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Ab initio study of electron paramagnetic resonance hyperfine structure of the silicon dangling bond:
Role of the local environment
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The hyperfine coupling of the electron spin to the nuclear spins nearby contains information on the local
environment such as the chemical composition, distances, or bond angles. A correct interpretation of this
information requires a comparison to a theoretical model. In this work, we employ spin-density-functional theory
and ab initio pseudopotentials to study how the hyperfine couplings of a Si dangling bond change under systematic
variations of the local environment. For our network models, which take the effect of the extended host into
account (supercell approach), we show that the hyperfine tensor of the undercoordinated silicon atom is governed
by the interplay between s-p hybridization and the degree of localization of the defect state.
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I. INTRODUCTION

Electron paramagnetic resonance (EPR) is a powerful
experimental technique to study point defects in solids.1–4 The
spectrum, which results from flipping the spin of unpaired
electrons in an external magnetic field, yields information on
the symmetry of the defect structure as well as on the type of
atoms involved. Much of the structural information stems from
the hyperfine interaction between the unpaired electron spin
and the spin of nearby nuclei. The so-called superhyperfine
interaction, which arises from the interaction between the
electron and nuclei of the lattice surroundings, yields further
insights into the structure of the defect.

However, to derive a microscopic picture of the defect
from the experimental data requires knowledge of the defect
wave function. For example, it is not possible to derive
the distance between a particular nucleus and the defect
center from the superhyperfine splitting in the spectrum alone.
Such information can only be obtained by comparison to
theoretical calculations of an EPR spectrum for a given
defect. For that purpose, various approaches with different
levels of sophistication exist. Semiempirical methods based
on the linear combination of atomic orbitals (LCAO) have
been successfully used to explain trends in the EPR spectra,
but their accuracy is often insufficient for direct comparison
with experiment. More reliable methods based on all-electron
calculations are usually limited by the size of the system.
A powerful approach to circumvent both deficiencies con-
sists in utilizing spin-density-functional theory and ab initio
pseudopotentials.5

The EPR technique has been extensively applied to study
paramagnetic defects in crystalline silicon4 (c-Si). Prominent
examples are the Pb center6–8 (a dangling bond at a Si-SiO2

interface) and the negatively charged vacancy.9,10 Similarly,
it can be used for investigating the mechanisms behind the
light-induced degradation of solar cells based on hydrogenated
amorphous silicon11,12 (a-Si:H). However, in this case the
interpretation of the experimental data is challenging due to
significant deviations from the crystalline structure. Conse-
quently, a profound knowledge of the influence of the local
geometry [see Fig. 1(a)] on the EPR parameters is required.
However, this aspect has only been investigated by theoretical

studies on small clusters so far13–15 that largely neglect the
influence of the extended host’s electronic structure.

There is an absence of systematic work, in which the
presence of an extended host material is taken into account.
Consequently, we have carried out first-principles supercell
calculations to reveal how changes in the structure surrounding
the defect affect the hyperfine interaction. To disentangle
structural effects of the local defect environment from the rest
of the material, we consider dangling-bond (db) models based
on c-Si.

The paper is organized as follows. In the next section, we
briefly summarize the theoretical scheme to compute hyperfine
parameters in a pseudopotential approach. After that, we
describe db models in c-Si, and proceed with a description
of the employed methods in Sec. III. In the final section, we
present and discuss our results.

II. THEORETICAL APPROACH

The hyperfine interaction characterizes the interaction
between the magnetic moment of the unpaired electron or hole
and the magnetic moments of the nuclei. The corresponding
Hamiltonian for coupling to a single nucleus is given by
H = I · A · S, where I and S stand for the electron and nuclear
spin, respectively. The hyperfine tensor A can be decomposed
into an isotropic and an anisotropic part,2

Aij = aδij + Bij , (1)

where a and Bij denote the Fermi contact interaction and the
traceless anisotropic hyperfine tensor, respectively.

The Fermi contact interaction is given in the nonrelativistic
limit by

a = 2μ0

3
geμegIμI · ρS(R), (2)

where μ0 is the permeability in vacuum, ge is the electron
g factor, μe is the Bohr magneton, and gI and μI are the
gyromagnetic ratio and nuclear magneton of the nucleus.
We note that the gyromagnetic ratio of Si is negative, and
therefore also the hyperfine couplings to the majority spin
in our calculations are negative numbers. However, standard
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EPR experiments can only probe the absolute value of a,
and therefore in these publications it is commonly given as
a positive number.

