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Optimal switching of a nanomagnet assisted by microwaves
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We develop an efficient and general method for optimizing the microwave field that achieves magnetization
switching with a smaller static field. This method is based on optimal control and renders an exact solution for the
3D microwave field that triggers the switching of a nanomagnet with a given anisotropy and in an oblique static
field. Applying this technique to the particular case of uniaxial anisotropy, we show that the optimal microwave
field that achieves switching with minimal absorbed energy is modulated both in frequency and magnitude. Its
role is to drive the magnetization from the metastable equilibrium position toward the saddle point and then the
damping induces the relaxation to the stable equilibrium position. For the pumping to be efficient, the microwave
field frequency must match at the early stage of the switching process the proper precession frequency of the
magnetization, which depends on the magnitude and direction of the static field. We investigate the effect of
the static field (in amplitude and direction) and of damping on the characteristics of the microwave field. We
have computed the switching curves in the presence of the optimal microwave field. The results are in qualitative
agreement with micro-SQUID experiments on isolated nanoclusters. The strong dependence of the microwave
field and that of the switching curve on the damping parameter may be useful in probing damping in various
nanoclusters.
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I. INTRODUCTION

Fine magnetic clusters offer tremendous challenges both in
the area of fundamental science and practical applications. The
main reasons for this impetus are the novel features related
to their small size, such as high density storage, short-time
switching,1 and fast read-write processes. However, the small
size is a drawback in many regards. The energy barrier in these
systems is too small to ensure a reasonable stability, in a given
energy minimum, that is necessary for practical applications
at room temperature, for example, magnetic recording. This is
the problem of superparamagnetism. A possible way out would
be to use materials with high anisotropy and thus ensuring a
high-energy barrier with the consequence that high values of
the writing (or switching) fields are required. But it is still
unclear how to devise such high fields operating on the scale
of nanoclusters while avoiding the ensuing noise. In order to
keep the size small, the energy barrier high, and the switching
field small, other routes are explored and a promising one
among them is provided by microwaves. Microwave-assisted
magnetization switching in various magnetic systems, such as
thin films, has been investigated by many groups.2

In fact, we have at hand a more general and fundamental
issue, namely the problem of getting a system out of an
energy minimum by nonlinear resonance. This has previously
been addressed in many areas of physics and chemistry,
especially in the context of atomic physics. For example, the
dissociation of diatomic molecules by a chirped infrared laser
pulse requires a much lower threshold laser intensity than with
a monochromatic field.4–6 According to the classical theory of
autoresonance or the quantum theory of ladder climbing,3,6–8

exciting an oscillatory nonlinear system to high energies is
possible by a weak chirped frequency excitation. Moreover,
trapping into resonance followed by a (continuing and stable)
phase locking with the drive is possible if the driving frequency
chirp rate is small enough. It has also been shown that a slow

passage through and capture into resonance yields efficient
control of the energy of the driven system.

For nanoclusters it has been shown in previous works
how a monochromatic microwave (MW) pulse can, by means
of a nonlinear resonance, substantially reduce the static
field needed to reverse the magnetization of an individual
nanoparticle.9 The switching curves obtained in these mea-
surements present some irregular features that depend on
the MW and dc field characteristics, the potential energy of
the nanomagnet, and the damping parameter. In particular,
the strong dependence of these features on the damping
parameter might be used to estimate the latter in such clusters.

Several theoretical works have been devoted to the un-
derstanding of the magnetization dynamics, and in particular
its reversal, under the effect of a time-dependent magnetic
field. The theoretical work may be divided into two kinds. The
first deals with the effect of a given MW field with a given
polarization10,11 while the second seeks optimal strategies for
achieving the magnetization switching.12 In particular, a few
works13 assume a given dynamics for the magnetization and
attempt to determine the MW field that realizes it.

