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Electronic structure calculations in ordered and disordered solids with spiral magnetic order
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A scheme to calculate the electronic structure of systems having a spiral magnetic structure is presented. The
approach is based on the Korringa-Kohn-Rostoker Green’s function formalism which allows, in combination
with the coherent potential approximation alloy theory, dealing with chemically disordered materials. It is
applied to the magnetic random alloys Fe,Ni,_,, Fe,Co,_,, and Fe,Mn,_,. For these systems the stability of
their magnetic structure was analyzed. For Fe,Ni;_, the spin stiffness for was determined as a function of
concentration that was found in satisfying agreement with experiment. Performing spin spiral calculations the
longitudinal momentum-dependent magnetic susceptibility was calculated for pure elemental systems (Cr, Ni) in
the nonmagnetic state as well as for random alloys (Ag,Pt,_,). The obtained susceptibility was used to analyze

the stability of the paramagnetic state of these systems.

DOL: 10.1103/PhysRevB.83.144401

I. INTRODUCTION

The use of symmetry properties of solids for calculations
of their electronic structure is a very efficient way to reduce
the computational effort required for the solution of the
problem. In particular, the single-particle electronic states
of paramagnetic or collinear magnetic infinite solids can be
effectively found by solving the corresponding Kohn-Sham-
Dirac equation making use of the Bloch theorem. Dealing
with systems exhibiting noncollinear magnetic structure, the
electronic structure problem becomes much more complicated
because of broken symmetry (in general, both translational and
rotational), leading to an increase of the unit cell of a system
and a corresponding increase of the required computational
effort.

Sandratskii introduced an approach that allows the calcula-
tion of the electronic structure of systems with spiral magnetic
structures in an efficient way.'-> This approach is based on the
symmetry properties of spin spiral structures as investigated
by Brinkman and Elliot>* and Herring® and allows dealing
with long-period noncollinear magnetic structures, avoiding
the use of big unit cells in electronic structure calculations.®
This makes it an efficient tool for the analysis of the stability
of various noncollinear magnetic structures with different
translation periods, as for example demonstrated by Mryasov
et al” for the investigation of the magnetic structure of
fcc Fe.

In the case of systems with a collinear magnetic structure
as a ground state spin spirals can be treated as transverse
spin fluctuations in the adiabatic approximation. The energy
dispersion of such fluctuations A E(g) gives access to the spin
stiffness and exchange coupling constants of a system and
in this way to the spin excitation spectrum as well as finite
temperature magnetism.®~'% An important feature of spin spiral
calculations is that they account for longitudinal fluctuations
of the magnetic moment. This leads to more reliable results
for AE(q) compared to those obtained using the non-self-
consistent force-theorem approach.

As was pointed out by Sandratskii and Kiibler'' the
technique for spin spiral calculations can be used for calcu-
lations of the static (w = 0) momentum-resolved longitudinal
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magnetic susceptibility. Until now only few corresponding
ab initio calculations have been presented in the literature.
In most cases the static g-dependent magnetic susceptibility
was calculated using perturbation theory'? or performing
supercell calculations.'? The spin spiral method, on the other
hand, allows one to perform self-consistent calculations of the
magnetic susceptibility, avoiding the supercell concept.'!

All spin spiral calculations have been done so far using
the ASW!%I415 or LMTO”® band structure methods. These
methods use Bloch-function basis sets to represent the solution
of the Kohn-Sham equation and for that reason are restricted
to ordered materials concerning the application. The use of
multiple scattering theory in combination with CPA (coherent
potential approximation) alloy theory, on the other hand,
substantially extends the variety of materials which can be
investigated by giving access to systems without chemical
order. This feature of the CPA was already exploited by
Staunton et al.'> who worked out a corresponding formula-
tion of linear response formalism. Here we present a self-
consistent implementation of the spin spiral approach within
the Korringa-Kohn-Rostoker (KKR) Green’s function band
structure method.'® We will show the results of calculations
for different systems focusing on disordered alloys.