The spin density in Eq. (2), ρS(r) = ρ↑(r) − ρ↓(r), depends
solely on the position R of the nucleus. Since only the
s-wave function, i.e., l = 0, is nodeless at R, this parameter
consequently characterizes the s-like character of a system.
In a first-order scalar-relativistic treatment, ρS(R) has to
be replaced by an average over a small sphere around the
nucleus with a radius on the order of the Thomson radius16

rTh = Ze2/mc2 ≈ 5Z × 10−5Bohr (Z is the nuclear charge, e
is the elementary charge, m is the electron mass, and c is the
speed of light),

ρS(R) → 〈ρTh〉(R) =
∫

δTh(|R − r|)ρS(r)d3r, (3)

with δTh(r) defined by

δTh(r) = 1

4πr2

rTh/2

[
(
1 + E/2mc2

)
r + rTh/2]2

, (4)

where E denotes the nonrelativistic energy.
The anisotropic tensor2

Bij = μ0

4π
geμegIμI

∫
3rirj − δij r

2

r5
· ρS(r)dr (5)

stands for a magnetic dipole-dipole interaction between elec-
tron and nucleus at the relative distance r. Indeed, for a δ-like
spin density, the classical point dipole-dipole interaction can
be obtained.

The tensor is in its principal system described by two
anisotropic interaction constants,1 namely the uniaxiality b and
the asymmetry (rhombicity) parameter c. Assuming that the
eigenvalues of B are sorted according to |B1| � |B2| � |B3|,
the parameters are defined by

b = B3 − (B2 + B1)/2

3
, (6)

c = |B2| − |B1|
2

. (7)

Both parameters vanish for systems with cubic symmetry
and are, in contrast to a, only available upon diagonalization
of A. The c parameter becomes zero for systems with axial
symmetry, for which two principal values coincide. This is
also the case for the systems under investigation here. The
b parameter can be also expressed as the scalar product of
a spherical harmonics with l = 2 and the spin density.5 This
way, it becomes clear that the parameter projects out the d-like
component of the spin density, thus the anisotropy b probes for
the local p character of the singly occupied wave function in
sp-bonded systems like silicon. [The maximum l component
lmax of the density ρ(r) and the generating wave function ψ(r)
fulfill the condition l

ρ(r)
max � 2l

ψ(r)
max if ρ(r) = |ψs(r)|2.]

The computation of Eqs. (2) and (5) requires knowledge of
the spin density ρS(r), which can be obtained from density-
functional theory.17,18 For the computation of defects in large
systems, it is convenient to use pseudopotentials,19 so that
the core electrons are removed from the calculation and the
valence electrons are described by nodeless wave functions.
However, since the hyperfine parameters depend crucially on

the core region, it becomes necessary in this case to reconstruct
the wave function inside this region from that obtained from a
pseudopotential calculation. Several schemes5,20,21 have been
proposed for this purpose. In this work, we employ the single-
projector method5 to calculate the hyperfine parameters, which
has been implemented into the DFT library S/PHI/nX.22

III. COMPUTATIONAL METHODS

A. Dangling-bond models

We shall see in the following that the hyperfine couplings
of the Si atom, where the dangling-bond state resides, are
determined by two major effects, namely s-p hybridization and
spin delocalization. The hybridization state is closely linked
to the atomic geometry, i.e., the bond angle α at the dangling
bond (Fig. 1). In a planar configuration (α = 120◦), the Si-Si
bond orbitals are sp2 hybrids, while the db orbital is a pure
p state. At the tetrahedral angle (α = 109.5◦), the backbond
orbitals and the db orbital are equivalent sp3 hybrids (25% s,
75% p). The second important effect is the localization of
the db state. Even though we discuss it in terms of a local
orbital at the db atom, the true electronic eigenstate decays