In the present work we use a general method borrowed from
the optimal control theory14–16 and apply it to the switching of a
nanocluster. This method renders an exact solution for the MW
field vector necessary for the switching of a nanomagnet with a
given potential energy (comprising anisotropy and an oblique
static field). The standard formulation of this method consists
of minimizing a cost functional using the conjugate gradient
technique. The latter is known to be a local-convergence
method and thus renders a solution that is rather sensitive
to the initial guess. In order to acquire global convergence,
we have supplemented the conjugate gradient routine by a
global search using the Metropolis algorithm and simulated
annealing. We have applied our algorithm to a nanomagnet
in the macrospin approximation with uniaxial anisotropy and
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oblique dc magnetic field. We have investigated the effect of
the latter (both in direction and magnitude) and of damping
on the characteristics of the MW field. Then we computed
the limit-of-metastability (or switching) curves for different
(small) values of damping.

II. METHOD OF OPTIMAL CONTROL APPLIED
TO NANOMAGNETS

One of our objectives here is to develop a general method
that allows us to solve the following inverse problem. What
is the optimal time-dependent magnetic field under which the
magnetization of a nanoparticle, with given potential energy,
switches from a given initial state to a given final prescribed
target state? After formulating this method we apply it to the
case of a macrospin or a nanoparticle in the SW approximation
in an energy potential composed of uniaxial anisotropy and a
Zeeman contribution from an oblique dc field.

The method we propose is borrowed from the optimal
control theory. The main idea is to start with an arbitrary
MW magnetic field hac(t) with its three components hα

ac, α =
x, y, z, that we call the control field, in addition to the
static magnetic field and anisotropy field. We then determine
hac(t) that triggers the switching of the cluster’s magnetization
between two given states within a prescribed interval of time.

A. Model

Consider a nanomagnet in the macrospin approximation
where its magnetic state is represented by a macroscopic
magnetic moment m = μs s, where μs is its magnitude and s
its direction with |s| = 1. In this approximation the relevant
terms entering the energy E of the nanomagnet are the
magnetocrystalline anisotropy and the Zeeman energy. The
applied dc (static) field Hdc is assumed to point in an arbitrary
direction eh = Hdc/Hdc. Using the convention μ0 = 1 so that
the magnetic fields are expressed in Tesla, one then defines the
effective field

Heff = − 1

μs

δE

δs
(1)

and writes the damped Landau-Lifshitz equation (LLE) that
governs the dynamics of s, assuming that the module μs

remains constant,

1

γ

ds
dt

= −s × Heff − α s × (s × Heff) , (2)

where γ � 1.76 × 1011 (T s)−1 is the gyromagnetic factor and
α is the phenomenological damping parameter (taken here in
the weak regime).

We measure all applied fields in terms of the anisotropy
field

Ha = 2KV

μs

(3)

and in particular we define the reduced effective field

heff ≡ 1

Ha

Heff = −δE
δs

(4)

with E ≡ E/ (2KV ). In terms of heff LLE becomes

ds
dτ

= −s × heff − α s × (s × heff) , (5)

where τ ≡ t/ts is the dimensionless time and ts = 1/(γHa)
is the characteristic scaling time of the system. For instance,
for a cobalt particle of 3-nm diameter17 with K � 2.2 × 105

J m−3 and μs � 3.8 × 10−20 A m2 we have Ha � 0.3 T and
ts � 1.9 × 10−11 s.

B. Formulation of the optimal control problem

1. General procedure

The idea here is to introduce a control field hac(τ ) ≡
Hac/Ha and then seek its optimal form that allows for driving
the magnetic moment direction s from the given initial state
s(i) at time τi = 0 into the desired final state s(f ) at the given
observation time τf . Accordingly, we replace in the LLE (5)
the (deterministic) field heff by the total (time-dependent) field

ζ (τ ) = heff + hac(τ ). (6)

This results in the following equation of motion, which will
be henceforth referred to as the driven LLE (DLLE):

ṡ = −s × ζ (τ ) − α s × [s × ζ (τ )] . (7)

The field hac(τ ) is then determined through the minimization
of a cost functional which, in the present case, may be written
as

F[s(τ ),hac(τ )] = 1

2
‖s(τf )−s(f )‖2 + η

2

∫ τf

0
dτ h2

ac(τ ). (8)

The first term measures the degree at which the magnetic
moment switching is achieved and vanishes in the case of full
switching. The second term is quadratic in the driving field and
is thus proportional to the absorbed energy. The parameter η,
called the control parameter, allows us to balance the second
condition with respect to the first.

