approximation. A classic
systematic study of electronic spectroscopy of transition metal
oxides24 showed that in Cu (and other late transition metals) the
oxygen 2p and copper 3d levels lie close in energy;25 hence,
the low lying “oxide gap” excitation 2p63d9 → 2p53d10 is the
excitation enabling hole propagation. The oxygen 2p orbitals
are nearly empty of holes and their overlap gives rise to
an interaction-free electronic bandwidth of several eV,25 so
that the 3d ↔ 2p interaction via 2p53d10 enables holes to
propagate without going through the 3d8 state. The high-lying
energy of the exotic 3d8 or CuIII state, the state of Cu involving
the Hubbard two-hole interaction U , does not block hole
transport in the metallic doping range. Ab initio support for
the absence of strong local correlation in the metallic cuprates
comes from considering local corrections to LDA. While it
can be argued that U is underestimated within the gradient-
corrected LDA to density functional theory, an estimate of
the effect of this can be made by applying the LDA + U
technique,26 involving a form of energy functional embodying
the local properties of the 3d shell. This is found to have only
a small effect on our results, supporting the contention that
the cuprate wave function is not, in fact, strongly correlated.
In calculations with a model Hamiltonian involving oxygen
2p and copper 3d levels (e.g., Ref. 27) it is common to take
U = ∞, when the hole propagation is controlled by the oxide
gap, consistent with Ref. 24 and the foregoing discussion.
Undoped cuprates show a transition to a magnetic state
involving reduced hole motion, possibly assisted by enhanced
oxygen vibrational amplitude28 reducing Cu-Cu hopping, as
happens in the mean-field solution described below.

A question often raised in the context of strength of electron
correlation is the presence of an incoherent background

component in angle-resolved photoemission spectroscopy
(ARPES) 29,30 in addition to the coherent quasiparticle peak. In
interpreting ARPES incoherence, recognition of the presence
of nanoscale structure5–7 in these systems is clearly essential.
The momentum conservation central to interpreting ARPES is
compromised by the presence of nanoscale structure (closely
linked to the PG in the FBM), resulting in momentum
broadening, which can lead to energy broadening.29 In fact,
this is precisely the interpretation we make of the Fermi surface
arc phenomenon in this paper (see below), and this is supported
by the link between the loss of quasiparticle peak intensity and
PG.30 In addition, the FBM strong electron-vibrator coupling
creates an inelastic channel for broadening the spectral density,
as has been previously proposed,31 which is enhanced by the
nearness of the Fermi surface to a saddle point, resulting in
marginal Fermi liquid behavior.8 These two phenomena are
sources of nontrivial spectral line shape in addition to Hubbard
model effects. The spectral density in the FBM needs to be
calculated (in future work) to quantify the effect.

We show in this paper (a) using ab initio molecular
dynamics that there is a strong nonlinear coupling between
electrons and the bond-transverse O vibrations, which can be
formally expressed in terms of a quantitatively parameterized
FBM, and (b) that this coupling leads to a natural explanation
of C4 symmetry breaking and of the associated PG and its
phenomenology. Finally, we show that including the long-
range Coulomb interaction (LRCI) in the FBM explains the
charge density wave (CDW) which modulates the symmetry
breaking.

I. AB INITIO FOUNDATION OF THE FBM

The powerful technique of ab initio molecular dynamics
(AIMD)32 solves the ionic equations of motion on a first-
principles Born-Oppenheimer potential energy (PE) surface,
a conceptual step forward from the empirical PE surface used
in conventional MD. The ab initio PE surface is obtained by
solution of the many-electron Schrödinger equation in LDA,
most often augmented by gradient correction. This technique
is well suited to the present problem because it avoids the
constraint of a linearized electron-lattice interaction. We start
by using AIMD to show that the oxygens in the CuO2 plane
are unstable, leading to the observed symmetry breaking, then
identify the cause of the instability, which leads naturally to
formulating the FBM.

First we consider the the oxygen instability leading to the
well-established low-temperature tetragonal (LTT) structure33

found in underdoped metallic 214 materials, which was early
on linked to nonlinear electron lattice coupling.34 Figure 1
shows that the LTT structure is indeed predicted by AIMD for
metallic La2CuO4 at T = 4 K . In a CuO2 plane the oxygens
in, say, the x-directed bonds are displaced, half up and half
down, along the z axis, while in the next CuO2 plane the
oxygens in the y-directed bonds are displaced, etc. Hence,
each CuO2 plane breaks C4 symmetry, but the alternation
of bond distortion between x- and y-directed bonds ensures
overall tetragonal symmetry.

To analyze the mechanism of the oxygen instability we
turn to the oxychloride system Ca2−xNaxCuO2Cl2, which
is computationally advantageous and whose doping can be
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FIG. 1. (Color online) Ab initio molecular dynamics calculation
at T = 4 K of the structure of metallic La2CuO4 (214),33 blue
spheres, La; green spheres, Cu; red spheres, O. (a) Undistorted setup
structure. (b) Equilibrated structure showing vertical displacements
of the planar oxygens corresponding to rotations of CuO6 octahedra
about alternate x and y axes in planes stacked along the c axis: the
LTT structure found at low temperature in metallic 214 phases.

controlled via the Na fraction x. In this system we have
calculated the oxygen PE surfaces as a function of doping
[see Fig. 2(a))]. In the oxychloride the AIMD calculation [see
inset Fig. 2(a)] shows that, in contrast to the 214 material,
the oxygen instability is in the xy plane, in agreement with
experiment7 (though AIMD cannot capture the experiment’s
non-Born-Oppenheimer features).

What is remarkable in Fig. 2(a), supporting an electronic
origin for the oxygen instability, is that the PE surfaces are
strongly dependent on doping. At low doping the PE minimum
is off the bond axis [leading to the Fig. 2(a) inset distortion],
transitioning at high doping to an on-axis minimum (stability
of oxygen on the bond axis). The AIMD results can be
parameterized in the form

V (u) = (χ + Vp)
u2

2
+ w

8
u4, (1)

where u is oxygen displacement from the bond axis. In (1) the
force constant χ is negative when doping p is zero (oxygen
unstable at zero doping), while the electron-lattice coupling
V is positive, representing stabilization of the intrinsically
unstable Cu-O-Cu bond with increasing hole doping. The
positive quartic term w confines the oxygen atom in the local
lattice cage for the unstable cases. Equation (1) embodies the
result that the electron-lattice coupling in Fig. 2(a) goes as the
square of the oxygen displacement, as was argued above.

It is very helpful to interpret the ab initio results in Fig. 2(a)
and Eq. (1) in terms of a local chemical bonding energy
level picture. In a two-atom bond such as that in H2 there
is a low-energy bonding orbital, which is doubly occupied,
and a higher-energy antibonding orbital, which is empty. The
strength of the bond is optimum with these occupations; the
bond strength would be zero if the occupations were zero
and also if both bonding and antibonding levels were both
occupied. In Fig. 2(b), we sketch the local chemical energy
level picture for the three-atom Cu-O-Cu σ bond. Because
there are three atoms, there are now bonding, nonbonding,
and antibonding levels. Again if all levels are filled, the bond
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FIG. 2. (Color online) (a) PE curves V (u) for oxychloride
material as a function of oxygen in-plane distortion u (see inset)
for different dopings (see labeling on curves). Inset color code:
blue spheres, Ca/Na; green, Cu; red, O. Doping is implemented by
fractional substitution of Na for Ca. (b) Breaking of the Cu-O-Cu
bond by electron addition. Since bonding “b” and nonbonding “nb”
levels are occupied, bond strength depends on holes in the partially
occupied antibonding “a” level. Adding an electron to the “a” level
will eliminate bond strength, leading to off-axis PE surface minimum
for oxygen atom.

strength is zero. The bonding and nonbonding levels are filled,
so the bond strength relies entirely on partial filling of the
the antibonding level, which in an undoped system involves
only 1/2 hole per bond; that is, the antibonding level is 3/4
filled. This is a very weak bond and is, in fact, unstable, as
seen in Fig. 2(a), where the energy minimum is off axis for
zero doping. As the hole number in the antibonding orbital
is increased by doping, the bond will become stable, exactly
as seen in the AIMD results in Fig. 2(a), where the energy
minimum moves to the bond axis. Direct ab initio support
for this local chemical bonding picture has, in fact, been
obtained in a set of calculations on linear molecules of the
type X-Cu-O-Cu-X.35 In these calculations the Cu-O-Cu bond
is “doped” by the choice of electron withdrawing/electron
donating group X. Doping with holes (electrons) stabilizes
(destabilizes) the Cu-O-Cu bond just as shown in Fig. 2(a) for
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tpd

2px

2py

3dx2-y2

FIG. 3. (Color online) 2px , 2py , and 3dx2−y2 orbitals in CuO2

plane, illustrating 2p to 3d hopping integral tpd .

a cuprate system. The added electrons are found to go into the
antibonding orbital, just as sketched in the chemical picture of
Fig. 2(b).

