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In situ x-ray diffraction measurements of the c/a ratio in the high-pressure ε phase of
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The structure of laser-shock-compressed polycrystalline iron was probed using in situ x-ray diffraction over a
pressure range spanning the α-ε phase transition. Measurements were also made of the c/a ratio in the ε phase,
which, in contrast with previous in situ x-ray diffraction experiments performed on single crystals and large-scale
molecular dynamics (MD) simulations are close to those found in high-pressure diamond anvil cell experiments.
This is consistent with the observation that significant plastic flow occurs within the nanosecond time scale of
the experiment. Furthermore, within the sensitivity of the measurement technique, the fcc phase that had been
predicted by MD simulations was not observed.

DOI: 10.1103/PhysRevB.83.144114 PACS number(s): 62.50.Ef, 61.05.cp, 61.46.Hk, 61.72.Hh

I. INTRODUCTION

The high-pressure states of iron have long been of interest,
in no small part due to iron’s geophysical and technological
importance. One of the most studied parts of the phase
diagram is the α-ε (bcc to hcp) transition that occurs around
13 GPa.1 Indirect evidence for this transition was observed in
shock compression experiments,2,3 with the atomic structure
determined later for static high-pressure samples using x-ray
diffraction.4,5 It has recently been found that, at least on
nanosecond time scales for high-quality single crystals of
iron shocked along the [100] axis, the transformation to the
ε phase occurs in such a way that the c/a ratio exceeds
1.7,6,7 which is far higher than those found in diamond
anvil cell (DAC) experiments where the majority of reported
values cluster around 1.61 (close to the ideal hcp value of
1.63), although variations have been reported as a function
of pressure, with upper and lower limits of 1.67 and 1.59,
respectively.8 The large c/a values can be explained by the
lack of plasticity observed in the shock-loaded single crystals
on the time scale of these experiments leaving the interplanar
spacings of the {011} planes orthogonal to the loading
axis unchanged (which became the c axes of the material
in the ε phase). These remarkable findings were in excel-
lent agreement with large-scale molecular dynamics (MD)
simulations,9 which simulated the shock process for several
tens of picoseconds. Simulations of single crystals of iron
shocked along the [110] and [111] directions to above the
transition pressure contain a large fraction of fcc as well as
hcp, the γ and ε phases, respectively.10 Due to the orientation
dependence, a significant fraction of fcc phase has also been
predicted to be found in shock-compressed polycrystalline
iron,11 where the values of the c/a ratio are closer to the ideal
value at 1.633.12 It is in this context that we report experimental
data where we used in situ x-ray diffraction to measure
the structure and the c/a ratio of laser-shock-compressed

polycrystalline iron. In agreement with the MD simulations,
we find c/a ratios of 1.61 ± 0.01 that are now very similar
to those found in DAC experiments. However, we find no
evidence of an fcc phase.

II. EXPERIMENTAL METHOD

The experiments were performed at the U.K. STFC
VULCAN laser facility.13 The x rays diffracted from the
shocked iron foils were recorded by use of a cylindrical
polycrystalline pinhole camera (CPPC)14 shown in Fig. 1.
In this geometry, a collimated x-ray source and the shocked
sample to be interrogated are placed on the axis of a cylinder, on
the inside surface of which is placed a Fuji SR imaging plate. A
nanosecond 100-μm-diameter source of quasimonochromatic
x rays was produced by using a high-power optical (532-nm)
laser to illuminate a 12.5-μm-thick iron foil at an irradiance of
∼1014 W cm−2. This resulted in the generation of iron K-shell
radiation from the resonance line of heliumlike Fe at a central
wavelength of 1.85 Å. These x rays were collimated by a brass
tube coaxial with the cylinder resulting in x-ray illumination
of ∼1 mm2 on the shocked sample with an angular divergence
of ∼0.5◦, at an angle of 45◦ to the cylinder axis.

The material was 25-μm-thick polycrystalline-rolled iron
obtained from GoodFellow. An electron backscatter diffraction
analysis showed that the foils were textured, with [110] planes
having their plane normals lying preferentially along the
normal to the target surface. The grain size was typically
on the order of 10 × 10 × 50 μm, with the long axis lying
along the direction of rolling. The foils were overcoated with
20-μm paralyne N, and then 100 nm of aluminum, with the
foils being shocked by laser irradiation of the Al surface. The
foils were irradiated by a 6-ns-long trapezoidal laser pulse with
rise and fall times of 100 ps. The focal spot on the iron foils was
8 mm2, and the foils were irradiated at laser intensities between
1 × 1011 and 1.2 × 1012 W cm−2 with 1064-nm radiation,
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FIG. 1. Schematic of the experimental setup. The sample is
oriented such that the plane normal makes an angle i = 45◦ to the
axis of the cylinder and incoming x rays. The drive laser beam is
defocused to give a drive spot 2 mm in diameter. The deflection angle
2θ is measured with respect to the axis of the CPPC.