Si Si

Si

Sidb

Sibb Sibb Sibb

αl

FIG. 1. (Color online) (a) Sketch of the vacancy in crystalline
silicon. To arrive at a single dangling bond (indicated by the dashed
circle), one has to remove the other three electrons (dashed lines)
from the vacancy, e.g., by passivating those bonds with hydrogen as
it is done in (b). Next neighbors of the db atom are called backbonds
(bb). The bond angle Sibb − Sidb − Sibb is denoted by α and l stands
for the bond length Sidb − Sibb. (b) Spin density of a dangling bond in
a hydrogen-passivated vacancy. The hydrogen atoms are the smaller
spheres, colored turquoise. Only the dark, red-colored silicon atoms
show a significant isotropic hyperfine coupling.
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exponentially into the bond network that hosts the dangling
bond. The decay constant and thus the contribution of the
delocalized exponential tail to the norm depends on the
energetic position of the db state. If it is energetically close
to the network states, i.e., the valence or conduction band of
silicon, it will strongly hybridize with these and become more
delocalized. Delocalization reduces the hyperfine coupling to
the db nucleus and nearby atoms, while the superhyperfine
couplings to distant atoms are enhanced. This effect is largely
absent in small cluster models13–15 (like molecules), since the
quantum confinement increases the gap between occupied and
unoccupied states. Consequently, network structural models
are required to study the influence of this effect.

For the systematic study of the dependence of the hyperfine
parameters on the bond parameters of the local db environ-
ment, we consider small molecular radicals (silyl [SiH3] and
tetrasilyl [Si4H9]) and various db models in crystalline silicon.
In the latter case, there are several possibilities to create a
localized dangling-bond state that can contain an unpaired
electron. One way consists in passivating vacancies with
hydrogen (Fig. 1). We have considered two of this kind, namely
the smallest vacancy V (SiH)3 [the neighboring atoms of the va-
cancy are given in brackets] and a larger one V4(SiH)9. Another
possibility of creating a dangling bond in silicon is to replace
neighbors by impurities, which chemically bind the excessive
electrons, e.g., by phosphorus V (P3) or aluminum V (Al2SiH)
[we exclude the fully Al-substituted vacancy V (Al3) since
the hybridization with Al states completely destroys the
dangling-bond character of the orbital of interest]. Finally, we
have considered a dangling bond on a H-passivated Si(111)
surface, which corresponds to the extreme case in which there
are no atoms opposite to the db atom [this can be thought of
as removing all layers above the db atom in Fig. 1(b)].

To decouple the dependence of bond angle and bond length,
we have used the following atomic relaxation schemes. For the
bond length we only consider the tetrasilyl radical. To vary the
bond length, we move the three SiH3 groups bound to the db
atom along the bond direction for three different bond angles.
For the bond-angle dependence, we first displace the db atom
from its lattice position. Then we only relax the backbond
atoms, so that the bond length is recovered within 8% of the
relaxed value. This scheme is carried out for all models at the
ideal lattice structure to make the comparison independent of
other structural effects. Only the hydrogen atoms are relaxed
to recover the correct Si-H bond length to ensure that the
corresponding bonding states are well below the valence-band
edge.

To study the superhyperfine interaction opposite to the
db atom, we consider two larger hydrogenated vacancies
originating from removing two or three silicon atoms. Again,
we only relax the hydrogen atoms to preserve the overall
geometry of the models.

B. Parameters

The DFT calculations employ a plane-wave basis set
and norm-conserving pseudopotentials as implemented in the
S/PHI/nX code.22 The plane-wave energy cutoff EC is set
to 40 Ry. As already mentioned in the original article,5 one
observes a strong sensitivity of the a parameter on EC , which

can be improved by rescaling the density at the nucleus
with the one of the isolated atom. In this work, we employ
the local-spin-density approximation.23 The choice of the
exchange-correlation functional was found to exert a minor
influence on the results in the cases studied so far,24–26 but
nevertheless we have checked that all trends can be reproduced
with the Perdew-Burke-Ernzerhof (PBE) functional.27

The norm-conserving pseudopotentials are generated with
the FHI98PP code,19 where we choose Hamann-type28 with
default values. We also include scalar-relativistic effects for
the isotropic parameter, which requires the correction of the
atomic all-electron density in the original scheme5 |φs(0)|2
according to Eq. (3). For the computation we proceed as
follows. The s-wave function diverges for r → 0 like φs(r) =
Crλ−1, where λ = √