II. DERIVATION OF THE FBM HAMILTONIAN

As we have discussed above, the Fig. 2 AIMD results
support a coupling between oxygen vibrator force constant
and electron occupation of the antibonding orbital. We now
give a more formal derivation of this form of coupling (see
Appendix A). The approach requires a model. We start from
the three-band Emery tight-binding model based on Cu 3dx2−y2

and the oxygen 2px/2py orbitals that have σ symmetry in the
Cu-O-Cu bond (see Fig. 3).

The key parameters in the three-band model are the pd hop-
ping matrix elements tpd and the p-to-d energy gap εpd > 0.
In this paper we work with the more tractable and widely used
one-band model25 rather than the three-band model. The basis
set in the one-band model consists of a single 3dx2−y2 orbital
per Cu atom located at site i on the square Cu Bravais lattice
in the CuO2 plane.

A projection procedure (Appendix A) enables approximate
passage from the three-band to the one-band model, which
becomes

H̃ d =
∑
i,σ

εdniσ −
∑

〈i,j〉,σ

t2
pij d

εpij d

(c+
i,σ cj,σ + c+

j,σ ci,σ )

+
∑

〈i,j〉,σ

t2
pij d

εpij d

(niσ + njσ ) (2)

[here c+
i,σ (ci,σ ) is the creation (destruction) operator for the

3dx2−y2 orbital of spin σ on site i, with number operators
ni,σ = c+

i,σ ci,σ , and εd is the 3dx2−y2 orbital energy]. A sum
over 〈ij 〉 implies that each nearest-neighbor bond ij appears
only once in the sum. In (2) the three-band model parameters
tpd and εpd have been made bond-dependent.

The key physical content is seen in the second term of
(2). This term describes a superexchange hopping t between
nearest-neighbor Cu atoms i and j driven by electrons hopping
from i to the intermediate p orbital via tpd and then from the
intermediate p orbital to j via another tpd matrix element (and
the reverse). There is also an energy shift in the 3dx2−y2 orbitals

[third term in (2)] due to the process where after reaching the
intermediate p orbital from i an electron hops back again to i

instead of going on to j .
A vibrational displacement u of the oxygen, typically

transverse to the Cu-O-Cu bond axis, will modify the pd

hopping matrix elements tpd . The modification will tend to
reduce the pd overlap, hence will be of the form (taking
tpd > 0, as in Fig. 3)

tpd → tpd − vpdu
2, where vpd > 0. (3)

Inserting this approximation into (2) and expanding only as
far as the second order in u we obtain the nonlinear electron-
vibrator coupling model

H̃ d = ε′
d

∑
i,σ

niσ − t
∑

〈i,j〉,σ
(c+

i,σ cj,σ + c+
j,σ ci,σ )

− v

2
√

2

∑
〈i,j〉,σ

[(niσ + njσ ) − (c+
i,σ cj,σ + c+

j,σ ci,σ )]u2
ij ,

(4)

where ε′
d = εd + 2t (the trivial shift 2t in the d-orbital energy

will subsequently be ignored), t = t2
pd/εpd is the one-band

tight-binding hopping matrix element, and the electron-
vibrator coupling matrix element v is defined by v/2

√
2 =

2tpdvpd/εpd
11 (in this paper we define the vibrator and electron

spin degeneracies as 1 and 2, respectively). The coupling v is
seen to be positive. Our original empirical model11 contained
only the hopping terms in the coupling and missed the number
operator terms (we shall see that this modification has little
effect on a uniform PG). Note that a similar electron-vibrator
coupling term occurs if the coupling originates from εpd (see
Appendix A), instead of from tpd [as in Eq. (3)].

A neat way to express the nonlinear electron-vibrator
coupling term is to introduce the antibonding orbital [ci,σ −
cj,σ ]/

√
2 for the ij bond. The number operator for this bond,

summed over spin, is defined as Qij ,

Qij =
∑

σ

(
[ci,σ − cj,σ ]√

2

)+(
[ci,σ − cj,σ ]√

2

)
= 1

2

∑
σ

[(niσ + njσ ) − (c+
i,σ cj,σ + c+

j,σ ci,σ )], (5)

and is seen to be the electronic factor in the coupling term in
(4), which can now be written compactly as

H̃ d = ε′
d

∑
i,σ

niσ − t
∑

〈i,j〉,σ
(c+

i,σ cj,σ + c+
j,σ ci,σ )

− v√
2

∑
〈i,j〉

Qiju
2
ij . (6)

Some further additions are required in order to arrive at a
complete and realistic FBM Hamiltonian (see Appendix B).
The nonlinear coupling in (6) can, in principle, have the effect
of deconfining the vibrating oxygen (giving it a parabolic
convex-downward PE surface). The ab initio PE curves in
Fig. 2(a) and Eq. (1) show that the oxygen vibrator is, in fact,
confined by a quartic-type potential, which therefore needs
to be included, as it models exchange repulsion. We also
need to add the standard kinetic energy and parabolic potential
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energy terms for the vibrator. The electronic Hamiltonian also
needs refining by including next-nearest hopping terms t ′ and
next-next-nearest-neighbor terms t ′′ (t ′ is especially important
as it sets the doping where the van Hove singularity peak in
the density of states (DOS) is located at the Fermi level).

The resulting FBM Hamiltonian [Eq. (7)] (see Appendix B)
is written in mixed representation electronically,

H =
∑
k,σ

εknk,σ +
∑
〈i,j〉

[
p2

ij

2M
+ χ0

2
u2

ij

]
+ w

8

∑
〈i,j〉

u4
ij

− v√
2

∑
〈i,j〉

Qiju
2
ij . (7)

In Eq. (7), c+
k,σ (ck,σ ) is the creation (destruction) operator for

the band states of wave vector k, obtained by diagonalizing the
tight-binding model with the hopping matrix elements t , t ′, and
t ′′, and nk,σ = c+

k,σ ck,σ is the corresponding number operator.
The variables pij and uij are the conjugate momentum and
position coordinates of oxygen in bond ij , M is oxygen mass,
and χ0 the bare oxygen force constant. An Einstein model
is assumed, so intervibrator interactions are ignored. w is
the quartic interaction and v the (positive) electron-vibrator
coupling constant. There is a characteristic coupling energy
K = v2/w in the model, related to the pairing energy.11 In
Appendix C we give a simple extension of the standard
“two cannon balls on a mattress” model for electron-phonon
coupling-induced pairing, comparing the total energy for two
electrons localized in a Cu-O-Cu bond with the energy for
localization in two separate Cu-O-Cu bonds, to show that the
local bond-pairing energy is 2K (form factors appearing in the
k-space treatment of d-wave pairing modify the coefficient
of K).

The coupling term (last term) in Eq. (7) can be interpreted
in terms of the Fig. 2(b) chemical picture; it states that if
we increase the occupation Qij of the antibonding orbital in
bond ij [see Eq. (5)], then the Cu-O-Cu bond ij is softened.
Looking at the hopping terms within Qij in (5), it is seen that
increasing the vibrational amplitude in bond ij changes the
nearest-neighbor hopping term so as to reduce the effective
hopping |t | [see (6)] in bond ij .

The remaining terms in Eq. (7) are as follows. The first
term is the electronic band energy. The second term represents
the harmonic part of the oxygen vibrational Hamiltonian, to
which is added the third term, a quartic interaction needed
to confine the oxygen and derived from the PE curves in
Fig. 2(a). The Hamiltonian Eq. (7), termed FBMII, differs
from the original FBM model11 (now termed FBMI) in the
presence of the number operator terms in Qij [Eq. (5)] and,
as we now see, in having the key parameters determined from
ab initio calculations.

The FBM nonlinear electron-vibrator coupling is especially
effective at the high DOS saddle points at X = (π,0) and
Y = (0,π ) in the band structure. The energies at X and Y

are normally degenerate, but the degeneracy is split if the
vibrational amplitudes u for the oxygens in x-directed bonds
are not the same as the amplitudes in y-directed bonds [see
Fig. 4(a)]. This splitting can be used to determine the bare
electron-lattice coupling constant v in Eq. (7) by displacing
the x oxygens and calculating the shift in the band structure

TABLE I. FBM Parameters for 214 and oxychloride materials.