Therefore, the problem of optimal control boils down to
minimizing the cost functional (8) along the trajectory given
by DLLE (7). More explicitly, this amounts to solving the
following problem:⎧⎪⎨
⎪⎩

min
{
F[s,hAC] = 1

2‖s(τf ) − s(f )‖2 + η

2

∫ τf

0 dτ h2
AC(τ )

}
ṡ = −s × ζ − α s × (s × ζ ), τ ∈ [0,τf ]

s(0) = s(i).

(9)

An optimal solution of this problem is characterized by the
first-order optimality condition in the form of the Pontryagin
minimum principle (PMP).18 These conditions are more
conveniently formulated with the help of a Hamilton function
which may in the present case be written in the following form:

H[s(τ ),λ(τ ),hac(τ )]

= η

2
h2

ac(τ ) + λ(τ )[−s × ζ − αs × (s × ζ )], (10)

where λ(τ ), called the adjoint state variable (see below), is a
Lagrange parameter introduced to implement the constraint
and thereby render s(τ ) independent of hac(τ ). The PMP
then states that solving problem (9) is equivalent to solving
the following boundary problem (i.e., the Hamilton-Jacobi
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equations with boundary conditions):⎧⎪⎨
⎪⎩

ṡ = δH
δλ

, s(0) = s(i), τ ∈ [0,τf ],

λ̇ = − δH
δs , λ(τf ) = s(τf ) − s(f ),

δH
δhAC

= 0.

(11)

The last condition is also equivalent to the vanishing of the
gradient of the cost functional F in Eq. (8). It yields the
equation

δH
δhac

= η hac + s × λ − α s × (s × λ), (12)

which is used to compute the variation in the cost functional,
that is,

δF =
∫ τf

0
dτ

δH
δhac

δhac. (13)

In general, this problem is highly nonlinear and considering,
on top of that, the nonlinearity of the Landau-Lifshitz equation,
it is not possible to find analytical solutions. Consequently,
we resort to numerical approaches. The advantage of this
formulation is manifold. (i) The MW field hac(τ ) is obtained
in 3D, that is, one obtains the three functions of time
hα

ac(τ ),α = x,y,z; and for any potential energy (anisotropy,
dc field, etc.). (ii) The final time τf , and the absorbed power
[second term in Eq. (8)] can be adjusted; the latter may be
achieved by tuning the control parameter η. (iii) One can
generalize this treatment to many-spin problems19 and also
include thermal effects.

One of the most efficient techniques for (numerically)
solving such a minimization problem is the conjugate-gradient
method. However, the drawback of this method is that it is
a local-convergence method which means that the solution it
renders is strongly dependent on the initial guess. We overcome
this inconvenience by supplementing the method with a global
search using the Metropolis algorithm with random increments
and then proceed with the technique of simulated annealing.

For numerical calculations we have discretized the
boundary-value problem (11) by subdividing the time interval
[τi = 0,τf ] into N time slices

τn = τi + n × 	τ, n = 0, . . . ,N − 1, τf = τN−1,

where

	τ = τf − τ0

N − 1
.

Then, using the notation vn = v(τn) for a vector v, Eqs. (7),
(8), and (13) and the equation for λ become

sn+1 = sn + 	τ × [−sn × ζ n − α sn × (sn × ζ n)],
(14a)

s(τi) = s(i),

F = 1

2
‖sN−1−s(f )‖2 + η	τ

2

N−1∑
n=0

h2
ac,n, (14b)

λn−1 = λn − 	τ × 
n, λf = sN−1 − s(f ), (14c)

Vn = δF
δhac,n

= 	τ × [η hac,n + sn × λn − α sn × (sn × λn)].

(14d)

The explicit expression for 
n in Eq. (14c) depends on the
energy potential (see below for the case of uniaxial anisotropy).