1 − α2Z2 with α = 1/137. The constant
C can be obtained from the condition that φs(r0) coincides with
the corresponding solution ψs(r0) computed by the FHI98PP

program at the minimal grid point r0. The integration with
the smeared δ function δTh(r), according to Eq. (3), can be
rewritten as∫ ∞

0
|ψs(r)|2δTh(r)r2dr

=
∫ ∞

0
|φs(r)|2δTh(r)r2dr +

∫ rmax

r0

{|ψs(r)|2

− |φs(r)|2}δTh(r)r2dr. (8)

The first integral is computed analytically, the second one
numerically on the standard logarithmic grid. This approach
ensured that the results converge as r0 → 0.

To check the accuracy of our approach, we have performed
test calculations on two silyl radicals and compared the results
with an all-electron method. For the latter, we use GAUSSIAN03

(Ref. 29) with the local-spin-density approximation. To ensure
convergence with respect to the Gaussian basis set, we employ
an uncontracted WTBS basis set for silicon and the EPR-III
basis set for hydrogen, and a Douglas-Kroll-Hess zero-order
relativistic Hamiltonian. (An interesting observation concerns
the inclusion of relativistic effects in the all-electron calcu-
lation. It changes the isotropic value significantly, namely
by 30% with respect to a nonrelativistic calculation.). For
comparison, we take the structure obtained from the GAUS-
SIAN03 calculation and compute the hyperfine parameters with
our pseudopotential method. (However, the differences of
structure relaxation between GAUSSIAN03 and S/PHI/nX are
rather insignificant: the bond angle just differs by 0.2% and the
bond length by 0.35%.) The corresponding results are reported
in Table I. For the a parameter, the pseudopotential approach
yields lower values than the all-electron approach. On the

TABLE I. Comparison of hyperfine parameters (in MHz) between
GAUSSIAN03 and S/PHI/nX for two silyl radicals (	 denotes the
difference between both methods).

(MHz) G03 S/PHI/nX 	

SiH3 a −649 −635 +2%
b −88 −98 −11%

Si4H9 a −346 −310 +10%
b −82 −87 −6%
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other hand, the b parameter is overestimated compared to
GAUSSIAN03. From these examples we see that the absolute
accuracy of our scheme is on the order of 10% for both
parameters. The discrepancy can be partly explained by
polarization of the core electrons, which is not taken into
account in our pseudopotential approach. However we have
carefully checked that trends for bond parameter variations
are reproduced correctly independently of the computational
details.

The calculations for the dangling bond in crystalline silicon
are carried out in a 2 × 2 × 2 supercell and 16 atomic
layers for the surface, respectively (64 Si atoms without
the defect). The Brillouin zone integration is done on a
3 × 3 × 3 Monkhorst-Pack mesh30 with k = [1/2,1/2,1/2]
(for the surface, k = [1/2,1/2,1/4]) as the generating point.
For the bond-angle dependence we use an electronic tem-
perature kT = 0.025 eV (room temperature) to reduce the
occupational effects for the case in which the defect band
hybridizes with bulk states. (Defect dispersion effects are
averaged out by integrating over the Brillouin zone with
constant occupation. However, defect resonances below the
topmost bulk state are erroneously occupied. As done in
this work, this effect can be reduced by partial occupations
obtained from Fermi smearing.) To minimize artifacts from
the dispersion of the defect band, we keep the spin moment
fixed. The supercell convergence has been cross-checked for
the db models with a 3 × 3 × 3 supercell (216 Si atoms)
and we found deviations less than 6% for the a parameter
and 4% for the b parameter. For the superhyperfine cou-
pling, we consider 3 × 3 × 3 supercells to minimize supercell
artifacts.