Parameter Vib. xy ⊥ to bond Vib. z ⊥ to bond

v214 (a.u.) 0.016 0.017
voxy (a.u.) 0.018 0.020
w214 (a.u.) 0.053 0.122
woxy (a.u.) 0.090 0.106
8K214 (eV ) 1.12 0.54
8Koxy (eV) 0.80 0.83

eigenvalue at X. Any effect of a global chemical potential shift
due to displacing the x oxygens can be removed by displacing
the y oxygens and subtracting the y-induced shift at X from
the x-induced shift. In Appendix D we discuss in more detail
how the shift in band structure energy eigenvalues εk at the
saddle points X and Y as a result of displacing the oxygens can
be used to determine the coupling constant v. The results are
collected in Table I for the 214 and oxychloride materials. The
values of the quartic interaction w are obtained from the quartic
coefficient of the fit to the Fig. 2(a) curves, and similar ones
for the 214 material. It is found that the coupling v is relatively
small for vibrational polarization along the Cu-O-Cu bond,
so we only considered polarizations transverse to the bond in
Table I. Repeating this calculation with the U -facility in the
QUANTUM ESPRESSO code enabled did not significantly change
the results, a finding which suggests that the FBM couplings
are not an artifact of neglecting electron correlation effects.

The lower section Table I shows the coupling strength K =
v2/w in the FBM, which is discussed further below. We now
turn to the PG results obtainable from the FBM at the mean
field level.

III. C4 SYMMETRY BREAKING AND THE PSEUDOGAP

A mean-field approximation to a new Hamiltonian is
often found to yield valuable insights. The nonlinear form
of coupling in the FBM Eq. (7) lends itself to an unusual
form of mean-field theory where u2

ij can be replaced by its
expectation value 〈u2

ij 〉. The details of this mean-field theory
are supplied in Appendix E, and the essentials are described as
follows. When u2

ij is replaced by its expectation value 〈u2
ij 〉 the

coupling term becomes v〈u2
ij 〉(c+

i,σ cj,σ + c+
j,σ ci,σ )/2

√
2, lo-

cally modifying the nearest-neighbor hopping t , which appears
in the one-electron Hamiltonian −t(c+

i,σ cj,σ + c+
j,σ ci,σ ), to

t →(t − v〈u2
ij 〉/2

√
2), decreasing the hopping strength since

v > 0.
Moreover, if the vibrational amplitude 〈u2

ij 〉 were to differ
between x- and y-directed bonds, the nearest-neighbor hop-
ping t would also differ, becoming, say, tx and ty , respectively.
Now the saddle-point energies εX and εY are given by

εX = −2(−tx + ty) + 4t ′ − 4t ′′,
εY = −2(tx − ty) + 4t ′ − 4t ′′, (8)

so the energies of the saddle points are split by εX − εY =
4(tx − ty). Splitting the saddle points splits the van Hove
singularity37,38 in the DOS [see Fig. 4(a)], which leads to a
Peierls-like mechanism for creating the vibrational amplitude
asymmetry in 〈u2

ij 〉 self-consistently. This is the underlying
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process which leads to C4 symmetry-breaking and to the PG
in the FBM.

Applying mean field to the model Eq. (7) (Appendix E), we
then expand the coupling term into two possible decouplings:
(a) Qiju

2
ij→Qij 〈u2

ij 〉, with consequences just discussed, and
(b) Qiju

2
ij → 〈Qij 〉u2

ij , leading to a softening of the vibrator
proportional to the number of antibonding electrons 〈Qij 〉 in
the bond [the Figs. 2(a), 2(b) effect]. Here for the moment
we assume for simplicity that the mean-field solution is
translationally invariant, when the decoupling breaks the
problem into two exactly soluble pieces. The (a) decoupling
leads to a band structure problem which is solved to give the
expectation value 〈Qij 〉, which can be fed into (b) to give the
softened vibrator frequency. The solution to the anharmonic
oscillator problem posed by Eq. (7) with the decoupling (b) is
done by expanding in a harmonic oscillator basis, leading to a
value of 〈u2

ij 〉 to be fed back into (a). The mean-field quantities
〈Qij 〉 and 〈u2

ij 〉 are solved for self-consistently; further details
are provided in Appendix E.

At high temperatures the lowest free energy solution to
the mean-field equations preserves C4 symmetry. However,
in the underdoped region, below a characteristic temperature
T ∗, the symmetric solution is a free energy maximum and
a pair of C4 symmetry-breaking solutions, with different
expectation values 〈Qij 〉 and 〈u2

ij 〉 in the x- and y-directed
bonds [Fig. 4(a)], have lower free energy.

The FBM predicts that the C4 symmetry breaking in the
oxygen vibrator amplitudes 〈u2

ij 〉 is the effect detected in the
low-temperature STM R-plots (R is the ratio of electron to
hole currents) of Ref. 7—a key experiment in understanding
cuprate physics. The STM experiment on the tunneling
current into specific planar oxygens electronically detects the
splitting in the van Hove singularities illustrated in Fig. 4(a)
and in Eq. (8), and simultaneously observes the C4 splitting
in the vibrational amplitude of these oxygens. Hence, the
experiment provides a direct critique of the interpretation
of C4 symmetry breaking in the FBM. The details of the
experimental observation and its FBM interpretation are
discussed in Appendix F. The FBM predicts that in the C4
symmetry-broken state the higher (lower)-amplitude oxygens
have filled (empty) DOS peaks [Fig. 4(a)]. Hence, the higher
(lower)-amplitude oxygens should show as dark streaks (light)
spots in the R plots, exactly as observed.

C4 symmetry breaking in the electronic structure leads to a
d-type PG �ps(k) ∼ �ps(cos kx − cos ky)/2 [see Appendix E
(E4)], where the PG, �ps , can be positive or negative in sign.
The degeneracy of the saddle points at X = (π,0) and Y =
(0,π ) is split by twice the PG, 2�ps [see Fig. 4(a) and Eq. (8)].

The critical condition for the existence of the C4 sym-
metry breaking, and hence for the existence of the PG,
is derived by linearizing the mean-field treatment so as to
obtain the conditions for instability. This analysis is detailed
in Appendix G, yielding Eq. (G48). The condition can
be shown to be approximately equivalent under practical
conditions to

8Kρ(εF ) � 1, (9)

where ρ(εF ) is the DOS at the Fermi level. The quantity 8K

can be taken as the mean-field coupling energy in the FBMII.
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FIG. 4. (Color online) (a) Oxygen-projected 2p-DOS for oxy-
gens in x-oriented (red) and y-oriented (violet) bonds. The vHs
peak above the Fermi level (violet) is for the lower vibrational
amplitude oxygen, and the peak below the Fermi level (red) is for
the higher vibrational amplitude oxygen. For details, see Appendix A.
(b) Contour map of PG in temperature/doping plane showing decrease
with doping, and with temperature, until it vanishes at phase boundary
T ∗. Contours labeled by PG �ps in intervals of 13.75 meV. For
experimental �ps magnitudes, see Ref. 36.

The values of 8K derived from the AIMD calculations are
illustrated in Table I, and are of order 1 eV. The DOS at
the Fermi level is somewhat larger than 1 eV−1 for practical
doping levels, so that the PG is indeed predicted to exist in the
mean-field theory of the FBM.11

The FBM phase diagram for the PG is shown in Fig. 4(b).
The mean-field result reproduces the main experimental
features of the PG. Daou et al.4 show that the temperature
boundary T ∗ of the PG is indeed coincident with the temper-
ature boundary of the C4 splitting, as the FBM predicts. In
spatially inhomogeneous samples the spatial boundary of the
PG is found to be coincident with the spatial boundary of the
C4 splitting,5 again as the FBM predicts. The temperature and
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doping dependence of the PG seen in Fig. 4(b) is in reasonable
agreement with experiment: At low temperature the PG ranges
from a maximum of about �ps = 100 meV on the underdoped
side, decreasing with increasing doping,5,36,39–41 while T ∗
is of about the right magnitude with the correct trend as a
function of doping.1 Note that these results are essentially the
same in FBMI and FBMII, apart from the doping dependence
introduced by the FBMII charge terms into Eq. (E1).