II. THEORETICAL BACKGROUND

When dealing with the electronic structure of solid state
systems having a spiral magnetic structure rotations can
be applied independently to the spin and spatial parts of
the electronic wave function if spin-orbit coupling (SOC)
is neglected. Using a spin-diagonal form of the exchange-
correlation potential in the local frame of reference of an atom
site, the Kohn-Sham equation for the spinor wave fuction v (¥)
can be written in the form

1 0
[_w(o 1)+ZU,IV<9W¢U)

(VM)

0 L
0 Vn_v(7)> Unv(eva¢v)j| v(r)=Ey@r). (1)
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FIG. 1. (Color online) Geometry of a spin spiral with the wave
vector ¢ along the z direction.

Here 7, denotes a position of an atom in a unit cell, I_én isa
Bravais lattice vector, and U, is a spin transformation matrix
that connects the global frame of reference of the crystal
to the local frame of the atom site at 7, + I_én that has its
magnetic moment tilted away from the global z direction. The
transformation U,, is characterized by the Euler angles 6, ,
and ¢, , as shown in Fig. 1 for the case of a spin spiral.

As was shown by Sandratskii, considering a spin spiral
structure, Eq. (1) can be easily dealt with using the prop-
erties of spin space groups (SSG)*~ allowing independent
transformations within the spin and space subspaces. The spin
spirals characterized by the wave vector g angles 6, and ¢, are
represented by the expression

>V

m! = m" [cos(q - R, + ¢,)sind,,sin(q - R, + ¢,)siné,,cosh, ],

n

defining the spin direction at every site (n,v) of the lattice
with m” the magnitude of the magnetic moment on site v
within the unit cell. Assuming a collinear alignment of the
spin density within the atomic cell at (n,v), it is natural to
use a local frame of reference with its z axis oriented along
m). The corresponding transformation matrices U,, occurring
in Eq. (1) can be written as a product of two independent
rotation matrices Uy, = U, (6,,¢,,3) = U,(6,,¢,)U. iR, where

the matrix Uz depends only on the translation vector R,:12

. cos%  sin%\ fe:? 0
Un(0y,0v.q9) = .0 0 i
—sin3  cos % 0 e ™

e5GRy) 0
* 0 e 3@R) =0l @

Instead of solving the Kohn-Sham Eq. (1) for the eigen
functions and values the electronic structure can be represented
in terms of the corresponding Green’s function. Within
multiple scattering theory the Green’s function is represented
in real space by the scattering path operator "’ together with
the regular Z}} (7,E) and irregular J} (7,E) solutions of the
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single-site Kohn-Sham equation referring to the local frame of
reference:

GY'(GF.F.E)= Y Z) G.E)Tp, (E)Z) ) (FE)
A]Az

- > zy, G.E) G LE)O —r)

Ay
x Iy (F.EYZY (P E)O(r — )]s . (3)

The scattering path operator is defined by its equation of
motion:

r
nvn'v
T

/ L
— LnuSm)n’v’ + tnl) anmp. Lm[l.n v , (4)
kp

where "V and G"?™" are the single-site ¢ matrix and free-
electron propagator, respectively, which are both expressed
with respect to a common global frame of reference. Equa-
tion (4) has the formal solution

= -G )

In Egs. (4) and (5) the underline indicates matrices in the
(I,m) representation while the double underline indicates
supermatrices including the site index. In the case of a collinear
magnetic structure the local and global frames of reference
coincide. This implies that Eq. (5) gives immediately the
solution with respect to the local frame of reference. For
infinite systems having a regular periodic lattice a solution
to Eq. (4) can be obtained by Fourier transformation instead
of using the real space expression given in Eq. (5).

For noncollinear magnetic solids with a periodic lattice
structure one can solve Eq. (4) as for collinear systems but
using an extended supercell. The size of the corresponding
supercell is determined by the period of magnetic structure.
All atoms within the cell are in general inequivalent and
have their own local frame of reference. Therefore supercell
calculations can be rather time consuming in particular for
magnetic structures having a long period.

However, as pointed by various authors®= use of symmetry
allows one to simplify the problem substantially. Spiral
magnetic structures transform according to the group of
generalized translations that are characterized by the wave
vector g and represented by the matrices Uzi, [Eq. )]
This implies in particular that the matrices U allow the
expression of the single-site ¢ matrix t"” at site (nv) to that
at site (Ov). This symmetry property allows one to write
the scattering path operator referring to the global frame of
reference as follows:

Y / ry O =
v tnv8nv . Py § :Gnv mppmpun'v' U,?v]‘tnv U:,]v‘snv oy
mpu

+U¢?TIT7IVU§ Z,Gnvmutmun’v/ (6)
nv nv N
mp
This allows one to find the scattering path operator and from
this the Green’s function in the local frame of reference of the
each atom, solving the equation

I - N ot
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r - N N -
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where the tilde indicates matrices which refer to the local frame
of reference.