IV. RESULTS

A. Bond length

In the following, we will discuss the influence of the bond
length between the dangling-bond atom and its three backbond
neighbors. To decouple the effect of this parameter from that
of the bond angle, we focus on the tetrasilyl molecule. In
this case, the bond length can be easily varied by displacing
the SiH3 groups along the bond direction. We do this for three
characteristic bond angles: the tetrahedral (109.5◦), the relaxed
one (116◦), and the planar one (120◦). The results are shown in
Fig. 2. When the bond length is changed from its relaxed value
2.30 Å by ±10%, which reflects the bond-length variations in

amorphous silicon,31 we obtain an essentially linear trend for
the isotropic parameter for all bond angles. This dependence
of a of the bond length l (in Å) can be characterized by

a(l) = a0 + k(l − l0), (9)

where l0 = 2.3 Å is the equilibrium bond length, k =
−181, − 163, and − 122 MHz, and a0 = −509, −291,
and −129 MHz, respectively, for the bond angles α =
109.5◦,116◦, and 120◦. The magnitude increases from 120◦ to
109.5◦ in accordance with the increasing s character of the db
orbital. For the dipolar coupling, the dependence varies from
linear at 120◦ to almost parabolic at 109.5◦, but the overall
effect is small (±5 MHz). For completeness, we note that
for dramatic variations of the bond length (bond breaking) an
additional spin-delocalization mechanism comes into play.32

B. Bond angle

To study the influence of the bond angle on the hyperfine pa-
rameters, we have carried out the relaxation scheme described
in Sec. III A. In principle, the accompanied variation of the
bond length is not negligible, but we have checked that the
magnitude of the bond-angle variation effect is qualitatively
independent of the other bond parameter.

The bond angle α determines the s-p hybridization at the
dangling-bond center. Since the db orbital becomes purely
p-like for 120◦, we expect an increase of the dipolar coupling
b and a decrease of the isotropic coupling with increasing
α. This is indeed observed for the tetrasilyl molecule, but
significant deviations occur for the crystalline db models
(Fig. 3). For small bond angles, both hyperfine parameters
decrease, indicating a delocalization of the spin away from
the dangling-bond atom. This can be rationalized as follows.
The variation of the bond angle does not only influence the
s-p hybridization but it also affects the energetic position of
the dangling-bond level. With respect to a pure p orbital, an
admixture of s character implies a lower energy. However,
as the db level approaches the valence-band edge, it starts
to hybridize and delocalize as described in Sec. III A. At
which angle this occurs depends on the original position of
the state in the relaxed configuration and thus on the chemical
environment of our models. Electronegative elements such as
phosphorus raise the db level due to Coulomb repulsion, and
thus the delocalization comes into play only at small bond
angles. Electropositive elements like aluminum, on the other
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FIG. 2. (Color online) Dependence of the hyperfine parameters on the variation of the bond length for the Si4H9 molecule. Three different
bond angles are considered, namely tetragonal (109.5◦), relaxed 116◦, and planar 120◦. The vertical line marks the relaxed bond length.
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FIG. 3. (Color online) Dependence of the hyperfine parameters on the variation of the bond angle for the Si4H9 molecule and the c-Si db
models. The black line marks the bond angle of the c-Si db models and the gray line marks that of the Si4H9 molecule, respectively.

hand, pull the level close to the valence band. Therefore, the
singly occupied level is delocalized already for bond angles
slightly below 120◦. This effect can be easily monitored for
the partial density of states

D(E) =
∫ ∑

n

δ(E − εn(k))
∑
i=s,p

|〈ψn(k)|φi〉|2dk, (10)

where ψn(k) and εn(k) correspond to the wave functions and
eigenvalues obtained from the pseudopotential calculation, and
φi to projector functions constructed from the atomic partial
waves.5

In practice, the integral in Eq. (10) is replaced by a sum and
the δ function by a Gaussian (broadening 0.1 eV). For our spin-
polarized calculations, we plot the spin-resolved density of

states D↑ (majority spin) and −D↓ (minority spin) into a single
graph. Figure 4 shows the partial density of states for three
characteristic models for three bond angles. One can clearly
see the downshift of the defect levels with decreasing bond
angle for the V (P3) and the V4(SiH)9 db model. If the level
falls below the valence-band maximum due to the chemical
environment, i.e., for the V (Al2SiH) model, the features are
broadened and ultimately disappear.