IV. THE CDW AND FERMI SURFACE ARCS

So far we have assumed spatial uniformity of the mean-field
vibrational amplitude and PG. What is the origin of the
spatial oscillation of the C4 splitting in the oxygen vibrator
amplitudes, which is observed to have a wavelength of
approximately �4 unit cells.7 The observed spatial oscillation
must strongly impact the C4 symmetry breaking in the
electronic structure viewed in k space and hence spectroscopic
observations of the PG.

In a further development of the model, we show in
Appendix G that when the long-range interaction between the
oxygen charges in the CuO2 plane oxygens is included—an
enhancement of the model we term FBMIII—then the FBM
has a natural spatial charge oscillation or CDW. The new
long-range Coulomb piece is not important as long as only
spatially uniform mean-field quantities are being considered,
but it becomes significant when spatially nonuniform mean-
field quantities are introduced. An order of magnitude for the
CDW wave vector qCDW derived in Appendix G is

q2
CDW � 4πe2

εvcK
, (10)

where e is electronic charge, ε is the background dielectric
constant, and vc is the unit cell volume. With ε � 15 Eq. (10)
gives �1.7 unit cells for the CDW wavelength.

The presence of the CDW is likely to disrupt the assumed
spatially uniform value for the C4 splitting, since both CDW
and C4 splitting involve charge displacements on planar
oxygens and are mutually coupled. A C4 splitting wave
locked into the CDW is then likely to occur. The C4 splitting
amplitude is expected to be optimum at some value of local
charge, but the C4 splitting phase at that point can have
either sign. Hence, according to this argument the C4 splitting
wavelength is 2× the CDW wavelength. If the C4 splitting
oscillation locks into the CDW at 2× the CDW wavelength,
then (10) is consistent with the C4 splitting wavelength being
�4 unit cells.

The spatial oscillation of the C4 splitting implies that
the sign of �ps will vary spatially with distance x parallel
to the CDW wave vector qCDW, in a manner �ps(k) ∼
�ps cos(θ )(cos kx − cos ky)/2, where θ = qCDWx/2. The
Fermi surface in the C4 split phase will be sensitive to the sign
of �ps , and hence to the phase θ . The inset in Fig. 5 shows the
two FSs corresponding to the limiting cases θ = (2n + 1)π
and θ = 2nπ (n = integer), and it is reasonable to assume
that a nanoscopically varying order parameter will lead to FS
smearing between these limits as illustrated by the shaded
region in the Fig. 5 inset. A further source of spectroscopic
incoherence is that the spatial oscillation of the C4 splitting
is not coherent, but broken into the nematic phase domains,7

which has been interpreted as an effect of the nonuniform
dopant distribution.10

The splitting of the saddle-point energies by 2�ps moves
spectral density away from the Fermi energy (see Fig. 4), due
to the spatial oscillation and nematic-phase incoherence of the
C4 splitting the rearrangement of spectral density generates a
PG. A loss of superfluid density in the superconducting phase
in a range of superconductors is also associated with the loss
of spatial order.42

In k space the smearing of the FS by the PG, seen in the
Fig. 5 inset, is seen to be zero at the nodal line kx = ky , a
manifestation of the d-type nature of the PG �ps(k), and
to increase as one goes toward the SPs at X and Y . How
much of the FS is resolvable will then depend on the energy
window; a narrow energy window will see only the arc of
the FS close to the node, while a wider energy window will
see a more extended section of FS arc. More quantitatively,
if we make a measurement on some energy scale E, it is
to be expected that the FS arc will be well defined for k
points whose local PG is less than E, �ps(k) < E, but that
the arc will be smeared out on energy scales where the local
PG is larger than E, �ps(k) > E. A heuristic approach is to
take the energy scale E as the temperature itself, E = kBT ,
according to which approach there should be a boundary
between the resolvable and unresolvable sections of the FS arc
defined by �ps(k) = kBT , a FS arc effect that has already been
observed.43,44 Comparison of the data with our heuristic model
in Fig. 5 is in good agreement with experiment,44 especially
in the low-T regime, which we report as a reasonable proof of
concept but not yet a rigorously quantitative theory. Further
understanding requires calculation of the marginal Fermi
liquid lifetime broadening45 for the FBM, enabling calculation
of spectral line shapes.

FIG. 5. (Color online) (Inset) Two FSs for opposite signs of
C4-splitting phase (�ps = 74 meV). θ = 0 and θ = π are defined
in the context of the order parameter �ps(k) ∼ �ps cos θ (cos kx −
cos ky)/2 (see text). The colored area indicates approximate loss of
definition of FS due to CDW. (Main panel) Plot of FS arc length vs
temperature compared with experiment (see text).
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The ab initio calculations we have done show that there
is an underlying instability of the CuO2 plane oxygens in
HTS, which results in the phenomenon of C4 symmetry
breaking. Based on the ab initio calculations we derive an
enhanced version of the FBM, with realistically estimated
parameters. The mean-field theory of the FBM shows that
C4 symmetry breaking is the underlying cause of the PG,
as also found by recent complementary experiments. The
FBM is able to give a picture of the PG phenomenology
including features such as T ∗, the doping dependence of
the PG, and Fermi surface arcs which are all in agreement
with experiment. Including our previous success in explaining
the superconductivity and doping-dependent isotope shift, we
believe that the FBM approach has solid achievements in
explaining the main nonmagnetic phenomena in the cuprate
HTSs.
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APPENDIX A: DERIVATION OF THE FBMII COUPLING

In matrix notation consider a d subspace and a p subspace,
represented by the Hamiltonians Hd and Hp, respectively,
connected by the coupling matrix V pd , the Hamiltonian then
being,

H =
[

Hd V dp

V pd Hp

]
. (A1)

Projecting onto the d subspace in perturbation theory,

H̃ d = Hd + V dp(εd − Hp)−1V pd. (A2)

If i,j are d sites, and l,m are p orbitals,

H̃ d
ij = εdδij +

∑
l,m

V
dp

il (εd − Hp)−1
lm V

pd

mj . (A3)

Now we shall neglect the pp hopping matrix elements
(Emery model), when l = m and the V ’s are nearest-neighbor
hopping matrix elements defined as tpd > 0 (see Fig. 3). There
are two processes,

(i) i,j nearest neighbor 〈i,j 〉 on the d lattice, when the 2
V ’s have opposite sign (Fig. 3);

(ii) i = j , when the
2 V ’s have same sign;

giving

H̃ d =
∑
i,σ

εdniσ +
∑

〈i,j〉,σ

t2
pij d

εpij d

(niσ + njσ ) −
∑
〈i,j〉

t2
pij d

εpij d

Xij ,

(A4)

where εpd = εd − εp > 0 is the “oxide gap” between
the oxygen 2p orbital energy and the higher-lying
Cu 3dx2−y2 orbital energy, σ is spin, pij is the p orbital between
d sites i and j , and the bond order operator Xij is

Xij =
∑

σ

(c+
iσ cjσ + c+

jσ ciσ ). (A5)

Let us assume that the oxygen motion in some direction
is x and that it enters the three-band Hamiltonian via the pd

hopping integral

tpd → tpd − vpdx
2, where vpd > 0; (A6)

then to order vpd and defining t = t2
pd/εpd ,

H̃ d = t(εd + 2t)
∑
i,σ

niσ − t
∑
〈i,j〉

Xij

− 2tpdvpd

εpd

∑
〈i,j〉,σ

(niσ + njσ )x2
ij + 2tpdvpd

εpd

∑
〈i,j〉

Xijx
2
ij .

(A7)

Restoring our original notation11 2tpdvpd/εpd = v/2
√

nns

(n is the degeneracy of the vibrational mode, and ns is the
degeneracy of the fermions, in practice n = ns = 2), when the
coupling v is seen to be positive,

H̃ d = (εd + 2t)
∑
i,σ

niσ − t
∑
〈i,j〉

Xij

− v

2
√

nns

∑
〈i,j〉,σ

(niσ + njσ )x2
ij + v

2
√

nns

∑
〈i,j〉

Xijx
2
ij .

(A8)

We retrieve our previous one-band model (next-nearest
and next-next-nearest-neighbor hoppings are dropped due to
neglect of tpp), but with an extra term diagonal in d space.
As regards the vibrator, the effect of the new term is to stiffen
the vibrator with increasing hole occupation. In this respect
the number operator term is dominant over the hopping term
(maximizes at �0.6).

Let us now alternatively assume that the oxygen motion
enters the three-band Hamiltonian through the interaction of
the electrostatic potential with the charge on the oxygen

εpd → εpd + vpx2, (A9)

where vp depends on a Madelung sum. In an ionic crystal
it is arguable that the sign of vp will be positive since the
environment of a negative ion typically consists of positive
ions, so as the O-ion approaches them the local oxide gap εpd

becomes larger. However, in a perovskite structure the issue
needs specific calculation.