generating shock pressures ranging from 8 to 60 GPa. The
shock pressures were deduced from velocity interferometer
(VISAR) measurements reflecting from the rear free surface
of the foil with a separate laser wavelength of 532 nm,
synchronized to the shock-driving laser.15 The measured
free-surface velocity was divided by 2 to get the particle

velocity at the rear surface, and then, the pressures were
inferred from standard Hugoniot tables for iron.16 Owing
to the finite-temporal resolution of the system, no multiple
wave structure was observed in the VISAR signals, and, thus,
for those shots where we see both α and ε phases in the
diffraction, we cannot assign a lower pressure to a distinct wave
of compressed α phase, and the pressure quoted is presumed
to correspond to peak pressure in the system.

The relative delay between the 1-ns laser pulse used to
generate the x rays and the shock-driving beam was set such
that the x-ray pulse ended before the shock reached the rear
surface of the foil. Because the shock did not totally traverse
the foil at the time of the x-ray pulse, a record of diffraction
from both unshocked and shocked regions was obtained as
the attenuation length of the x rays, ≈20 μm, was of the
same order as the thickness of the foil. The diffraction from
the unshocked material allows accurate calibration of the
instrument on a shot-to-shot basis. An example of the raw
image plate data for a foil shocked to above the transition
pressure is shown in Fig. 2(a). There is a strong variation in
the diffracted intensity as a function of φ owing both to the
response function of the instrument14 and to the degree of
texture of the foil.

III. RESULTS

In Fig. 2(b), we show line outs of the diffracted x rays (with
background subtracted) for an unshocked sample, a 10-GPa
loading, and a 15-GPa loading, which are below and above
the transition pressure, respectively. It can be seen that, for the
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FIG. 2. (a) An example of raw data for a foil shock compressed to 15 GPa (as determined by VISAR) showing diffraction from both hcp
and bcc structures. (b) Integrated line outs with the background subtracted for pressures of 0, 10, and 15 GPa. The relevant peaks used in the
structural determination are labeled; the feature marked A is diffracted from the collimating tube.
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FIG. 3. (a), (b) A plot of lattice compression as a function of
angle for (112) bcc at 15 GPa on two different shots, showing
behavior consistent with low levels of strength. (c) A plot of hcp
(101̄1) showing a limiting strength of 10 GPa, although a best fit to
close to zero strength.

15-GPa pressure, new diffraction features appear, which
we have labeled as diffraction from the (101̄1) and (112̄0)
reflections of the hcp phase (we give reasons for these
identifications below). As the target is placed at an angle
i (in this case, π/4) to the incident x rays, a reflection at
a given (θ,φ) corresponds to diffraction from grains that
have plane normals at an angle ψ with respect to the shock
propagation direction given by cos ψ = (cos θ cos φ sin i −
sin θ cos i).14 We can fit the data to the standard formula for
determining material strength from diffraction 1–3 cos2 (ψ),
assuming isostress across the grain boundaries (Ruess limit),
shown in Fig. 3.17,18 In this form, the lattice plane spacing is
given by d(hkl)(ψ) = d(hkl){1 + [1–3 cos2 (ψ)]Q(hkl)}, where
d(hkl) and d(hkl)(ψ) are the plane spacing based on hydrostatic
compression at this pressure and the plane spacing at the angle
ψ including strength, and Q(hkl) is a plane-specific term
that is calculated using the strength, the elastic constants, and
the lattice geometry.17,18 We can fit the data using a standard
least-squares fit and estimate the limiting values of strength
in the material using pressure-scaled elastic constants.19,20

The error bars represent one standard deviation from a

least-squares fit to the peak location. The value of strength
for the bcc phase at 15 GPa is 1 ± 1.5 GPa, which includes
the hydrostatic limit, i.e., no strength. In the hcp phase, the
error bars are too large to make a reasonable estimate of
strength.

Given that the angular position of the (101̄1) reflection
is sensitive to both lengths of the c and a axes, while the
position of the (112̄0) peak depends only on the a axis, we can
deduce the c/a ratio. From an analysis of these two peaks, we
deduce c/a = 1.61 ± 0.01 for all shots where the ε phase was
observed and see no variation as a function of pressure. Using
an hcp crystallographic structure with a c/a ratio of 1.61 also
predicts the feature seen on the shoulder of the (110) static
peak, identified as the (101̄0) plane in Fig. 2(b).