In the last line of Eq. (8) use has been made that the single-
site # matrices 7*” do not depend on the lattice index n but
only on the site index v in the unit cell. As a consequence, the
multiple scattering problem can be solved as for the case of
collinear magnetic structures by Fourier transformation of the
equation of motion for the scattering path operator. This leads
to its representation in reciprocal space according to

2khE) =1 "(E) - Gl )

The structural Green’s function referring to the local frame of
reference can be determined as follows:

VR | TR R s
vy _ —ik-(R,—R,) panvn'v
GMiy= 52 e G

nn’
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(10)

Here g““’(/?) is a structural Green’s function for one spin
channel represented in the global frame of reference.

The charge distribution within the central unit celln = 0 is
determined by the cell-diagonal scattering path operator £

which can be found by the Brillouin zone integral

= [ et - gdr
= Q7 Jay, = =
1 R
- U(IQ— Ikl - gé(k)]—‘U0
BZ JQgy
= U0, (1)

Viu(F) — g B — AV (F)

[Z U, 6u.0) ( .

A self-consistent calculation based on Eq. (15) gives the spin

magnetic moment induced by the external magnetic field.
The g-dependent external magnetic field should be taken
small enough to be considered as a perturbation. In this case,
assuming a linear response to be the leading term of the
response function the corresponding magnetic susceptibility
can be derived from the expression

Sy mind(‘?)
x(q) = By

(16)
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where Up is the transformation matrix diagonalizing the
potentials as well as ¢ matrices with respect to spin within
the central unit cell.

To perform calculations for disordered alloys the CPA
(coherent potential approximation) alloy theory'”!8 is used. In
the case of a spin spiral system the CPA medium is represented
in the global frame of reference by the effective single-site
scattering matrix ¢ and the scattering path operator obtained
from the expression

T9C(E) = L/ ShCCE) " - Gh.E)™" . (12)
= Qpz Jay, - -

The corresponding element projected scattering path operators
are obtained from these via

— .[OO,C QO{ ,

LAt (13)

with

D" =L+ =T a9

Of course dealing with materials with a pronounced short-
range order effect one has to go beyond the CPA theory.
In this case one can use either the nonlocal CPA (NL
CPA) method' or the supercell method in the framework
of the special quasirandom structures.”’ Note however that
the use of supercells needs an additional optimization of the
magnetic structure within the cell. The approach developed for
calculations of noncollinear spin spiral structures can be used
for investigations on the longitudinal magnetic susceptibility
as a function of the wave vector ¢.'! This approach allows
one to avoid the use of perturbation theory and can be
applied to magnetic as well as nonmagnetic systems. In
the following we focus on materials in their nonmagnetic
state which may exhibit paramagnetism (Ag,Pt;_,), ferro-
magnetism (Ni), or antiferromagnetism (Cr) in their ground
state. For this purpose we specify a spiral external magnetic
field to be perpendicular to the direction of the wave vector
g (i.e., 8 = 90°):

B™ = By[cos(j - R,).sin(G - R,),0].

In this case the potential energy term in the Kohn-Sham
equation [see Eq. (1)] is given by

0
_ ﬁ | U@ |- (15)
vw<r>+uBB;“+Av,fg<r>) ! }

Suppressing the spin-dependent part of the exchange-
correlation potential [AV,Z“V(F) = 0], one can calculate the
unenhanced spin susceptibility x°(g). Otherwise, Eq. (16)
gives the enhanced longitudinal magnetic susceptibility x(g),
represented in linear response theory for uniform system by
the expression

0 -
X = —= @

= —— 17
1 —1(@)x°(q) 17
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with 1(g) the exchange integral responsible for the enhance-
ment of the magnetic susceptibility (see, for example, Refs. 10
and 21). In case of a paramagnetic ground state the magnetic
susceptibility x () is positive for all values of g. For other cases
the denominator in Eq. (17) may become zero or even negative.
This singular behavior of the susceptibility obviously indicates
an instability of the paramagnetic state toward a transition to
spontaneous formation of ferromagnetic or antiferromagnetic
order.