We may summarize the numerical procedure as follows.
(i) For a given initial guess of the control field hac(t) we first
solve the state equation (14a) forward in time using the initial
condition, and then evaluate the cost functional (14b). (ii) The
solution obtained for s is then used for the backward (since
the condition now is at tf ) integration of Eq. (14c) for λ. (iii)
With the trajectories of s and λ thus obtained we compute the
gradient (14d). The numerical subroutines are standard and can
be found in Ref. 20. We emphasize that obtaining the control
field amounts to solving for 3 × N variables.

2. Uniaxial anisotropy

In the case of uniaxial anisotropy with oblique static field
the energy of the nanomagnet reads (in units of the anisotropy
energy 2 KV)

E = −hdc (eh · s) − 1
2 (s · n)2 (15)

with K and n being the anisotropy constant and easy axis, V

is the nanomagnet volume, and hdc ≡ Hdc/Ha . The effective
field explicitly reads [see Eq. (4)]

heff = hdc eh + (s · n) n. (16)

From the second equation in (11) we obtain the explicit
equation for λ,

λ̇ = ζ × λ + α[ζ × (λ × s) + λ × (ζ × s)]

+{λ[s × n + α s × (s × n)]}n (17)

and in Eq. (14c) we now have


n = ζ n × λn + α[ζ n × (λn × sn) + λn × (ζ n × sn)]

+ [λn + α(λn × sn)](sn × n)n.

III. RESULTS

In the present work we have considered the case of a
nanomagnet with uniaxial anisotropy and oblique static field.
Unless otherwise stated, the latter is applied in the yz plane
making an angle of 170◦ with respect to the easy axis
(z axis). Its reduced magnitude is hdc = 0.5, corresponding
to a field magnitude Hdc � 150 mT. The initial and target
states s(i) and s(f ), which correspond respectively to the
metastable equilibrium state and stable equilibrium state, are
computed numerically. The observation time is τf = 600 (i.e.,
tf � 11.4 ns). The damping parameter is α = 0.05 and the
control parameter η has been set to 0.01. The static field,
damping parameter, and observation time have been varied
and their effects studied (see later on). For simplicity we have
taken a linearly polarized MW field, that is, hac(t) = hac(t)ex .
This choice also suits the experimental setup.9

In Fig. 1 we have plotted the optimized MW field magnitude
Hac(t) ≡ Ha hac (t) where t is the time in seconds, together
with the components of the magnetic moment, that is,
sα (t) ,α = x,y,z. First, we note that the amplitude of the MW
field is rather small as it does not exceed 15 mT, which is
10 times smaller than the static field. Moreover, the summed
magnitudes of the dc and MW field are smaller than the
SW switching field for the chosen dc field direction (about
200 mT). This shows that in the presence of a MW field
magnetic switching is achieved at a smaller dc field. Second,

144418-3



N. BARROS, M. RASSAM, H. JIRARI, AND H. KACHKACHI PHYSICAL REVIEW B 83, 144418 (2011)

FIG. 1. (Color online) Optimized MW field (upper panel) and the
corresponding spin trajectories (lower panel). The inset is a 3D plot
of the spin trajectory on the unit sphere.

the striking feature is that the MW field is modulated both
in amplitude and frequency. Its frequency is a slowly varying
function of time in the stage that precedes switching, as can
be seen in Fig. 2. Third, as is hinted to by the dashed vertical
lines, the extrema in the MW field and the spin components
sy(t) and sz(t) match at all times before switching. This simply
implies that the magnetic moment is phase locked to the
MW field. All these features agree with the predictions of
the classical autoresonance or the ladder-climbing quantum
theory, as summarized in the Introduction.