Expanding to first order,

1

εpd + vpx2
= 1

εpd

− vpx2

ε2
pd

. (A10)

Returning to Eq. (A4), we insert the foregoing expansion into
the two terms to obtain

�H̃d → − tvp

εpd

∑
〈i,j〉

(niσ + njσ )x2
ij + tvp

εpd

∑
〈i,j〉

Xijx
2
ij . (A11)
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The effect of the oscillator correction (A11) from this
mechanism can be absorbed into (A8), giving the same final
result (A8) but with

v

2
√

nns

= (2tpdvpd + tvp)/εpd . (A12)

The sign of v will be positive if the tpdvpd term in parentheses
is dominant, or if vp is positive as argued above.

In this section we have formally derived the FBM coupling,
showing the approximations involved explicitly, and demon-
strated the existence of a new term in the coupling, extending
the initial FBM,11 termed FBMI, to the model including charge
coupling, the FBMII.

APPENDIX B: THE COMPLETE FBMII HAMILTONIAN

The FBMII Hamiltonian involves three pieces:

H = Hv + He + Hev. (B1)

In H the Cu sites, which define the unit cell, are defined
as two-dimensional integral-component vectors i = (ix,iy)
(lattice constant is taken as unity). The two oxygens in each
unit cell i are located at the sites i + α̂/2, where α̂ is a
unit vector along the x or y axis; hence, α̂ defines whether
the oxygen is in a Cu-O-Cu bond oriented along the x or
y direction.

In the vibrator piece Hv the oxygen degree of freedom is
an n-component vector xi+α̂/2, where n = 1 if a single mode
is dominant (as assumed in the manuscript), n = 2 if the two
modes transverse to the Cu-O-Cu bond are roughly equivalent,
or in a case now considered unlikely (as the along-bond mode is
found to be weakly coupled) n = 3 if the two transverse modes
and the along-bond mode can all be considered equivalent. Hv

is given by

Hv =
y∑

i,α=x

[
1

2m
p2

i+α̂/2 + χ0

2
x2

i+α̂/2 + w

8n

(
x2

i+α̂/2

)2
]
. (B2)

In Hv the scalar products xi+α̂/2 · xi+α̂/2 are abbreviated to
x2

i+α̂/2, and a momentum pi+α̂/2 conjugate to coordinate xi+α̂/2

is introduced, to define the vibrator kinetic energy, with m the
oxygen mass (M in the paper). The “bare” bond force constant
is χ0. The quartic term, with coefficient w, is assumed in the
degenerate case to be radially (n = 2) or spherically (n = 3)
symmetric.

The electronic piece He is

He = −1

2

∑
i,j,σ

t(i − j)c+
i,σ cj,σ , (B3)

where c+
i,σ (ci,σ ) denote, respectively, the creation (destruc-

tion) operators for the 3dx2−y2 orbital (or, more rigorously,
the dx2−y2 -type Cu3d-O2p antibonding Wannier function)
on lattice site i of spin σ . The strongest interaction is
the nearest-neighbor hopping integral t(±1,0) = t(0, ±1) = t

(t is positive), followed by the next-nearest-neighbor interac-
tion t(±1, ± 1) = t ′ (t ′ is negative) and then the third-nearest-
neighbor interaction t(±2,0) = t(0, ±2) = t ′′ (t ′′ is positive).

The band eigenvalues εk of (B3) are

εk = −2t(cos kx + cos ky) − 4t ′ cos kx cos ky

− 2t ′′(cos 2kx + cos 2ky). (B4)

The model band structure has a minimum at � [k = (0,0)],
a maximum at Z [k = (π,π )], and saddle points (SPs) at X

[k = (0,π )] and Y [k = (π,0)]. As a result of the SPs, located
at εSP = 4t ′ − 4t ′′, the DOS has a logarithmic peak (van Hove
singularity, or vHs) at εSP which is found from ARPES and
band structure calculations for near-optimally doped systems
to lie close to the Fermi level25,46; the resulting high DOS at
the Fermi level strongly enhances the FBM coupling. The total
bandwidth is 8t .

The electron-vibrator coupling piece is

Hev = −v

2
√

nns

y∑
i,α=x

x2
i+α̂/2

×
[∑

σ

(ni,σ + ni+α̂ ,σ ) − Xi+α̂/2

]
; (B5)

Xi+α̂/2 =
∑

σ

(c+
i,σ ci+α̂,σ + c+

i+α̂,σ ci,σ ), (B6)

where the bond order operator X is associated with the
oxygen site at the bond center, and we have defined in the
mixed degeneracy factor (nns)−1/2, where ns = 2 is the spin
degeneracy, to make the term of order

√
nns , motivated by a

version of large-N theory jointly expanding in 1/n and 1/ns .11

In Ref. 11 only the X piece of (B5) was included, a level termed
FBMI.

The combination
∑

σ (ni,σ + ni+α̂ ,σ ) − Xi+α̂/2 can also be
written in more compact form, defining the antibonding orbital
|a,i+α̂/2〉 = (|i〉 − |i+α̂〉)/√2, with number operator (sum-
ming over spin) denoted Qi+α̂/2 = ∑

σ c+
a,i+α̂/2,σ ca,i+α̂/2,σ :

1

2

(∑
σ

(ni,σ + ni+α̂,σ ) − Xi+α̂/2

)
= Qi+α̂/2. (B7)

The complete Hamiltonian H = Hv + He + Hev is then

H =
y∑

i,α=x

[
1

2m
p2

i+α̂/2 + χ0

2
x2

i+α̂/2 + w

8n

(
x2

i+α̂/2

)2
]

−1

2

∑
i,j,σ

t(i − j)c+
i,σ cj,σ − v√

nns

y∑
i,α=x

x2
i+α̂/2Qi+α̂/2.

(B8)

Note that in Eq. (B8) K = v2/w defines a coupling energy.

APPENDIX C: LOCAL ESTIMATE OF
PAIRING STRENGTH

A model often used to explain the phonon-induced pairing
attraction in conventional linear phonon coupling is the “two
cannon balls on a mattress model”—the energy lowering when
two cannon balls together sink into the mattress is larger than
the sum of the energies of the cannon balls separately sinking
in. Hence, they have a pairing tendency due to their cannon
ball-mattress interaction. Here we give a simple classical
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extension of this picture to the nonlinear FBM situation,
enabling us to derive an estimate of the pairing energy.

Consider the energy of a single Cu-O-Cu bond with only
one vibrational mode (n = 1) x, having the PE

V (x) = χ0

2
x2 + w

8
x4 − v√

ns

x2Q. (C1)

We treat the vibrational degree of freedom x as classical.
Minimizing the PE with respect to x2, we obtain

x2
min = 4

w

(
v√
ns

Q − χ0

2

)
, (C2)

and inserting back into (C1) we get for the minimum energy

Emin = − 2

w

(
v√
ns

Q − χ0

2

)2

. (C3)

This is minimum PE of a bond when its electronic state is
defined by the good quantum number Q.

In the FBMII we consider the two-particle state of a bond
as the paired state, with Q = 2 (plus one empty bond), and
the unpaired state as two bonds each with Q = 1. The pairing
energy is then

Epair = − 2

w

(
− χ0

2

)2

− 2

w

(
v√
ns

2 − χ0

2

)2

+ 4

w

(
v√
ns

− χ0

2

)2

(C4)

= −4
v2

wns

. (C5)

From this we conclude that the pairing energy is
Epair � −2v2/w = −2K; that is, v should be large, w

small for strong pairing.
Suppose we apply this same argument to the FBMI model,

where the charge term is absent from Q, which now becomes
Q = ∑

σ (nb,σ − na,σ )/2, where b and a denote bonding and
antibonding orbitals, respectively. Now for the paired state
Q = 1, while for the singly occupied state Q = 1/2. Now

Epair = − 2

w

(
− χ0

2

)2

− 2

w

(
v√
ns

− χ0

2

)2

+ 4

w

(
v√
ns

1

2
− χ0

2

)2

(C6)

= − v2

wns

. (C7)

The pairing energy is Epair � −v2/2w = −K/2. Hence, in
this analysis the FBMI has only 1/4 of the pairing strength of
the FBMII.