Several factors allow identification of the new lines as
being consistent with the hcp phase (rather than fcc, or
simply, the compressed bcc lattice). First, the new reflection
that we label as (112̄0) hcp lies to the low angle side of
the (112) bcc reflection from the uncompressed lattice. The
shock-compressed bcc lattice in this region is seen clearly at the
high angle (compression) side. As rarefaction has not occurred
(as verified by the timing of shock from VISAR), the reflection
cannot correspond to a bcc or a body-centered-tetragonal
crystal. Furthermore, it is impossible to reconcile the two
lines labeled as hcp with a single fcc density, while an hcp
structure with a c/a ratio of 1.61 can produce both lines at
a density consistent with the appearance of the new lines.
Diffraction from a (220) fcc plane at a density within the
error of the VISAR measurements can be consistent with
diffraction-labeled (112̄0) hcp, but this structure does not
explain either the (101̄1) or the (101̄0), and there is no
signal where we would expect to see (110) fcc and (200) fcc
diffraction.

In Fig. 4, we plot the densities as a function of pressure
(as deduced from the VISAR data) for both material phases
with the shock Hugoniot obtained from gas-gun results.16,21 It
can be seen that, for the two data points in the low-pressure
regime, below the transition pressure denoted on the plot
by hollow squares, where only the compressed bcc lattice is
seen in the diffraction, there is good agreement with standard
Hugoniot measurements. Similarly, at high pressures, where
only the hcp phase is observed in diffraction (consistent with
total transformation of the lattice on the time scale of the
experiment), agreement is also good, although in this regime,
the error bars are larger. Interestingly, within the transition
regime between 13 and 30 GPa, there is a tendency for the
densities deduced via diffraction to be lower than the bulk
Hugoniot data for the compressed bcc phase but greater than
it for the hcp phase. Such an observation is consistent with
a model where the main shock wave within the material is
a mixture of the two phases, with the hcp regions having a
higher mean density and the bcc at a lower density so the net
average density falls on the Hugoniot. This is similar to the
two-phase region observed in static experiments between 13
and 18 GPa.8 In principle, the fraction of the material that
has been transformed to the hcp phase can be deduced from
the intensity of the relevant diffraction peaks. However, such
an analysis is severely complicated in the current experiments
owing both to the low level of signal to noise in the data and
by the high degree of texture within the sample.
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FIG. 4. A P -V plot of the iron-shock Hugoniot. Pressure is in-
terpreted from free-surface velocity measurements made by VISAR,
and volume is measured using x-ray diffraction. The bcc structure
is marked with squares where the hollow ones denote diffraction
when only the bcc phase was observed, while the hcp is marked with
circles, and the gas-gun Hugoniot is plotted as a solid line. In the
transition region, the plot shows (13–30 GPa) where both bcc and
hcp phases are observed in the diffraction at densities that do not lie
on the Hugoniot.

IV. DISCUSSION

We have shown, using in situ x-ray diffraction, that
shock-loaded polycrystalline iron foils undergo the α-ε phase
transition on a nanosecond time scale. The use of a laser
to ablatively shock load a sample has the advantage that it
requires very little infrastructure around the target, allowing
wide angle diagnostics, such as x-ray diffraction using the
CPPC to be used in situ. For the experiments performed here,
the rolled-iron foils were 25-μm thick, which was required for
the sample to be thin enough for the 6.7-keV x-ray backlighter
to volumetrically probe the target and is also thin enough to
have a supported shock wave with the available laser energies
and pulse shapes. At pressures below the phase transition,
the Bland number is L/δ ≈ 1/100,22 where L is the sample
thickness and δ is the distance required to establish a steady
shock (≈3 mm). A Bland number greater than 1 means a
steady shock will be generated within the sample. For our
experiments, we were not in the steady shock regime. We have
a strain rate about an order of magnitude faster than would
be observed in a steady front at the back of a thick sample.
Figure 5 shows the free-surface velocity data for the diffraction
image shown in Fig. 2. In this figure, we have denoted
the relative timing of laser pulses associated with the loading of
the sample and the x-ray probe. The break out shows a 1.0-ns
rise time, including the 260-ps round-trip time associated with
the 50-mm-thick etalon, followed by a flat velocity region
for ≈1.5 ns. Swegle-Grady determined a steady-state strain
rate on 6.3-mm samples below the transition of 4 × 106 s−1

at 13.2 GPa;23 using a similar analysis of the wave profile,
the strain rate in our experiment is 1 × 108 s−1 at 15 GPa
with no obvious correlation to pressure. The strain rate
at the front of the sample would most likely be higher
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FIG. 5. Free-surface velocity measurements from experiment
with diffraction shown in Fig. 2.