The instantaneous frequency has been obtained after pass-
ing the optimized MW field through the Butterworth filter and
then applying the Hilbert transformation.21,22 As can be seen
for short times the instantaneous frequency oscillates around
the approximate value f0 ≈ 4.1 GHz. This initial frequency is
simply the FMR frequency given by

fFMR = γHa

2π

√
h

(i)
eff,‖

{
h

(i)
eff,‖ + k[(s(i).n)2 − 1]

}
,

where h
(i)
eff,‖ ≡ heff

(i) · s(i) = hdc(eh · s(i)) + (s(i) · n)2 is the ef-
fective field (16) evaluated at and then projected onto the initial
position s(i). As the magnetic moment approaches the saddle
point the frequency decreases rapidly and eventually vanishes
when the magnetic moment crosses the saddle point into the
more stable energy minimum.

In Fig. 1 it is seen that the time span comprises three stages
(for the set of physical parameters considered). (1) Nucleation
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FIG. 2. (Color online) Instantaneous frequency of the optimized
and filtered MW field of Fig. 1. The other parameters are the same as
in Fig. 1.

stage (up to 5.4 ns). The MW field remains almost zero and the
magnetic moment remains in the metastable state. (2) Driven
precession (from 5.4 to 9.7 ns). Here the MW field and the
magnetic moment are synchronized. At each procession cycle
the MW field hooks up the magnetic moment and pushes it
upward in the energy potential toward the saddle point. This is
the phase-locking process mentioned in the Introduction and
observed above. This is indeed possible because the frequency
chirp rate is small as can be seen in Fig. 2 for 5.4 � t � 9.7 ns.
The MW field thus compensates for the effect of damping
that tends to pull the magnetic moment back toward its initial
position. At around 9.7 ns the magnetic moment crosses the
saddle point. (3) Free relaxation. From 9.7 ns onward the
magnitude of the MW field dwindles and the synchronization
with the magnetic moment is lost. We note that at the saddle
point the precession reverses from being counter-clockwise to
clockwise as the magnetic moment switches to the lower half
sphere.

Numerical tests show that the MW field can be replaced by
zero during the nucleation and free relaxation stages without
noticeably affecting the trajectory of the magnetic moment.
This implies that the most relevant part of the signal is that
during the driven precession the role of the MW field is to
drive the magnetic moment toward the saddle point. Next, the
damping takes up to lead it to the more stable energy minimum.
During the driven precession the frequency of the MW field
and the precession frequency of the magnetic moment are
similar. Consequently, the magnetic moment switching can be
viewed as a resonant process. The pumping by the MW field
is efficient when its frequency matches the frequency of the
magnetization (phase locking).

The same calculation has been carried out with the same
sampling time but different values for the total observation
time tf . The results are shown in Fig. 3. If the total time is
larger than an effective time of 6 ns, similar values are obtained
for the cost functional and the curves hac(t) can be matched
after a time shift. As was discussed earlier, this effective time
corresponds to the sum of the time of driven precession and
that of free relaxation. This result implies that the nucleation
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FIG. 3. (Color online) Optimized MW field obtained with four
different total times tf .

stage can be suppressed without affecting the final optimized
MW field. However, if the total time is too short, the final
value found for the cost functional is higher (i.e., not fully
minimized). Indeed, we see in Fig. 3 (uppermost panel) that
the stage of driven precession is shortened and the shape of the
control field changes so as to achieve a faster switching and
thus comply with the switching-time constraint [first term in
Eq. (8)].

For comparison, we have also computed the spin trajectory
with a monochromatic field instead of our optimized chirped
MW field. This monochromatic field was polarized along the x
axis with a constant intensity and a frequency equal to the FMR
frequency in the initial energy well. We find that to achieve
switching a minimal intensity of 19 mT is required, which is
4 mT higher than the maximal intensity of the optimized field.
On the other hand, the monochromatic field induces a faster
switching (in about 1.5 ns) but for an injected energy that is
about 5 times larger than with the optimized field.