APPENDIX D: DETERMINATION OF COUPLING v

Calculation of the oxygen PE surface as a function of
doping is not an ideal approach to the calculation of the FBM
coupling constant. The coupling in the FBM Hamiltonian is
to the number of electrons Q in the antibonding orbital, which
mainly involves states at the top of the d band and will be filled
mainly by adding electrons rather than, on the contrary, holes,

as was done (for reasons of computational stability) in Fig. 2
of the paper.

The method adopted to calculate the coupling strength v is
based on comparing the shift in band structure energies when
the oxygen location is perturbed with the same shift deduced
from the FBM Hamiltonian. The FBM coupling [third term in
Eq. (B8)] leads to splittings in the tight-binding band structure.
If all oxygens in the x-oriented bonds are globally shifted by ux

and all oxygens in the y-oriented bonds are shifted by uy , there
is a splitting of the band energy between the band energy εX at
the SP X = (π,0), and εY at Y = (0,π ), given by εX − εY =√

2/nv(u2
x − u2

y). By numerically calculating the band struc-
ture with first the x oxygens displaced and then the y oxygens
displaced and subtracting the corresponding band structure
energies energies at, say, the SP X, any isotropic shift resulting
from displacing a single oxygen can be canceled out and the
coupling v determined. The results are shown in Table I.

APPENDIX E: MEAN-FIELD APPROXIMATION

Mean-field theory is a useful step in investigating the
properties of many models. In the FBM, the mean-field
approximation decouples the electronic and vibrational parts
of the Hamiltonian. In the vibrational part, an expectation value
of the electronic terms shifts the oscillator harmonic frequency,
the expectation value being assumed spatially uniform, but it
can be different in the x and y bonds (in this section we return
to the notation in the paper):

H vib =
∑
〈i,j〉

p2
ij

2M
+ 1

2

∑
〈i,j〉

χ0u
2
ij + w

8

∑
〈i,j〉

u4
ij

+ v

2
√

2

∑
〈i,j〉,σ

(2 − 2p + 〈c+
i,σ cj,σ + c+

j,σ ci,σ 〉)u2
ij .

(E1)

H vib can easily be diagonalized in a harmonic oscillator basis.
In the electronic part, the expectation value of the square of
the oscillator amplitude has been taken,

H el =
∑
k,σ

εknk,σ + v

2
√

2

∑
〈i,j〉,σ

[c+
i,σ cj,σ + c+

j,σ ci,σ ]
〈
u2

ij

〉
, (E2)

giving a band structure problem in which there are new nearest-
neighbor hopping terms (v/2

√
2)[c+

i,σ cj,σ + c+
j,σ ci,σ ]〈u2

ij 〉 (the
uniform shift represented by the number operator terms does
not change the band structure and is omitted) with the effect
of reducing the nearest-neighbor hopping integral. Allowing
the oscillator amplitude squared for the x-directed 〈u2

ij 〉x and
y-directed 〈u2

ij 〉y bonds to be unequal (the C4 symmetry-split
case), the band structure is changed to

ε̃k = εk + v√
2

〈
u2

ij

〉
x

cos kx + v√
2

〈
u2

ij

〉
y

cos ky. (E3)

Using the band structure ε̃k (E3) the expectation values
〈c+

i,σ cj,σ + c+
j,σ ci,σ 〉 for x-oriented and y-oriented bonds are

calculated, hence defining two quartic Hamiltonians (E1)
whose exact solution yields the squared vibrator amplitudes
〈u2

ij 〉x and 〈u2
ij 〉y . These interconnected electronic and quar-

tic problems are then solved self-consistently as regards
the expectation values. The parameters used were similar
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to Table I, v = 0.0198 a.u., w = 0.085 a.u., the oscilla-
tor bare force constant was χ0 = −0.0225 a.u. The band
structure is parametrized by the (negative of the) hopping
matrix elements, the nearest-neighbor hopping matrix element
(m.e.) t = 0.25 eV, next-nearest-neighbor hopping m.e. t ′ =
−0.05 eV, and third-next-nearest-neighbor hopping m.e. t ′′ =
27.2 meV.

We can rewrite the effective band structure as

ε̃k = εk + 1
2�ps(cos kx − cos ky), (E4)

where �ps = (v/
√

2)(〈u2
ij 〉x − 〈u2

ij 〉y) is the PG, and the renor-

malized nearest-neighbor hopping (v/2
√

2)(〈u2
ij 〉x + 〈u2

ij 〉y) is
absorbed into εk. The experimental data7 show that the PG
is not uniform over the sample as we have, for simplicity,
assumed, but the coherence length over which the sign of �0

ps

varies is quite short, only a few lattice spacings. Probably as a
result of this nanoscopic domain structure, the phase boundary
of the PG region is not typically found experimentally to
constitute a true, sharp, phase boundary.1

The variation of PG with doping at low temperature seen
in the contour plot [Fig. 4(b)] is similar to that seen in
experimental data.36

APPENDIX F: INTENSITY VARIATION IN
EXPERIMENTAL R PLOTS

In order to model the experimental behavior in the STM
experiments7 on C4 symmetry-split systems, we calculated the
projected DOS for a three-band model with the basis of oxygen
2px and 2py orbitals and Cu 3dx2−y2 orbitals shown in Fig. 3.
The pdσ hopping matrix element is tpd = 1.12 eV. There
are pp hopping matrix elements between nearest-neighbor
2px and 2py orbitals given by tpp = −0.528 eV and an oxide
gap εd − εp = 6 eV. A spatially uniform PG is introduced by
modifying the tpd matrix elements to tpxd = tpd + �t (i.e., for
the lower vibrational amplitude oxygen) and tpyd = tpd − �t

(i.e., for the higher vibrational amplitude oxygen), where �t =
0.0375 eV (the argument below only depends on these being
semiquantitatively correct).

The results for the DOS projected into the oxygen
2px orbitals (lying in x-oriented Cu-O-Cu bonds—see Fig. 3)
and oxygen 2py orbitals are different, as seen in Fig. 4(a). The
DOS peak associated with the van Hove singularity is seen in
Fig. 4(a) to be split, the peak above the Fermi level being local-
ized only on the lower vibrational amplitude oxygen and the
peak below the Fermi level being localized only on the higher
vibrational amplitude oxygen. The STM R-map technique7 for
detecting the C4 splitting experimentally involves the ratio R

of the tunneling current into the empty DOS to the hole current
into the filled DOS. Evidently from Fig. 4, R is predicted
to be large on the low-amplitude oxygens and small on the
high-amplitude oxygens, in agreement with the observation,7

in which the high-amplitude oxygens are associated with
dark streaks in the R map, while the low-amplitude oxygens
are associated with bright spots. Note that the C4 splitting
is characterized by nanoscale domains,7 rather than being
spatially uniform, as assumed in the Fig. 4(a) calculations.

APPENDIX G: THE FBM HAMILTONIAN WITH
LONG-RANGE INTERACTION IN MEAN FIELD

A. The FBM Hamiltonian with long-range Coulomb interaction

Including the LRCI between the charges Q in the antibond-
ing orbital in (B8) gives the Hamiltonian

H =
y∑

i,α=x

[
1

2m
p2

i+α̂/2 + χ0

2
x2

i+α̂/2 + w

8n

(
x2

i+α̂/2

)2
]

+
∑
k,σ

ε0
knk,σ − v√

nns

y∑
i,α=x

x2
i+α̂/2Qi+α̂/2

+ e2

εns

∑
i,j,α,β

Qi+α̂/2

×
∫

d3r
∫

d3r ′fα(r − ri+α̂/2)fβ(r′−rj+β̂/2)

|r − r′| Qj+β̂/2

(G1)

Here fx(r − r̂x/2), fy(r − r̂y/2) are the form factors (charge
probability distribution) of the charges in the x and y

antibonding orbitals on a bond from the origin to x̂, ŷ.
fα(r − rα̂/2) can be written in the single-band basis as

fα(r − rα̂/2) = 1
2 [ψ3d (r) − ψ3d (r − rα̂)]2. (G2)

fα(r) is assumed normalized to unity
∫

d3rfα(r) = 1, as will
be the case if the 3d orbitals on adjacent sites are orthonormal.
ε is a background dielectric constant of order several. A factor
of 2 has been incorporated into the LRCI in order that it be
correct for ns = 2.