III. RESULTS

A. Spin spiral structure in alloys

In the following several applications of the scheme intro-
duced above are presented that focus on disordered alloys to
demonstrate the flexibility of the multiple scattering formalism
when dealing with spin spiral systems. Corresponding calcu-
lations have been performed for alloys having fcc (Fe,Nij_,
and Fe,Mn;_,) and bcc (Fe,Co;_,) lattice structure.

For all calculations the angle 6 has been chosen to be
90°. For this spin geometry, the spin spiral with g = 2(0,0,1)
corresponds to a spin configuration where the first neighbor
atoms in the (001) direction have an antiparallel (AFM) spin
alignment, while g = 0 implies a parallel (FM) orientation.

1. The disordered alloy system Fe,Ni_,

Figure 2(a) shows the energy of the disordered Fe,Ni;_,
alloy system with a spin spiral structure as a function of the
wave vector ¢. For all concentrations the minimum of the
energy is found for ¢ = 0, implying that the ferromagnetic
structure is a more stable configuration than noncollinear
structures characterized by wave vectors along the (001)
direction.

As can be seen from Fig. 2(b), the local magnetic moment
of Ni in pure Ni drops down to m = 0 at the wave vector
ge &~ 2(0,0,0.5) and the system becomes paramagnetic. This
is well known behavior of the magnetic moment in Ni which
has been investigated by different authors.”?=>” In terms of
the Stoner theory of ferromagnetism (see, e.g., Ref. 10) this
means that the criterium for the instability of the paramagnetic
state is satisfied only for small wave vectors, while above g,
the paramagnetic (PM) state should be the most stable state
of the system. The criterion for the instability of the PM state
will be discussed below in more detail.

Adding only small amounts of Fe to Ni leads obviously to
a nonzero magnetic moment per unit cell at all values of wave
vector ¢. This is caused by the large magnetic moment of Fe
which depends only slightly on the wave vector. Figure 2(b)
shows that the Ni magnetic moment, in contrast to that of Fe,
varies rather rapidly with increasing wave vector and changes
sign at ¢ ~ Z(0,0,0.6). This means that in the vicinity of the

ground state of the alloys (§ = 6) the magnetic moments of Fe
and Ni atoms prefer to have parallel alignment, while close to
g = %(0,0, 1) [AFM structure along (0,0,1) direction] the more
favorable orientation of the Fe and Ni moments is antiparallel
(AP). Nevertheless, even for small Fe concentrations, the total
magnetic moment is determined by the dominating moment
of Fe. As a result, the alloy system exhibits effectively a
ferromagnetic behavior for all wave vectors, as one can see
in Fig. 2.
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FIG. 2. (Color online) (a) The energy of spin spiral magnetic
structure in Fe,Ni;_, alloys. (b) Local magnetic moments on Ni
atoms as a function of the wave vector ¢ = 2(0,0,4).

The energy difference between the spin spiral states with
Gg=0andg = 2(0,0,1) remains almost unchanged up to the
Fe concentration xg. ~ 0.6, and changes nearly by 20% when
approaching xp. =~ 0.65. On the other hand, the spin-stiffness
constant deduced from the energy dispersion curves decreases
continuously with the increase of Fe content as can be seen
from Fig. 3. This figure also shows that the calculations
reproduce the available experimental data for the spin-stiffness
constant fairly well, although they seem to be slightly too high.
This difference can be partially attributed to the conditions of
the experiment as, e.g., polycrystallinity of the samples and a
finite temperature. The results for the spin stiffness constant D
of pure Ni can be compared with theoretical results obtained
by other authors who used the exchange coupling parameters
calculated within the magnetic force theorem approach:*®
756 meV x A2, 740 meV x A239 527 meV x A23!