The effect of varying the amplitude of the static field on
the MW field is shown in Fig. 4. We see that the shape
of the MW field envelope remains the same, apart from the
fact that the smaller the static field the more symmetrical is
the MW field. This shows that for a higher field hdc the energy
potential is less symmetrical. Moreover, as hdc is increased
the energy barrier is lowered and the MW field required to
achieve switching is smaller. Again the initial frequency of
the oscillations matches the FMR frequency of the system;
when hdc increases the latter decreases. The cost functional
was found to be proportional to the energy barrier between
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FIG. 4. (Color online) Optimized MW field obtained for different
magnitudes of the static field hdc in the same direction making an
angle θ = 170◦ with respect to the anisotropy easy axis.

the saddle point and the metastable minimum. Hence when
the energy barrier is higher more energy has to be injected
in order to overcome it. The same study has been carried out
upon varying the direction of the static field.

We have also investigated the effect of varying the damping
parameter α on the MW field. The results are summarized in
Fig. 5. We see that the intensity of the field increases with α,
which is compatible with what was suggested earlier, namely
that the role of the MW field is to compensate for the damping
effect. This effect is similar to what happens with a rubber
band. The more you stretch it the harder it becomes to do so.
Moreover, the effective duration of the MW field, which mainly
corresponds to the driven precession period, decreases when α

increases. We note that, on the contrary, the initial frequency
of the oscillations is independent of α (see Fig. 6). This result
can be understood qualitatively if we suppose that, at any time,
the MW field exactly compensates for the effect of damping.
The spin dynamics is then governed by the undamped LLE
and the magnetic moment precesses with its proper frequency,
which is independent of the damping parameter. At short times,
since the precession angle is small, this precession frequency
is equal to the FMR frequency.

As discussed in the Introduction, one of the objectives of
investigating the magnetization switching assisted by MWs
is to achieve an optimal switching with smaller dc magnetic
fields than it would be necessary without MWs. This means
that applying the dc field in a given direction and varying its
magnitude one determines the switching field (or the field at the
limit of metastability) at which the magnetization is reversed.
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FIG. 5. (Color online) Optimized MW field obtained for different
values of the damping parameter α.
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FIG. 6. (Color online) Instantaneous frequency of the MW field
optimized for several values of the damping parameter α. Dotted line:
FMR frequency.

This is the SW astroid. Due to the energy brought into the
system by MWs, the field required for switching is smaller.
This has been nicely demonstrated using the micro-SQUID
technique on a 20-nm cobalt particle.6 The most striking
feature of the SW astroid obtained by these measurements is
its jaggedness. In other words, the reduction of the switching
field is not uniform and presents a kind of “fractal” character.
The global features depend on several physical parameters,
such as the MW field pulse duration, its rising time, its
frequency, the dc field amplitude, and the damping parameter.
In the present work, and in the particular case considered here,
namely that of uniaxial anisotropy, we first wanted to check
whether this reduction of the switching field is recovered by our
optimal-control method. Furthermore, we address the question
as to whether the SW astroid may be used as a fingerprint of
a given nanocluster. More precisely, the question is whether
a given SW astroid can provide us with specific information
about the corresponding cluster, like its energy potential and
the physical parameters such as damping.

Accordingly, we check whether a MW field h0
ac(t), which is

optimized in the presence of a reference applied dc field h0
dc(t)

with given direction and magnitude, for example, hdc = 0.5
and an angle of 170◦ with respect to the easy axis, can still
induce magnetization switching in the presence of another
dc field with different direction and/or magnitude. To answer
this question, the MW field h0

ac(t) was used in the DLLE (7)
and the calculation of the switching field was performed for
several intensities and directions of the static field h leading
to the switching curves in the presence of h0

ac(t) as shown in
Fig. 7.

FIG. 7. (Color online) (a) Switching curve computed in the
presence of the MW field h0

ac(t). The red cross indicates the amplitude
and direction of the dc field for which the MW field was optimized.
The area in green is where switching has been achieved, the black
area is where there is no switching, and in the white area the static
field is higher than the switching field (i.e., beyond the metastability
region). (b) In the black area the FMR frequency is the same as
for the reference dc field h0

dc. In the hatched area the energy barrier
between the metastable minimum and the saddle point (computed
numerically) is smaller than for the reference dc field h0

dc.
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FIG. 8. (Color online) Switching curves obtained for different values of the damping parameter α with the MW field optimized for hdc = 0.5
and an angle of 170◦ with respect to the easy axis and α0 = 0.05. The color code is similar to that in Fig. 7.