This can be written more compactly by defining the LRCI
2 × 2 tensor

Vαβ(ri+α̂/2 − rj+β̂/2)

= 2e2

ε

∫
d3r

∫
d3r ′ fβ(r − ri+α̂/2)fγ (r′−rj+β̂/2)

|r − r′| , (G3)

H =
y∑

i,α=x

[
1

2m
p2

i+α̂/2 + χ0

2
x2

i+α̂/2 + w

8n

(
x2

i+α̂/2

)2
]

+
∑
k,σ

ε0
knk,σ − v√

nns

y∑
i,α=x

x2
i+α̂/2Qi+α̂/2

+ 1

2ns

∑
i,j,α,β

Qi+α̂/2Vαβ(ri+α̂/2 − rj+β̂/2)Qj+β̂/2 (G4)

B. FBM with LRCI Hamiltonian in mean field

In this section we employ a mean-field formulation which
allows mean-field quantities to vary in space, but does so in
a linearized regime where the spatially varying quantities are
small. Hence, the treatment is valid near the phase boundary
where the spatially varying quantities become nonzero.
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In mean-field approximation, the mean-field Hamiltonian
is (to within a constant)

Hmf =
y∑

i,α=x

[
1

2m
p2

i+α̂/2 + χi+α̂/2

2
x2

i+α̂/2

]

+
∑
k,σ

ε0
knk,σ +

y∑
i,α=x

ηi+α̂/2Qi+α̂/2, (G5)

where we defined complete oscillator stiffness χi+α̂/2 and
complete bond “potential” ηi+α̂/2 as

χi+α̂/2 = χ0 + w

2n

〈
x2

i+α̂/2

〉 − 2v√
nns

〈Qi+α̂/2〉, (G6)

ηi+α̂/2 = −v√
nns

〈
x2

i+α̂/2

〉
+ 1

ns

∑
j,β

Vαβ(ri+α̂/2 − rj+β̂/2)〈Qj+β̂/2〉. (G7)

Here we are exploiting the fact that the Coulomb potential and
the (oscillator amplitude)2 interact with the bond charge Q in
the same way.

It is useful to distinguish quantities nonuniform in space,
which will be prefixed with �, and spatial averages denoted
with a bar:

Hmf =
y∑

i,α=x

[
1

2m
p2

i+α̂/2 + 1

2
(χ0 + �χi+α̂/2)x2

i+α̂/2

]

+
∑
k,σ

εknk,σ +
y∑

i,α=x

�ηi+α̂/2Qi+α̂/2,χ (G8)

= χ0 + w

2n
〈x2〉 − 2v√

nns

〈Q〉; (G9)

�χi+α̂/2 = w

2

〈
�x2

i+α̂/2

〉 − 2v√
nns

〈�Qi+α̂/2〉, (G10)

�ηi+α̂/2 = −v√
nns

〈
�x2

i+α̂/2

〉
+ 1

ns

∑
j,β

Vαβ(ri+α̂/2 − rj+β̂/2)〈�Qj+β̂/2〉. (G11)

Here εk is understood to include the η effects, and electrostatic
effects are assumed to be zero in the uniform system which is
site neutral.

C. Linearized vibrator response

We shall linearize the response 〈x2
i+α̂/2〉 of the Einstein

vibrator on site i+α̂/2 to changes in the vibrator stiffness
χi+α̂/2, 〈

�x2
i+α̂/2

〉 = 〈
x2

i+α̂/2

〉 − 〈x2〉 (G12)

= −An�χi+α̂/2 (G13)

= −An(χi+α̂/2 − χ ), (G14)

where

A = h̄

4m2ω3 g

(
h̄ω

2kT

)
; (G15)

g(x) = coth(x) + x

sinh2(x)
; mω2 = χ. (G16)

So〈
�x2

i+α̂/2

〉 = −An

(
w

2n

〈
�x2

i+α̂/2

〉 − 2v√
nns

〈�Qi+α̂/2〉
)

,

(G17)

or 〈
�x2

i+α̂/2

〉 = 2vÃ
√

n√
ns

〈�Qi+α̂/2〉, where (G18)

Ã = A(
1 + Aw

2

) . (G19)

D. Electronic linear response

The assumption here is that we are near T ∗; hence, in
all channels the electronic system can be assumed to have a
linear response

〈�Qi+α̂/2〉 = −ns

∑
j,β

R
αβ

i+α̂/2−,j−β̂/2
�ηj+β̂/2 (G20)

= −ns

∑
j,β

R
αβ

i+α̂/2−,j−β̂/2

( −v√
nns

〈
�x2

j+β̂/2

〉
+ 1

ns

∑
k,γ

Vβγ (rj+β̂/2 − rk+γ̂ /2)〈�Qk+γ̂ /2〉
)

,(G21)

where Ri+α̂/2,j+β̂/2 is a QQ response function. Using (G18)
this can be written in the electronic space

〈�Qi+α̂/2〉 − 2K̃
∑
j,β

R
αβ

i+α̂/2−,j−β̂/2
〈�Qj+β̂/2〉

= −
∑
j,β

R
αβ

i+α̂/2−,j−β̂/2

∑
k,γ

Vβγ (rj+β̂/2 − rk+γ̂ /2)〈�Qk+γ̂ /2〉,

(G22)

where we have introduced the effective interaction

K̃ = v2Ã = K
Aw

1 + 1
2Aw

; K = v2

w
. (G23)

The foregoing equation is now a homogeneous linear equation
in the discrete variables 〈�Qα

i+α̂/2〉.
Writing the linear equation (G22) as

〈�Qi+α̂/2〉 = 2K̃
∑
j,β

R
αβ

i+α̂/2−,j−β̂/2
〈�Qj+β̂/2〉

−
∑
j,β

R
αβ

i+α̂/2−,j−β̂/2

∑
k,γ

Vβγ (rj+β̂/2 − rk+γ̂ /2)

×〈�Qk+γ̂ /2〉, (G24)

the left-hand side is the response of the bond charge Q

to the two terms on the right-hand side. The first term
on the right-hand side is the bond-local response of the vibrator
to the local bond charge, which then produces a contribution
to the bond charge elsewhere via the nonlocal electronic
response. The second term on the right-hand side is the
nonlocal effect of the Coulomb potential produced by remote
bond charges on the potential in a given bond, which then
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produces a contribution to the bond charge elsewhere via
the nonlocal electronic response. The response produced
by coupling through the vibrator is attractive (a pairing
interaction) and that via the Coulomb interaction is, of course,
repulsive.

E. Response functions for q = 0

The essence of the long-wavelength behavior of the
response function (RFs) can be obtained by looking at the
uniform limit. Define the sum over space of the α-bond charge

Qα = 1

2

∑
i,σ

(ni−α̂/2,σ + ni+α̂/2,σ )

−1

2

∑
i,σ

(
c+

i−α̂/2,σ ci+α̂/2,σ + c+
i+α̂/2,σ ci−α̂/2,σ

)
, (G25)

where we refer to the bond center as the origin of the bond.
Rewriting in k space,

Qα =
∑
k,σ

nk,σ −
∑
k,σ

cos(kα)nk,σ =
∑
k,σ

[1 − cos(kα)]nk,σ .

(G26)

The expectation value of Qα is

〈Qα〉 =
∑
k,σ

[1 − cos(kα)]〈nk,σ 〉 (G27)

= ns

∑
k

[1 − cos(kα)]f (εk − μ), (G28)

where f is the Fermi function. 〈Qα〉 is positive, as is correct
for the occupation number of the α-oriented bond antibonding
orbital.

To get the RF (G20) we need to differentiate with respect
to changing the quantities in H − μN by changing the
coefficients of the two parts of Qβ . The coefficient of the
number operator is −μ. The coefficient of the second term in
(G25) is (−) the hopping integral t , though only 1/2 is changed
by Qβ , so

Rαβ = −
∑

k

[1 − cos(kα)]f ′(εk)

[
∂(εk − μ)

∂ − μ
− 1

2

∂(εk − μ)

∂tβ

]
(G29)

Rαβ = −
∑

k

[1 − cos(kα)][1 − cos(kβ)]f ′(εk). (G30)

Note that at low temperatures f ′(εk) = −δ(εk − μ), so that
the RFs are weighted DOSs at the Fermi level. The weighting
will be dominated by the SPs at X = (π,0) and Y = (0,π ).
These points contribute, X to Rxx and Y to Ryy , but neither X

nor Y contributes to Rxy or Ryx . The RF is always positive, but
because the off-diagonal terms miss out on the SP contribution,
they are expected to be smaller; hence, we write

Rxx = Ryy = R>,
(G31)

Rxy = Ryx = R<.

Numerical work suggests that the off-diagonal elements of R

are as much as an order of magnitude lower than the diagonal
terms.