In an ab initio study on small clusters,14 it has already
been shown that the empirical LCAO picture is not accurate
enough to distill the bond-angle range12 from the hyperfine
interaction. However, cluster models cannot capture the effect
of delocalization due to the width of the band gap and the small
numbers of neighbors. Since we are not restricted by these
effects, it is elucidating to consider the relationship between

V P3

1 0 1
0.9

0.6

0.3

0

0.3

0.6

E eV

pD
oS

ar
b.

un
it

s

95°

V P3

1 0 1
0.9

0.6

0.3

0

0.3

0.6

E eV

pD
oS

ar
b.

un
it

s

110°

V P3

1 0 1
0.9

0.6

0.3

0

0.3

0.6

E eV

pD
oS

ar
b.

un
it

s

119°

V Al2SiH

1 0 1
0.9

0.6

0.3

0

0.3

0.6

E eV

pD
oS

ar
b.

un
it

s

96°

V Al2SiH

1 0 1
0.9

0.6

0.3

0

0.3

0.6

E eV

pD
oS

ar
b.

un
it

s

110°

V Al2SiH

1 0 1
0.9

0.6

0.3

0

0.3

0.6

E eV

pD
oS

ar
b.

un
it

s

119°

V4 SiH 9

1 0 1
0.9

0.6

0.3

0

0.3

0.6

E eV

pD
oS

ar
b.

un
it

s

95°

V4 SiH 9

1 0 1
0.9

0.6

0.3

0

0.3

0.6

E eV

pD
oS

ar
b.

un
it

s

110°

V4 SiH 9

1 0 1
0.9

0.6

0.3

0

0.3

0.6

E eV

pD
oS

ar
b.

un
it

s

119°

FIG. 4. (Color online) Projected density of states D(E) for three different bond angles for the V (Al2SiH), V (P3), and the V4(SiH)9 model,
respectively. For clarity, we plot D↑(E) and −D↓(E), respectively. The dashed line indicates the scaled total density of states (scaling factor
0.035). The energies are aligned to the valence-band maximum of c-Si.
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FIG. 5. (Color online) Dependence of the hyperfine parameters on the variation of the bond angle for the backbond neighbors of the Si4H9

molecule as well as for the c-Si db models [a: Si4H9, b: V (P3), c: Si(111), d: V (SiH)3, e: V4(SiH)9, f : V (Al2SiH)]. The black line marks the
bond angle of the c-Si db models and the gray line marks that of the Si4H9 molecule, respectively.

the hyperfine parameters and the bond-angle range with
respect to this aspect. For that we consider again amorphous
silicon, for which theory33,34 and experiment31,35,36 estimate
bond-angle variations of up to 15◦. Considering an interval
of ±10% around the tetrahedral bond angle, one obtains the
following trends for the change of a and b. Within a non-
self-consistent, single-site LCAO model,12 where the dangling
bond is restricted to the undercoordinated Si atom only, the
isotropic parameter varies by 60%–90% and the anisotropic
parameter by 20%–33% within the chosen bond-angle interval.
In comparison, we get from our calculations for a delocalized
defect, i.e., the V (Al2SiH) model, a variation on the order
of ±35% for the isotropic parameter and ±25% for the
dipolar coupling. On the other hand, for a localized model,
i.e., V (P3), there are dramatic fluctuations of the hyperfine
parameters with bond angle, namely by 20%–65% for the
a parameter and by 5%–45% for the b parameter respectively.
This quantitatively illustrates that the hyperfine parameters are
more sensitive to changes in the local structure for deep-level
defects. Furthermore, it shows that the single-site LCAO model
overestimates the change of the isotropic coupling as well as
the one of the anisotropic coupling for large bond angles. In
turn, this means that this simple model predicts a smaller bond-
angle range for a given interval in a compared to self-consistent
calculations.

V. SUPERHYPERFINE COUPLING

The analysis of the superhyperfine interaction yields further
information about the defect, such as its coordination in
amorphous silicon.37,38 For that reason, we consider the bond-
angle dependence of the first and second nearest neighbors
of the c-Si models (Fig. 5). Here we focus on the isotropic

coupling, which is a measure for the spin distribution within
the network.