As can be seen, the magnetization switching occurs only
inside the golf-club-shaped green area [see Fig. 7 (left)]. In
the black area, the pumping by the MW field is inefficient and
switching does not occur. This curve is in agreement with the
experimental data of Ref. 9.

The shape of the green pattern can be explained based
on qualitative arguments about the frequency and magnitude
of the MW field. As has been seen previously, in order to
achieve the switching the MW field must fulfill the following
conditions: (i) it must be synchronized with the proper
precession frequency of the magnetization so that at short times
its frequency must match the FMR frequency of the system,
and (ii) the injected energy must be sufficient to overcome
the energy barrier between the metastable minimum and the
saddle point.

For any magnitude or direction of the field hdc, both the
FMR frequency and the energy barrier can be computed
numerically [see Fig. 7 (right)]. In the black area the value of
the FMR frequency is the same as for h0

dc. In the hatched area
the energy barrier is lower than for the h0

dc. Outside the black
zone the MW field is not synchronized with the precession
frequency of the system and the switching cannot occur.
Outside the hatched area the injected energy is not sufficient
to overcome the energy barrier. Consequently, the switching is
only achieved in the intersection between both areas. Indeed,
comparing with Fig. 7 (left), this intersection matches more or
less the green zone where the switching occurs.

Next, we optimize the MW field h0
ac(t) for the reference

dc field h0
dc(t) with magnitude hdc = 0.5 and angle of 170◦

with respect to the easy axis and damping α0 = 0.05; then we
compute the SW astroid for other values of α in the presence
of the same dc and MW fields. The results are shown in
Fig. 8.

We see that the shape of the switching area strongly depends
on the damping parameter α. The largest green area is found
for α = α0. Then, as α increases the green area shrinks and
vanishes for α > 0.12. Indeed, for high values of α the MW
field is not strong enough to compensate for the effect of
damping. The same phenomenon is observed for small values
of α in which case the MW field “overcompensates” for the
effect of damping and thereby the energy cannot be pumped
into the system in an efficient manner.

IV. CONCLUSIONS AND OUTLOOK

We have developed a general and efficient method for de-
termining the characteristics (pulse shape, duration, intensity,
and frequency) of the MW field that triggers the switching
of a nanomagnet in an oblique static magnetic field. We
have applied the method to the case of uniaxial anisotropy
and investigated the effect of the dc field and damping on
the optimized MW field. We have shown that our method
does recover the switching field curves as observed on cobalt
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nanoclusters. It remains though to investigate the origin of the
“fractal” character observed in the measured switching curves.

We have shown that the MW field that triggers the
magnetization switching, while minimizing the absorbed
energy, can be efficiently calculated using the optimal control
theory. According to our results, the optimal MW field is
modulated both in frequency and in magnitude. The role
of this MW field is to drive the magnetization toward the
saddle point, then damping leads the magnetic moment
to the stable equilibrium position. For the pumping to be
efficient, the MW field frequency must match the proper
precession frequency of the magnetization, which depends on
the magnitude and the direction of the static field. Moreover,
the intensity depends on the damping parameter. This result
could be used to probe the damping parameter in experimental
nanoparticles.

The present method is quite versatile and can be extended to
other anisotropies. It could also be used to study the dynamics
of nanoclusters in the many-spin approach.19 In this case one

will probably have to deal with a nonuniform MW field,
especially if surface anisotropy is taken into account.23 One
may then study switching via internal spin wave excitations
and the effect of the MW field on the corresponding relaxation
rate.24 Thermal effects can also be accounted for by adding a
Langevin field on top of the dc and MW fields. In this case
it will be interesting to investigate the interplay between the
MW field and the Langevin field and to figure out when these
two fields play concomitant roles.

ACKNOWLEDGMENTS

We are grateful to our collaborators E. Bonet, R. Picquerel,
C. Thirion, W. Wernsdorfer (Institut Néel, Grenoble), and V.
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