as the shock-wave profile approaches the steady profile through
the sample.24 In Fig. 6, we plot the time scale associated with
the Swegle-Grady relation as

tSG = 1 − (v/vo)Hugoniot

ε̇SG
(1)

where ε̇SG = 137σ 4, (v/vo)Hugoniot is taken for the Hugoniot,
and the rise times are taken from these experiments and are
plotted as a function of pressure. It is clear that the points
below the transition, denoted as hollow squares, are an order of
magnitude faster time scale then Swegle-Grady would predict
for a steady wave.

In these experiments, the strain rate driving the pressure
wave is larger than that which would exist in the steady
shock case. As a result, we would expect the state resulting
from the rapid compression to have a higher entropy than
a steady shock for the same pressure.24 This will manifest
itself as a lower density at a given pressure than on the
steady shock Hugoniot. Although we are not in the steady
shock regime, low-pressure experimental data suggest that the
deviation in density from the Hugoniot for a given particle
speed is smaller than the error bars for the measurements. The
two points we measure below the phase transition (denoted
with hollow squares) in Fig. 4 compare very well with the
standard Hugoniot for iron. This deviation would be largest
there as the Bland number would be the lowest for the
lowest pressures, so within our experimental uncertainty,
the Hugoniot does not depend on the strain rate. With
higher-fidelity density measurements, it may be possible to
actually resolve the difference in density due to the increase in
entropy.

In hydrodynamic models, the deviation of the shock front
from an ideal discontinuity to a finite-rise time is associated
with an effective material viscosity that can be thought
of as being responsible for the observed SG fourth-order
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power law.23 In many shock-wave experiments, this effective
viscosity has been interpreted as a material kinetic process,
such as the formation and movement of dislocations during
plastic relaxation or the rearranging of atoms during a phase
transition. The in situ x-ray diffraction measurements shown
above provide direct measures of atomic structure that show
that the time scales associated with these material processes are
much faster than those associated with the rise time in a steady
shock. Below the phase transition, points denoted by hollow
squares in Figs. 4 and 6 show nearly hydrostatic relaxation of
the lattice, with no obvious signs of elastic compression in the
diffraction. Similarly, above the transition pressure, we see a
prompt formation of the hcp phase in a significant fraction to
suggest it is a major component of the material. In both cases,
the observation in the x-ray diffraction suggests the material
time scale of plastic relaxation, and phase transition occurs
much faster than previously interpreted from the rise time of
steady shocks. In Fig. 6, we plot the transition time scale
Jensen et al.25 interpreted from relaxations in the velocity
profile at the shock interface. While the majority of data

agrees with the transition time-scale model proposed by Jensen
et al., we do not observe the same time dependence at the
lower pressures; the exact cause of this difference is uncertain
because of the different strain rates and target configurations of
the two experiments. An ideal future experiment, using x-ray
diffraction, would be to look at the material structure and the
relaxation velocity at the front surface for pressure just above
the transition pressure to correlate atomistic material behavior
with bulk material behavior. These measurements stress the
importance of in situ probing of dynamic experiments to
provide a better understanding of material processing.

In conclusion, we have shown that nanosecond x-ray
diffraction can be used to study the structure of polycrystalline
iron during a shock-induced phase transition. Importantly,
our data are not consistent with an fcc structure in the
high-pressure phase, as has been predicted by MD for shocked
polycrystalline samples. We note, however, that the time scale
of the experiments reported here are 2 orders of magnitude
longer than typical MD simulations, and, thus, the possibility
remains that an fcc structure is a short-lived metastable
phase. In contrast with experiments performed on single
crystals and MD simulations of the shock-induced transition
in single crystals, we find that the observed c/a ratio in the
polycrystalline case (1.61 ± 0.01) is close to the ideal hcp
value and is in close agreement with values reported in DAC-
based experiments. We interpret this as being due to the single
crystals having few defects as sources to generate enough
dislocations to relax on the time scale of the measurements,
whereas, the grain boundaries and other defects in the rolled
foil would act as sources for dislocations to relax the shear
stress. However, it is clear that the detailed physics of plastic
behavior under shock compression and ultrahigh-strain rate
laser compression remains an area that needs to be investigated
further, and time-resolved diffraction can play an important
role in advancing our understanding of the underlying physical
processes and time scales.
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