2. The disordered alloy Fey 5Coq.s

The change of sign of the magnetic moment observed for
Fe, Ni;_, alloys for one of the alloy components upon variation
of the wave vector becomes even more pronounced in bcc
Fe(5Coq 5 and fcc Feg sMng s alloys. Disordered bee Feg 5Coyg s
has a ferromagnetic ground state. The spin spiral energy shown
in Fig. 4(a) increases with wave vector confirming the stability
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FIG. 3. (Color online) Spin stiffness constant of Fe,Ni;_, alloys
as a function of the concentration in comparison with experiment:
Nakai?? (filled circles), Hatherly et al.>® (open circles), and Rusov**
(filled squares).

of the FM state. As can be seen from Fig. 4(b), around g = 0
the individual Fe and Co moments are aligned parallel with
respect to each other. However, after crossing g, ~ %(0,0,0.7),
the total magnetic moment jumps from m = 1.46up to m =
0.47up due to a change of the sign of the Co magnetic
moment with respect to that of the dominating Fe moment. As
Fig. 4(b) shows, the dispersion of the spin spiral energy for the
antiparallel configuration gets very weak up to g ~ 7(0,0,1).
To estimate the energy of the spin spirals for the nonequilib-
rium configurations, i.e., antiparallel for g, < %(0,0,0.7) and
parallel for g. > 7(0,0,0.7), frozen potential calculations have
been performed. The corresponding results are represented in
Fig. 4(b) by dashed and dashed-dotted lines. Obviously, these
results augment the two stable branches fairly will.

3. The disordered alloy FeysMn, s

Figure 5 shows the results of spin spiral calculations for
FepsMngs having a noncollinear magnetic structure as a
ground state.’>* As is seen in the energy dispersion curve,
Fig. 5(a), the system exhibits the behavior of a FM system

Fe and Co parallel
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for wave vectors g up to g, ~ 2(0,0,0.6). In this wave vector
region the alloy has a small average magnetic moment formed
by two antiparallel aligned magnetic moments of Fe and Mn
occupying randomly the site [see Fig. 5(b)].

At g, ~ 2.(0,0,0.6) the energy of a spin spiral reaches
its maximum and the following increase of the wave vector
is accompanied by a decrease in energy and an increase of
the average magnetic moment. At g = (0,0,%) the spin spiral
magnetic structure reaches its energy minimum, which is about
50 meV lower than the energy of the FM state, with a parallel
alignment of the magnetic moments of the alloy components.

Similar to FepsCoqs, these two minima of the energy—
around g = 0 and around qg= (0,0,Z)—are formed by two
crossing branches of the spin spiral dispersion relation:
One corresponds to an antiparallel alignmgnt of the Fe and
Mn magnetic moments (around the g = 0) and another to
their parallel alignment [around g = (0,0,%)], which have a
crossing point at § ~ 2(0,0,0.6).

Thus, from the analysis of the energetics of the spin spiral
structures in Feg sMng s, one can conclude that the system has
in its magnetic ground state an antiparallel alignment of the
magnetic moments of first neighbors, no matter whether the
neighboring atoms are Fe or Mn.

B. Spin susceptibility

In the present section we will discuss another application of
the technique presented above. As was shown by Sandratskii
and Kiibler,!" spin spiral calculations can also be used to
determine the longitudinal magnetic susceptibility y, both
for magnetic and nonmagnetic systems, as a function of the
wave vector g. This approach allows us in particular to avoid
the use of perturbation theory. Adding a Zeeman term to the
Hamiltonian corresponding to a small external helical mag-
netic field allows us to obtain the magnetic susceptibility from
the induced magnetic moments. For the present calculations a
Zeeman splitting By = 1 meV has been used.

The present work deals with nonmagnetic systems, which
have either a paramagnetic (AgPt), a ferromagnetic (Ni), or
an antiferromagnetic (Cr) ground state. Since we are dealing
with magnetic systems in an imposed paramagnetic state, their
magnetic susceptibility gives us information on an instability
with respect to magnetic ordering.

A%
031 Lem~—. L A
. ’ h A
025 Fe and Co antiparallel V . L
~_~ 1 B N
m
=
=
=
0
AAFe
¥—v Co
1+ |
y
(b)
! ‘ ! ‘ ! ‘ ! ‘ 2 ‘ ! ‘ ! ‘ ! ‘ ! ‘
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

qZ

q,

FIG. 4. (Color online) (a) The energy of spin spiral magnetic structure in Fey sCoy 5 calculated for the wave vector g = 2(0,0,q.) along the
[001] direction. (b) Local magnetic moments on Fe and Co atoms separately, as a function of wave vector of spin spirals.
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FIG. 5. (Color online) (a) The energy of spin spiral magnetic structure in Fe,Mn,_, alloys calculated for the wave vector g = 2(0,0,92)
along the [001] direction. (b) Local magnetic moments on Fe and Mn atoms separately, as a function of wave vector of spin spirals.