The first neighbors show the following trends. For small
bond angles, a large coupling is obtained for the localized
defects. With increasing bond angle, one observes a change
from majority to minority spin density, which is almost
independent of the model. This has been observed before
in the context of small-molecule systems7 and can be ex-
plained by spin-polarization effects. On the other hand, the
second neighbors show a continuous increase of a for larger
bond angles, i.e., as more spin density is pressed into the
network. Consequently, the isotropic coupling of these atoms
is directly related to the geometry of the defect. However, the
magnitude depends on the chemical environment being largest
for the hydrogen-saturated vacancies. In all models, with
the exception of V (P3), the larger second-neighbor coupling
exceeds the first-neighbor one, which has been also observed
previously.7,39

Besides the backbond couplings, there is also a significant
isotropic coupling for atoms opposite the db atom, which
has not be observed in previous cluster models [Table II
and Fig. 1(b)]. Those atoms are at the same distance as the
second nearest neighbors and are attached to a hydrogen atom.
As one can see from Table II, the hyperfine parameters of
the opposite atoms are very close to the ones of the second
nearest neighbors in the backbond direction. From this we
can conclude that the network, i.e., the connection of an atom
to the db atom via bonds, is not a necessary condition for
the spin distribution. Therefore, it may be difficult to resolve
the different positions experimentally. We therefore conclude
that the common assumption that a significant superhyperfine
interaction occurs only in the backbond atoms7,11,12 needs to
be revised.

TABLE II. Isotropic/dipolar hyperfine parameters (in MHz) of various hydrogenated vacancies.
The parameters are shown for the db atom, second-nearest neighbors, as well as Si atoms opposite
the db atom at the same distance as the second-nearest neighbors (3.81 Å).

a/b (MHz) V (SiH)3 V2(SiH)5 V3(SiH)7 V5(SiH)11

Si-db −345/−48 −33/−6 −24/−3 −396/ − 53
2nd neighbor −33/ − 6 −37/ − 6 −37/ − 6 −37/ − 6
opposite Si-H −24/ − 3 −39/ − 4 −37/ − 4 −37/ − 4
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VI. CONCLUSIONS

We have analyzed the dependence of the hyperfine pa-
rameters of the silicon dangling-bond defect on bonding
parameters. For that purpose, we have carried out systematic
ab initio studies for small clusters and for crystalline supercell
models. These models capture in particular the effect of
delocalization, which has been neglected in previous studies.
Bond-length variations induce a linear trend for the isotropic
parameter but hardly affect the anisotropy. The dependence
of the hyperfine parameters on the bond angle turns out to be
more complex. For deep-level defects, one observes trends
that are in agreement with the s-p hybridization picture.
However, if the defect state approaches the valence-band
edge, hybridization occurs and leads to a delocalization of
the unpaired electron. This delocalization can be induced
by the chemical surrounding but also by the geometry of
the defect. From the observed trends we conclude that the
hyperfine parameters can only characterize the local structure
of sufficiently deep defects. For less localized cases, the
relation between local geometry (degree of s-p hybridization)
and hyperfine couplings becomes increasingly modified by
additional factors such as the chemical environment, local
charges in the vicinity, or the interaction with nonbonded
residues (e.g., hydrogen) nearby. This implies that bond pa-
rameters cannot be reliably deduced from measured hyperfine
couplings alone if delocalized defects dominate or even only
contribute to the observed hyperfine distribution. Rather, a
comparison to explicit theoretical calculations of the hyperfine
parameters is needed to confirm the interpretation. These
calculations must appropriately represent the extended host

and its electronic structure to capture delocalization effects.
Moreover, our bulk-embedded defect calculations reveal that
a large superhyperfine interaction can occur at atoms opposite
to the dangling bond and is not restricted to second neighbors
only, as has been previously assumed by analogy to dangling-
bond defects at surfaces or interfaces. Consequently, the
environment opposite to the dangling bond plays in general
a more important role, notably for delocalization effects, than
previously recognized.

Our results also have important consequences for the
interpretation of EPR experiments for the dangling bond in
a-Si:H. The fundamental mechanisms of s-p hybridization
and delocalization are certainly active in the amorphous case,
and may serve to rationalize the effects for an individual defect
configuration. However, the strong site-to-site variations, not
only of the geometry and energetic position but also of
the nearby environment, will hinder a direct interpretation
of ensemble averages in terms of a single or averaged
defect parameter. Rather, changes in the observed properties
upon varying the experimental conditions could reveal the
underlying effect and shed more light on the origin of the EPR
signal.
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