F. Fourier transform

Spatial FTs are defined by

f (q) =
∑

i

eiq.rif (ri); qα = 2πnα

Nα

; (G32)∑
i

eiq.ri = Nδq,0; N = �αNα; (G33)

f (ri) = 1

N

∑
q

e−iq.rif (q). (G34)

Applying the FTs we get a 2 × 2 equation for the FT
of �Q:

Qα(q) − 2K̃
∑

β

Rαβ(q)Qβ(q)

(G35)
= −

∑
β,γ

Rαγ (q)Vγβ(q)Qβ(q),

where

Qα(q) =
∑

i

〈�Qi+α̂/2〉eiq.(ri+α̂/2), (G36)

Rαβ(q) =
∑

i

R
αβ

i+α̂/2−,j−β̂/2
eiq.(ri+α̂/2−rj−β̂/2), (G37)

Vαβ(q) =
∑

i

Vαβ(ri+α̂/2 − rj+β̂/2)eiq.(ri+α̂/2−rj−β̂/2).

(G38)

Thus, the FT Qα(q) is defined to be bond-centered, etc.

G. Simple limits

1. No LRCI

Suppose that there is no LRCI (as in the FBMII model);
then the equations become

Qx(q) − 2K̃Rxx(q)Qx(q) − 2K̃Rxy(q)Qy(q) = 0,

(G39)

Qy(q) + 2K̃Ryy(q)Qy(q) + 2K̃Ryx(q)Qx(q) = 0.

(G40)

Imagine that we are in the q → 0 limit, then approximately
borrowing from q = 0 [see (G30)],

Rxx(q) � Ryy(q), (G41)

Rxy(q) � Ryx(q), (G42)

so the foregoing equations become

Qx(q) − 2K̃Rxx(q)Qx(q) − 2K̃Rxy(q)Qy(q) = 0,

(G43)

Qy(q) − 2K̃Rxx(q)Qy(q) − 2K̃Rxy(q)Qx(q) = 0.

(G44)

144503-13
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These equations support two solutions, a monopole one,

Qx = Qy, (G45)

1 − 2K̃[Rxx(q) + Rxy(q)] = 0, or approximately (G31)

(G46)

1 − 2K̃(R> + R<) = 0, (G47)

and a quadrupole one,

Qx = −Qy, (G48)

1 − 2K̃[Rxx(q) − Rxy(q)] = 0, or approximately, (G49)

1 − 2K̃(R> − R<) = 0. (G50)

So in linear approximation there are two instabilities, the
monopolar (G45) and quadrupolar (G48) instabilities. The
monopolar instability is the strongest as it depends on the larger
RF combination (R> + R<), while the quadrupolar instability
depends on the weaker RF combination (R> − R<).

This result is in contrast with that in the FBMI, where the
response function combinations are

Rxx ± Rxy = −
∑

k

f ′(εk) cos(kx)[cos(kx) ± cos(ky)].

(G51)

Because the main weight comes from the SPs, the result
(G51) is dominated by the Rxx − Rxy combination, which
is positive. Hence, in the FBM the quadrupole solution
Qx = −Qy (G48) becomes unstable, leading to C4 symmetry
breaking, first as K̃ is increased (the instability in the monopole
channel is much weaker in the FBMI).

The instability in the charge channel is profoundly modified
by the LRCI; hence, it seems that the LRCI needs to be
included to make a fully physically correct extension of
the FBM. This is not unexpected as the new terms in the
FBMII Hamiltonian explicitly introduce charge which now
must be treated properly. We shall see below that the explicit
introduction of charge allows the CDW to be fully understood
within the full model FBMIII.

2. No coupling to vibrators

Suppose we consider the opposite case K̃ = 0. Now the
equation is

Qα(q) = −
∑
β,γ

Rαγ (q)Vγβ(q)Qβ(q). (G52)

Also suppose that the bond charges can be treated as highly
localized, when approximately

Vγβ(q) � 8πe2

εvcq2
, (G53)

where vc is the unit cell volume. Then defining a bond-average
Q

Q(q) = [Qx(q) + Qy(q)]/2,
(G54)

Q(q) = −
∑
α,γ

Rαγ (q)
8πe2

εvcq2
Q(q), or

1 + 8πe2

εvcq2

∑
α,β

Rαβ(q) = 0. (G55)

The latter equation can be simplified by taking the q = 0 limit
of the RF, giving

1 + 16πe2

εvcq2
(R> + R<) = 0, (G56)

which defines the growing/decaying FT wave vector,

q = ±i

√
16πe2

εvc

(R> + R<). (G57)

3. Approximate discussion of general case for q → 0

We can write the generalized equations

Qx(q) −[2K̃Rxx(q) − �xx(q)]Qx(q)
(G58)

−[2K̃Rxy(q) − �xy(q)]Qy(q) = 0,

Qy(q) −[2K̃Ryy(q) − �yy(q)]Qy(q)
(G59)

−[2K̃Ryx(q) − �yx(q)]Qx(q) = 0,

where

�αβ(q) =
∑

γ

Rαγ (q)Vγβ(q). (G60)

If we continue to assume that q → 0, and for simplicity
assume that the bond charges can be considered strongly
localized on the q−1 scale (a poor approximation in the
one-band model, since the quadrupolar charge distribution is
on precisely the same scale as that of the bond charges), so
that the suffixes on Vγβ(q) can be neglected,

Vγβ(q) � V (q), (G61)

�αβ(q) = V (q)
∑

γ

Rαγ (q), (G62)

then the equations become (dropping the wave-vector argu-
ment for clarity)

Qx −(2K̃Rxx − V Rxx − V Rxy)Qx
(G63)

−(2K̃Rxy − V Rxy − V Rxx)Qy = 0,

Qy −(2K̃Ryy − V Ryy − V Ryx)Qy
(G64)

−(2K̃Ryx − V Ryx − V Ryy)Qx = 0.

If we make the same q → 0 approximation as before,

Rxx(q) � Ryy(q), (G65)

Rxy(q) � Ryx(q), (G66)

then the foregoing equations become

Qx −(2K̃Rxx − V Rxx − V Rxy)Qx
(G67)

−(2K̃Rxy − V Rxy − V Rxx)Qy = 0,

Qy −(2K̃Rxx − V Rxx − V Rxy)Qy
(G68)

−(2K̃Rxy − V Rxy − V Rxx)Qx = 0.

Then again the monopolar solution,

Qx = Qy, (G69)

1 − [Rxx(q) + Rxy(q)][2K̃ − 2V (q)] = 0, (G70)

1 − (R> + R<)[2K̃ − 2V (q)] = 0, (G71)
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and quadrupolar solution,

Qx = −Qy, (G72)

1 − 2K̃(R> − R<) = 0, (G73)

are supported.
The quadrupolar solution (G72) is the same as the solution

without Coulomb interaction, which cancels out; it should lead
to the condition for T ∗, at least in the long-wavelength limit.

The monopolar solution can be written using the q → 0
limit of the RFs [again putting V (q) = 8πe2/εvcq

2]:

1 − K̃
∑
α,β

Rαβ(q) + 8πe2

εvcq2

∑
α,β

Rαβ(q) = 0, or (G74)

1 − 2K̃(R> + R<) + 16πe2

εvcq2
(R> + R<) = 0. (G75)

In this equation, if

2K̃(R> + R<) > 1, (G76)

we indeed obtain the anomalous FT where the wave vector q is
real; that is, a CDW exists which does not depend on nesting:

q =
√

16πe2(R> + R<)

εvc[2K̃(R> + R<) − 1]
, (G77)

which has a large K̃ limit,

q =
√

8πe2

εvcK̃
. (G78)

H. Summary

In the FBMI, which is missing the charge term in Q, having
only the X term, there is a q = 0 instability in the quadrupole,
or d-symmetry, channel. In the FBMII, which includes the
charge term in Q, there is a q = 0 instability in both the
quadrupole and the monopole channels. In the FBMIII, which
includes also the LRCI, there is a q = 0 instability in the
quadrupole channel. In the monopole channel there is an
anomalous Fermi-Thomas equation for the charge density or
potential which describes an oscillatory, or CDW, response
instead of the conventional exponentially screened response.
The monopolar solution has the wave vector (G77).

There are two transition temperatures, the higher, T ∗
0 , given

by the equality in (G76), defines the onset of the anomalous
FT CDW-like solution. The lower temperature, T ∗

2 , defines the
onset of the quadrupolar, C4 symmetry-breaking instability
seen at low temperatures. This weakly wavelength-dependent
instability may lock to the CDW wavelength.
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