1. The paramagnetic disordered alloy Ag.Pt,_,

Figure 6 shows the magnetic susceptibility of paramagnetic
Ag Pt;_, alloys as a function of the wave vector g for various
concentrations. The spin susceptibility of the alloys presented
in Fig. 6 is composed of contributions from both components
according to x(q) = x xag(g.x) + (1 — x)xpi(q,x). For all
concentrations, the increase of the wave vector for helical
magnetic field is accompanied by a decrease of the response
functions, as is usually found for paramagnetic systems. The
main contribution to the spin susceptibility stems from the Pt
atoms. As can be seen, increasing the Ag content leads to a
decrease of the magnetic susceptibility for all values of wave
vector. .

The present results for ¢ =0 are compared with the
total magnetic susceptibility obtained via fully relativistic
linear response calculations.?! As one can see, the agreement
of results obtained by the two rather different theoretical
approaches is rather good. One reason for the observed
deviations is the use of a finite value for the external
magnetic field in the present calculations giving the magnetic
susceptibility from the induced magnetic moment within the
self-consistent calculations. Another reason is the neglect

of spin-orbit coupling within the present calculations that
usually reduces the spin susceptibility. Nevertheless, both
approaches lead obviously to coherent results that are in
rather satisfying agreement with experimental results® [filled
squares in Fig. 6(b)]. Note however that experimental results
represent the total magnetic susceptibility including also the
orbital contribution.

2. Pure ferromagnetic fcc Ni

The calculations performed for ferromagnetic Ni in a para-
magnetic state show a behavior for the magnetic susceptibility
as a function of the wave vector that is rather different from that
of systems with a paramagnetic ground state as for example
Ag,Pt;_, alloys (see Fig. 7). The paramagnetic state of Ni
was simulated using the disordered local moment (DLM)3¢
method assuming equal concentration for atoms with opposite
orientation of their magnetic moments. The magnetically
disordered state of Ni is characterized by a vanishing local
magnetic moment and therefore the DLM method allows us
to force the local magnetic moment to be zero. Figure 7(a)
shows the results obtained for Ni with the experimental lattice
parameter a = 6.65 a.u. At small values of the wave vector g

200 ‘ — T T T T T
[ a b) |
L oo Pt @ 200 @ @ present: spin susceptibility ®)
=8 P, Ag,, ) (G Ming Deng: spin susceptibility |
150 &Pt Az, R (02 =& cxp.: H. Ebert et al.
) A-APL Ag, 3 150 —
£ ;! g
3 Ei
: :
o 100 o 100
= o
< S
k] 2 ]
o o
3 s 50
x 50 x
0
0 | | | |
0 0.2 0.4 0.6 0.8 1

9,

FIG. 6. (Color online) (a) Wave-vector [§ = 2(0,0,¢;)] dependent magnetic susceptibility of the paramagnetic disordered Ag,Pt;_, for
various concentrations. (b) Comparison of the present results for the susceptibility for g = 0 with the results of Deng et al.>! obtained via linear

response theory.
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the magnetic susceptibility is negative indicating an instability
of the paramagnetic state. This is a result of the high density
of states (DOS) of the 3d electrons leading to a large value of
the unenhanced magnetic susceptibility x°. Accordingly, for

Q ]
'
\
0.5 ' -
\
'\ O— 2
s | 8
g COOa50ama0ea00 €
g oo =
\ il
1
“\
05 - 0] @
| | L | |
0 0.2 0.4 0.6 0.8 1
qa,
r \ \ 7
d G©Oa=06.65a.u.
150 EHa=6.0au. -

O©a=56au
A-Aa=54au.

X, (emu/mol)

T
®®a=52au
A-Aa=54au
S©Oa=56au A
EFHa=6.0au
GOa=6.65au

X (arb. units)

FIG. 7. (Color online) Wave-vector dependent [g = %(0,0,qz)]
spin susceptibility of paramagnetic Ni having lattice parameter
a = 6.65 a.u. together with local Ni magnetic moment as a function
of wave-vector characterizing noncollinear spiral magnetic structure
(a). The wave-vector dependent unenhanced (b) and enhanced (c)
magnetic susceptibilities for paramagnetic Ni calculated for different
lattice parameters.
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small g vectors the Stoner condition for a magnetic instability
I(Z])XO((}) > 1 [Eq. (17); see, e.g., Refs. 37 and 38] is fulfilled.

As one can see in Fig. 7, at the wave vector g ~ %(0,0,0.55)
[for which the denominator in Eq. (17) comes to 0] the
magnetic susceptibility becomes singular and the following
increase of g results in a change of sign for the susceptibility
from negative to positive leading to the stability of the
paramagnetic state.

Figure 7(a) shows also the Ni magnetic moment as a
function of the wave vector g of spin spiral. As one can
see, the magnitude of the moment goes down upon increase
of g reaching m =0 at the critical value of the wave
vector ge.

As shown in Fig. 7(b), a decrease of the lattice parameter
leads to a decrease of the unenhanced susceptibility x(g) due
to the broadening of the energy bands of the 3d states. This
results in a decrease of the critical wave vectors g. until a
lattice parameter is reached for which g. = 0. For smaller
lattice parameters the ground state of Ni is the PM state.

3. Pure antiferromagnetic bcc Cr

Results for the nonmagnetic state of Cr having the AFM
structure as a ground state are shown in Fig. 8. Note that

0.2

@ o—o ynenhanced
@-® cnhanced

X (arb. units)

L (b)

0.004

0.003

0.002

x (arb. units)

0.001 -

0 | | | |
0 0.2 0.4 0.6 0.8 1
4,

FIG. 8. (Color online) Wave-vector dependent [g = %(0,0,qz)]

enhanced (a) and unenhanced (b) spin susceptibilities of paramagnetic
Cr. For comparison, the unenhanced susceptibility is plotted also in
panel (a).
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the antiferromagnetic order of Cr on the one side is a
result of the nearly half filling of the d band®’ (similar to
Mn), which should result in a commensurate AFM structure.
However, Cr exhibits also an instability with respect to an
incommensurate spin-density wave (SDW) with the wave
vector g ~ %(0,0,0.95), which is a result of the Fermi
surface nesting. This leads to a singularity of the magnetic
susceptibility at g ~ 7(0,0,0.95) of paramagnetic Cr. This
SDW instability in Cr and the corresponding behavior of the
momentum dependent magnetic susceptibility was discussed
in the literature by several authors.>**!

Our present results demonstrate that the calculation of the
momentum-resolved magnetic susceptibility properly repro-
duces its g dependent features for Cr. The calculations have
been performed for a lattice parameter a = 5.4 a.u. which
is slightly smaller than the experimental one (a &~ 5.44 a.u.).
At this lattice parameter the PM state was found to be more
stable than the AFM state. This allows us to observe the
behavior of x(g) due to the Fermi surface nesting, avoiding
the influence of other singularities connected to the instability
around g = 7/a(0,0,1) with respect to the AFM state.

Figure 8(b) shows a monotonous increase of the unen-
hanced susceptibilities with increasing wave vector g reaching
its maximum at g ~ 7/a(0,0,0.92). The enhanced susceptibil-
ity, also increasing with wave vector ¢, has a drastic increase at
G ~ 1/a(0,0,0.92) due to the enhancement factor [Eq. (17)],
which is associated with a singularity caused by the Fermi
surface nesting mentioned above.

Here, we do not discuss the g dependence of the exchange
integral 1(g) as this was done in detail by Sandratskii and

PHYSICAL REVIEW B 83, 144401 (2011)

Kiibler. Nevertheless, we would like to stress that this feature
is taken into account within the self-consistent calculations for
every wave vector. In fact this is essential for the analysis of
the stability of the paramagnetic state.

IV. CONCLUSION

A theoretical approach for electronic structure calculations
on systems with spiral magnetic structures within the KKR
Green’s function formalism has been presented. As has been
demonstrated, by making use of symmetry, the scattering
path operator can be obtained by solving the corresponding
equation of motion in the reciprocal space. Compared to
the case of collinear magnetic structure, the only structural
Green’s function to be used involves the wave vector of
the spin spiral. As the KKR formalism combined with the
CPA allows one to deal with chemically disordered materials,
corresponding spin spiral investigations on various disordered
alloys could be performed. In particular the energy of spin
spirals and the behavior of the magnetic moments of the
alloy components were analyzed. In addition it was shown
that the approach presented can be efficiently used for the
calculation of the momentum resolved longitudinal magnetic
susceptibilities of pure materials as well as those of disordered
alloys.
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